Outer Dowsing Offshore Wind Preliminary Environmental Information Report Volume 1, Chapter 10: Fish and Shellfish Ecology

Date: June 2023

Outer Dowsing Document No: 6.1.10 Internal Reference: PP1-ODOW-DEV-CS-REP-0015

Rev: V1.0

Company	y: Outer Dowsing Offshore Wind Asset:		Whole	Asset			
Project:	Project: Whole Wind Farm Sub Project/Package:		ckage:	Whole	Asset		
Document Title or Description:		Fish and Shellfish Ecolo	gy				
Document Number:		6.1.10		3 rd Party Doc No N/A (If applicable):			
Outer Dowsing Off information in this information.		fshore Wind accepts no is document nor for an	o liability fo ny loss or d	r the accur damage ari	acy or c sing fro	omplete m the	eness of the use of such
Rev No.	Date	Status /Reason for Issue	Author	Checked by	Review	ved by	Approved by
1.0	June 2023	Final	GoBe	GoBe	Shephe and Wedde	erd erburn	Outer Dowsing Offshore Wind

L

Table of Contents

10.	Fish and Shellfish Ecology	13
10.1	1 Introduction	
10.2	2 Statutory and Policy Context	
10.3	3 Consultation	
10.4	Baseline Environment	48
St	tudy Area	48
С	ompensation Areas	48
D	ata Sources	50
E	xisting Environment	52
Fi	ish Ecology	52
S	hellfish Ecology	54
S	pawning and Nursery Grounds	54
S	pecies of Commercial Importance	56
D	iadromous Species	56
E	lasmobranchs	57
S	pecies of Conservation Importance	57
V	alued Ecological Receptors	
F	uture Baseline	62
10.5	5 Basis of Assessment	85
S	cope of the Assessment	85
R	ealistic Worst-Case Scenario	86
E	mbedded Mitigation	
10.6	6 Assessment Methodology	97
А	ssumptions and Limitations	
10.7	7 Impact Assessment	
C	onstruction	
0	perations and Maintenance	
D	ecommissioning	
10.8	3 Cumulative Effects Assessment	
10.9	9 Inter-Relationships	
10.2	10 Transboundary Effects	
10.1	11 Conclusions	

10.12 F	References	188
---------	------------	-----

List of tables

Table 10.1: Legislation and policy context1	15
Table 10.2: Summary of the MSFDs high level descriptors of GES relevant to fish and shellfish ecolog	gy
and consideration in the Project assessment2	24
Table 10.3: East Marine Plan Policies of relevance to fish and shellfish ecology	27
Table 10.4: Summary of consultation relating to fish and shellfish ecology	31
Table 10.5: Data sources used to inform the Project baseline characterisation5	50
Table 10.6: Summary of fish and shellfish VERs5	58
Table 10.7: Maximum design scenario for fish and shellfish ecology for the Project alone	37
Table 10.8: Embedded mitigation relating to fish and shellfish ecology	96
Table 10.9: Impact magnitude definitions) 7
Table 10.10: Sensitivity/importance of the environment	9 9
Table 10.11: Matrix to determine effect significance 10	00
Table 10.12: MDS Piling Scenarios within the Array Area10)5
Table 10.13: MDS Piling Scenarios within the ORCP search area10)6
Table 10.14: Hearing categories of fish receptors (Popper et al., 2014)10)8
Table 10.15: Impact threshold criteria from Popper et al. (2014).)9
Table 10.16: Noise modelling results for injury ranges for fleeing and stationary receptors from the	٦e
sequential piling of foundations scenarios within the array area11	10
Table 10.17: Noise modelling results for in-combination impact areas for fleeing and stationa	ry
receptors from the simultaneous piling of foundations within the array area11	11
Table 10.18: Noise modelling results for injury ranges for fleeing and stationary receptors from the	٦e
single and sequential piling of ORCP foundations11	12
Table 10.19: Projects considered within the fish and shellfish ecology cumulative effect assessment	nt
	71
Table 10.20: Cumulative MDS for fish and shellfish ecology	76
Table 10.21: Cumulative piling durations for the Project and other offshore wind farms within	а
representative 100 km buffer of the Project (where construction or decommissioning occu	rs
concurrently)17	78
Table 10.22: Summary of effects for fish and shellfish18	34

List of figures

Figure 10.6: Nursery Grounds Relative to the Project (Coull et al., 1998; Ellis et al., 2010)68
Figure 10.7: Nursery Grounds Relative to the Project (Coull et al., 1998; Ellis et al., 2010)69
Figure 10.8: Nursery Grounds Relative to the Project (Coull et al., 1998; Ellis et al., 2010)70
Figure 10.9: Nursery Grounds Relative to the Project (Coull et al., 1998; Ellis et al., 2010)71
Figure 10.10: Herring Spawning and Nursery grounds with EUSeaMap 2021 Relative to the Project
Figure 10.11: Herring Habitat Suitability Data with EUSeaMap 2021 Relative to the Project
Figure 10.12: Herring Spawning and Nursery Grounds with BGS and Site Specific Data Relative to the
Project74
Figure 10.13: Herring Habitat Suitability Site Specific Data75
Figure 10.14: Herring Spawning Grounds IHLS Comparison76
Figure 10.15: The Project with Herring Spawning Grounds IHLS comparison, 2009-201377
Figure 10.16: The Project with Herring Spawning Grounds IHLS comparison, 2013-201778
Figure 10.17: The Project with Herring Spawning Grounds IHLS comparison, 2019-202179
Figure 10.18: Sandeel Spawning and Nursery Grounds with EUSeaMap 2021 Relative to the Project
Figure 10.19: Sandeel Habitat Suitability Data with EUSeaMap 2021 Relative to the Project81
Figure 10.20: Sandeel Spawning and Nursery Grounds with BGS and Site Specific Data Relative to the
Project
Figure 10.21: Sandeel Habitat Suitability Site Specific Data
Figure 10.22: Designated Protected Areas in Relation to the Project Fish and Shellfish Ecology Study
Area
Figure 10.23: Predicted Worst Case Impact Ranges for Spawning Herring from the Sequential Piling
of Jacket Foundations within the Array Area (Stationary Receptor; 3,500kJ)135
Figure 10.24: Predicted Worst Case Impact ranges for Spawning Herring from the Sequential Piling of
Monopile Foundations within the Array Area (Stationary Receptor; 6,600kJ)136
Figure 10.25: Predicted Worst Case Impact ranges for Spawning Sandeel from the Sequential Piling
of Jacket Foundations within the Array Area (Stationary Receptor; 3,500kJ)137
Figure 10.26: Predicted Worst Case Impact ranges for Spawning Sandeel from the Sequential Piling
of Monopile Foundations within the Array Area (Stationary Receptor; 6,600kJ)138
Figure 10.27: Predicted Worst Case Impact ranges for Spawning Herring from the Simultaneous Piling
of Jacket Foundations within the Array Area (Stationary Receptor; 3,500kJ)139
Figure 10.28: Predicted Worst Case Impact ranges for Spawning Herring from the Simultaneous Piling
Monopile Foundations within the Array Area (Stationary Receptor; 6,600kJ)
Figure 10.29: Predicted Worst Case Impact Ranges for Spawning Sandeel from the Simultaneous
Piling of Jacket Foundations within the Array Area (Stationary Receptor; 3,500kJ)141
Figure 10.30: Predicted Worst Case Impact ranges for Spawning Sandeel from the Simultaneous Piling
of Monopile Foundations within the Array Area (Stationary Receptor; 6,600kJ)142
Figure 10.31: Predicted Worst Case Impact Ranges for Fleeing Receptors from the Simultaneous Piling
of Jacket Foundations within the Array Area (3,500kJ)143
Figure 10.32: Predicted Worst Case Impact Ranges for Fleeing Receptors from the Simultaneous Piling
of Monopile Foundations within the Array Area (6,600kJ)144

Abbreviations

Acronym	Expanded name
AC	Alternating current
AoS	Area of Search
BGS	British Geological Survey
CEA	Cumulative Effects Assessment
Cefas	Centre for Environment, Fisheries and Aquaculture
CIEEM	Chartered Institute of Ecology and Environmental Management
CPUE	Catch Per Unit Effort
DC	Direct Current
DCO	Development Consent Order
DDV	Drop down video
DECC	Department of Energy & Climate Change, now the Department for Energy
	Security and Net Zero (DESNZ)
DESNZ	Department for Energy Security and Net Zero, formerly Department of
	Business, Energy and Industrial Strategy (BEIS), which was
	previously Department of Energy & Climate Change (DECC).
DOM	Dissolved organic matter
DP	Decommissioning Programme
DTI	Department of Trade and Industry
EA	Environment Agency
ECC	Export Cable Corridor
eDNA	Environmental deoxyribonucleic acid
EEA	European Economic Area
EEZ	Exclusive Economic Zone
EIA	Environmental Impact Assessment
EMF	Electromagnetic field
EMODnet	European Marine Observation and Data Network
EPP	Evidence Plan Process
ES	Environmental Statement
ETG	Expert Technical Group
EU	European Union
EUNIS	European Nature Information System
GBS	Gravity Base Structure
GES	Good Environmental Status
GT R4 Ltd	The Applicant. The special project vehicle created in partnership between
	Corio Generation (a wholly owned Green Investment Group portfolio
	company), Gulf Energy Development and TotalEnergies
HDD	Horizontal Directional Drilling
HRA	Habitats Regulation Assessment
HVAC	High Voltage Alternating Current
IBTS	International Bottom Trawl Surveys
ICES	International Council for the Exploration of the Sea
iE	Induced Electric

Acronym	Expanded name
IFISH	Integrated Fisheries System Holding
IHLS	International Herring Larvae Survey
INNS	Invasive Non-native Species
JNCC	Joint Nature Conservation Committee
JUV	Jack-Up Vessel
LWT	Lincolnshire Wildlife Trust
MBES	Multi-beam echo sounder
MCA	Maritime and Coastguard Agency
MCAA	Marine and Coastal Access Act
MCZ	Marine Conservation Zone
MDS	Maximum Design Scenario
MHWS	Mean High Water Spring
MMMP	Marine Mammal Mitigation Programme
ММО	Marine Management Organisation
MPCP	Marine Pollution Contingency Plan
MPS	Marine Policy Statement
MSFD	Marine Strategy Framework Directive
NE	Natural England
NPS	National Policy Statement
NSIBTS	North Sea International Bottom Trawl Survey
0&M	Operation and Maintenance
ORCP	Offshore Reactive Compensation Platform
OSP	Offshore Substation Platform
OSPAR	Oslo/Paris Convention (for the Protection of the Marine Environment of
	the North-East Atlantic)
OSS	Offshore Substation
OWF	Offshore Wind Farm
PEIR	Preliminary Environmental Information Report
PEMP	Project Environmental Management Plan
PSA	Particle Size Analysis
REC	Regional Environmental Characterisation
rMCZ	Recommended Marine Conservation Zone
RMS	Route Mean Square
SAC	Special Area of Conservation
SBP	Sub-Bottom Profiler
SEA	Strategic Environmental Assessment
SEL	Sound Exposure Level
SPL	Sound Pressure Level
SoS	Secretary of State
SoW	Scope of work
SPA	Special Protection Area
SPL	Sound Pressure Level
SPMP	Scour Protection Management Plan
SSC	Suspended Sediment Concentration

Acronym	Expanded name
SSS	Side scan sonar
SSSI	Site of Special Scientific Interest
TTS	Temporary threshold shift
UHRS	Ultra-high resolution seismic
UK	United Kingdom
UXO	Unexploded Ordnance
VER	Valued Ecological Receptor
WTG	Wind Turbine Generator
Zol	Zone of influence

Terminology

Term	Definition
Array area	The area offshore within the PEIR Boundary within which the
	generating stations (including wind turbine generators (WTG) and
	inter array cables), offshore accommodation platforms, offshore
	transformer substations and associated cabling are positioned.
Baseline	The status of the environment at the time of assessment without the
	development in place.
Cumulative effects	The combined effect of the Project acting cumulatively with the
	effects of a number of different projects, on the same single
	receptor/resource.
Cumulative impact	Impacts that result from changes caused by other past, present or
	reasonably foreseeable actions together with the Project.
Project Design	A description of the range of possible elements that make up the
envelope	Project's design options under consideration, as set out in detail in
	the project description. This envelope is used to define the Project
	for Environmental Impact Assessment (EIA) purposes when the exact
	engineering parameters are not yet known. This is also often referred
	to as the "Rochdale Envelope" approach.
Development	An order made under the Planning Act 2008 granting development
Consent Order	consent for a Nationally Significant Infrastructure Project (NSIP) from
(DCO)	the Secretary of State (SoS) for Department for Energy Security and
	Net Zero (DESNZ).
Effect	Term used to express the consequence of an impact. The significance
	of an effect is determined by correlating the magnitude of an impact
	with the sensitivity of a receptor, in accordance with defined
	significance criteria.
Environmental	A statutory process by which certain planned projects must be
Impact Assessment	assessed before a formal decision to proceed can be made. It involves
(EIA)	the collection and consideration of environmental information,
	which fulfils the assessment requirements of the Environmental
	Impact Assessment (EIA) Regulations, including the publication of an
	Environmental Statement (ES).

Term	Definition
EIA Directive	European Union 2011/92/EU of 13 December 2011 (as amended in
	2014 by Directive 2014/52/EU)
EIA Regulations	Infrastructure Planning (Environmental Impact Assessment)
	Regulations 2017
Environmental	The suite of documents that detail the processes and results of the
Statement (ES)	Environmental Impact Assessment (EIA).
Evidence Plan	A voluntary process of stakeholder consultation with appropriate
	Expert Topic Groups (ETGs) that discusses and where possible agrees
	the detailed approach to the Environmental Impact Assessment
	(EIA) and information to support Habitats Regulations Assessment
	(HRA) for those relevant topics included in the process, undertaken
	during the pre-application period.
High Voltage	High voltage alternating current is the bulk transmission of electricity
Alternating Current	by alternating current (AC), whereby the flow of electric charge
(HVAC)	periodically reverses direction.
High Voltage Direct	High voltage direct current is the bulk transmission of electricity by
Current (HVDC)	direct current (DC), whereby the flow of electric charge is in one
	direction.
Impact	An impact to the receiving environment is defined as any change to
	its baseline condition, either adverse or beneficial.
Inter-array cables	Cable which connects the wind turbines to each other and to the
	offshore substation(s).
Maximum Design	The maximum design parameters of the combined project assets that
Scenario	result in the greatest potential for change in relation to each impact
	assessed
Mitigation	Mitigation measures, or commitments, are commitments made by
	the project to reduce and/or eliminate the potential for significant
	effects to arise as a result of the project. Mitigation measures can be
	embedded (part of the project design) or secondarily added to
Netional Delian	reduce impacts in the case of potentially significant effects.
National Policy	A document setting out national policy against which proposals for
Statement (NPS)	and desided upon
Non statutony	And decided upon.
NON-Statutory	42 of the 2008 Act) or may otherwise choose to ongage during the
consultee	are application phases (if for example, there are planning policy
	reasons to do so) who are not designated in law but are likely to have
	an interest in a proposed development
Outer Dowsing	The Project
Offshore Wind	
Offshore Export	The Offshore Export Cable Corridor (Offshore ECC) is the area within
Cable Corridor	the PEIR Boundary within which the export cable running from the
(ECC)	array to landfall will be situated.

Term	Definition
Offshore	Platforms located within the array area which house electrical
Substation (OSS)	equipment and control and instrumentation systems. They also
	provide access facilities for work boats and helicopters.
Offshore Reactive	Platforms located outside the array area which house electrical
Compensation	equipment and control and instrumentation systems. They also
Station (ORCP)	provide access facilities for work boats.
Onshore Export	The Onshore Export Cable Corridor (Onshore ECC) is the area within
Cable Corridor	which the export cable running from the landfall to the onshore
(ECC)	substation will be situated.
Operations and	The combined name for all onshore infrastructure associated with
Maintenance	the Project from landfall to grid connection.
Preliminary	The PEIR is written in the style of a draft Environmental Statement
Environmental	(ES) and provides information to support and inform the statutory
Information Report	consultation process in the pre-application phase. Following that
(PEIR)	consultation, the PEIR documentation will be updated to produce the
	Project's ES that will accompany the application for the Development
	Consent Order (DCO).
Pre-construction	The phases of the Project before and after construction takes place.
and post-	
construction	
PEIR Boundary	The PEIR Boundary is outlined in Figure 3.1 of Volume 1, Chapter 3:
	Project Description and comprises the extent of the land and/or
	seabed for which the PEIR assessments are based upon.
Receptor	A distinct part of the environment on which effects could occur and
	can be the subject of specific assessments. Examples of receptors
	include species (or groups) of animals or plants, people (often
	categorised further such as 'residential' or those using areas for
	amenity or recreation), watercourses etc.
study area	Area(s) within which environmental impact may occur – to be defined
	on a receptor by receptor basis by the relevant technical specialist.
The Applicant	GT R4 Ltd. The Applicant making the application for a DCO.
	The Applicant is GT R4 Limited (a joint venture between Corio
	Generation, TotalEnergies and Gulf Energy Development (GULF)),
	trading as Outer Dowsing Offshore Wind. The project is being
	developed by Corio Generation (a wholly owned Green Investment
	Group portfolio company), TotalEnergies and GULF.
The Planning	The agency responsible for operating the planning process for
Inspectorate	Nationally Significant Infrastructure Projects (NSIPs).
The Project	Outer Dowsing Offshore Wind (ODOW) including proposed onshore
	and ottshore infrastructure
Transboundary	Transboundary effects arise when impacts from the development
impacts	within one European Economic Area (EEA) state affects the
	environment of another EEA state(s).
Trenchless	Trenchless technology is an underground construction method of
technique	installing, repairing and renewing underground pipes, ducts and

Term	Definition
	cables using techniques which minimize or eliminate the need for
	excavation. Trenchless technologies involve methods of new pipe
	installation with minimum surface and environmental disruptions.
	These techniques may include Horizontal Directional Drilling (HDD),
	thrust boring, auger boring, and pipe ramming, which allow ducts to
	be installed under an obstruction without breaking open the ground
	and digging a trench.
Wind turbine	All the components of a wind turbine, including the tower, nacelle,
generator (WTG)	and rotor.

10. Fish and Shellfish Ecology

10.1 Introduction

- 10.1.1 This chapter of the Preliminary Environmental Information Report (PEIR) presents the results to date of the Environmental Impact Assessment (EIA) process for the potential impacts of Outer Dowsing Offshore Wind (the Project) on Fish and Shellfish Ecology. Specifically, this chapter considers the potential impact of the Project seaward of Mean High-Water Springs (MHWS) during the construction, operation and maintenance, and decommissioning phases.
- 10.1.2 GTR4 Limited (trading as Outer Dowsing Offshore Wind) hereafter referred to as the 'Applicant', is proposing to develop the Project. The Project will be located approximately 54km from the Lincolnshire coastline in the southern North Sea. The Project will include both offshore and onshore infrastructure including an offshore generating station (wind farm), export cables to landfall, and connection to the electricity transmission network (see Volume 1, Chapter 3: Project Description for full details).
- 10.1.3 This chapter has been informed by the following PEIR chapters and appendices:
 - Volume 1, Chapter 3: Project Description;
 - Volume 1, Chapter 7: Marine Processes;
 - Volume 1, Chapter 8: Marine Water and Sediment Quality;
 - Volume 1, Chapter 9: Benthic and Intertidal Ecology;
 - Volume 1, Chapter 14: Commercial Fisheries; and
 - Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline.

10.2 Statutory and Policy Context

- 10.2.1 This section highlights relevant legislation as well as national and local policy that is relevant to fish and shellfish ecology. The Planning Act 2008, Marine Works (Environmental Impact Assessment) Regulations 2007 (as amended) and the Infrastructure Planning (Environmental Impact Assessment) Regulations 2017 (collectively referred to as 'the EIA Regulations'), and the Environment Act 2021are considered along with the legislation relevant to fish and shellfish ecology.
- 10.2.2 The following section provides information regarding the legislative context surrounding the assessment of potential effects in relation to fish and shellfish ecology. Full details of all policy and legislation relevant to the Project application are provided within Volume 1, Chapter 2: Need, Policy and Legislative Context. A summary of the current policy and legislation is provided below, the Applicant has ensured that the assessment adheres to the relevant legislation. The Environmental Assessments and Miscellaneous Planning (Amendment) (EU Exit) Regulations 2018 (made under the EU Withdrawal Act 2018 amended the domestic legislation which governs EIA as a result of the UK leaving the EU and ensures that the EIA Regulations continue to apply in substantially the same way.
- 10.2.3 In undertaking the assessment, the following policy and legislation has been considered:

- The Infrastructure Planning (Environmental Impact Assessment) Regulations 2017;
- The Marine Works (Environmental Impact Assessment) Regulations 2007;
- The Convention on the Conservation of European Wildlife and Natural Habitats (the Bern Convention; 1979);
- EU Council Directive 92/43/EEC on the conservation of natural habitats and of wild flora and fauna (the 'Habitats Directive');
- The Conservation of Habitats and Species Regulations 2017;
- The Conservation of Offshore Marine Habitats and Species Regulations 2017;
- Marine and Coastal Access Act 2009;
- The Wildlife and Countryside Act 1981; and
- East Inshore and East Offshore Marine Plans.
- 10.2.4 Table 10.1 provides a summary of the key policy provisions of relevance to this assessment.
- 10.2.5 Guidance on the issues to be assessed for offshore renewable energy developments has been obtained through reference to:
 - Overarching National Policy Statement (NPS) for Energy (NPS EN-1; Department for Energy and Climate Change (DECC), 2011a);
 - National Policy Statement for Renewable Energy Infrastructure (NPS EN-3; DECC, 2011b);
 - National Policy Statement for Electricity Networks Infrastructure EN-5 (DECC, 2011c);
 - Draft Overarching National Policy Statement for Energy (NPS EN-1; DESNZ, 2021a);
 - Draft National Policy Statement for Renewable Energy Infrastructure (NPS EN-3; DESNZ, 2021b); and
 - The UK Marine Policy Statement (MPS; HM Government, 2011)

Table 10.1: Legislation and policy context

Legislation/policy	Key provisions	Section where comment
Overarching	"when considering cumulative effects, the	Cumulative effects regarding
National Policy	ES should provide information on how the	fish and shellfish receptors are
Statement for	effects of the applicant's proposal will	addressed in Section 10.8.
Energy (NPS EN-1)	combine and interact with the effects of	
(2011)	other development (including projects for	
	which consent has been sought or granted,	
	as well as those already in existence)."	
	(paragraph 4.2.5 of NPS EN-1)	
NPS EN-1	where the development is subject to EIA	The potential effects of the
	the applicant should ensure that the ES	Project nave been assessed in
	clearly sets out any effects on	regard to international,
	designated sites of ecological or geological	designated for acalogical or
	conservation importance on protected	designated for ecological of
	species and on habitats and other species	conservation importance (see
	identified as being of principal importance	Section 10.7)
	for the conservation of biodiversity. The	Section 10.7).
	applicant should provide environmental	
	information proportionate to the	
	infrastructure where FIA is not required to	
	help the [Secretary of State] consider	
	thoroughly the potential effects of a	
	proposed project." (paragraph 5.3.3 of NPS	
	EN-1)	
NPS EN-1	"Many Site of Special Scientific Interest	Designated sites within the
	(SSSIs) are also designated as sites of	region have been identified in
	international importance; those that are	Section 10.4 as appropriate,
	not, should be given a high degree of	and any potential impacts to
	protection. Where a proposed development	features of the sites have been
	within or outside a SSSI is likely to have an	assessed in Section 10.7.
	adverse effect on a SSSI (either individually	
	or together with other developments),	
	development consent should not normally	
	be granted. Where an adverse effect, after	
	mitigation, on the site's notified special	
	interest features is likely, an exception	
	should only be made where the benefits	
	(including need) of the development at this	
	site clearly outweigh both the impacts on	
	site features and on the broader network of	
	SSSIS. The Secretary of State should use	
	requirements and/or planning obligations	
	to mitigate the harmful aspects of the	

Legislation/policy	Key provisions	Section where comment
	development and where possible ensure	
	the conservation and enhancement of the	
	site's biodiversity or geological interest."	
	(paragraphs 5.3.10 and 5.3.11 of NPS EN-1)	
NPS EN-1	"Marine Conservation Zones (MCZs)	One MCZ relevant to fish and
	(Marine Protected Areas in Scotland) introduced under the Marine and Coastal Access Act 2009 are areas that have been designated for the purpose of conserving marine flora and fauna, marine habitat or features of geological or geomorphological interest. The Secretary of State is bound by the duties in relation to MCZs imposed by Sections 125 and 126 of the Marine and Coastal Access Act 2009." (paragraph 5.3.12 of NPS EN-1)	shellfish was identified – Holderness Offshore MCZ. This is discussed in Section 10.4. An assessment on potential impacts to MCZs is undertaken in Volume 2, Appendix 9.4.
NPS EN-1	"Development proposals provide many opportunities for building-in beneficial biodiversity or geological features as part of good design. When considering proposals, the [Secretary of State] should maximise such opportunities in and around developments, using requirements or planning obligations where appropriate." (paragraph 5.3.15 of NPS EN-1)	Designed-in measures to be adopted as part of the Project are presented in Table 10.8.
NPS EN-1	"Other species and habitats have been	All species receptors, including
	identified as being of principal importance	those of principal importance
	for the conservation of biodiversity in	for the conservation of
	England and Wales and thereby requiring	blodiversity in the North Sea are
	conservation action. The secretary of state	description in Volume 2
	habitats are protected from the adverse	Appendix 10.1: Fish and
	effects of development by using	Shellfish Ecology Technical
	requirements or planning obligations."	Baseline).
	(paragraph 5.3.17 of NPS EN-1)	·
NPS EN-1	"The applicant should include appropriate mitigation measures as an integral part of the proposed development. In particular, the applicant should demonstrate that: During construction, they will seek to ensure that activities will be confined to the minimum areas required for the works:	Designed-in measures to be adopted as part of the Project are presented in Table 10.8.
	During construction and operation best	
	practice will be followed to ensure that risk	

Legislation/policy	Key provisions	Section where comment addressed
	of disturbance or damage to species or habitats is minimised, including as a consequence of transport access arrangements; Habitats will, where practicable, be restored after construction works have finished; (paragraph 5.3.18 of NPS EN-1)	
Draft NPS EN-1 (2023)	"Where the development is subject to EIA the applicant should ensure that the ES clearly sets out any effects on internationally, nationally and locally designated sites of ecological or geological conservation importance, on protected species and on habitats and other species identified as being of principal importance for the conservation of biodiversity. The [Secretary of State] should also expect the applicant to provide environmental information proportionate to the infrastructure where EIA is not required." (paragraph 4.18.3 of Draft NPS EN-1).	The potential effects of the Project have been assessed regarding international, national and local sites designated for ecological features of conservation importance (see Section 10.7).
Draft NPS EN-1	"Many SSSIs are also designated as sites of international importance and will be protected accordingly. Those that are not, or those features of SSSIs not covered by an international designation, should be given a high degree of protection. All National Nature Reserves are notified as SSSIs. Where a proposed development on land within or outside an SSSI is likely, an exception should only be made where the benefits (including need) of the development at this site clearly outweigh both the impacts that it is likely to have on the features of the site that make it of special scientific interest and any broader impacts on the national network of SSSIs. The [Secretary of State] should use conditions and/or planning obligations to mitigate the harmful aspects of the development and, where possible, to ensure the conservation and enhancement of the site's biodiversity or geological	Designated sites within the region have been identified in Section 10.4. The Humber Estuary has been included as it is designated as a SAC, a SPA, a Ramsar Site and an SSSI.

Legislation/policy	Key provisions	Section where comment addressed
	interest." (paragraphs 4.18.10 and 4.18.11 of Draft NPS EN-1).	
Draft NPS EN-1	"Marine Conservation Zones (MCZs) (Marine Protected Areas in Scotland) are areas that have been designated for the purpose of conserving marine flora and fauna, marine habitat or features of geological or geomorphological interest. The protected feature or features and the conservation objectives for the MCZ are stated in the designation order for the MCZ. The Marine and Coastal Access Bill will provide statutory protection for these areas through the Marine Management Organisation (MMO)." (paragraph 4.18.12 of Draft NPS EN-1).	One MCZ relevant to fish and shellfish was identified – Holderness Offshore MCZ. This is discussed in Section 10.4. An assessment on potential impacts to MCZs is undertaken in Volume 2, Appendix 9.4.
Draft NPS EN-1	"Other species and habitats have been identified as being of principal importance for the conservation of biodiversity in England and Wales and thereby requiring conservation action. The [Secretary of State] should ensure that these species and habitats are protected from the adverse effects of development, where appropriate, by using conditions or planning obligations. The [Secretary of State] should refuse consent where harm to the habitats or species and their habitats would result, unless the benefits (including need) of the development outweigh that harm" (paragraph 4.18.17 of Draft NPS EN-1).	All species receptors, including those of principal importance for the conservation of biodiversity in the North Sea are summarised in Table 10.6 (full description in Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline).
Draft NPS EN-1	 "The [Secretary of State] should expect the applicant to have included appropriate mitigation measures as an integral part of the proposed development. In particular, the [Secretary of State] should expect the applicant to demonstrate that: during construction, they will seek to ensure that activities will be confined to the minimum areas required for the works; during construction and operation best practice will be followed to ensure that risk of disturbance or damage to 	Designed-in measures to be adopted as part of the Project are presented in Table 10.8.

Legislation/policy	Key provisions	Section where comment addressed
	 species or habitats is minimised, including as a consequence of transport access arrangements; habitats will, where practicable, be restored after construction works have finished; and opportunities will be taken to enhance existing habitats and, where practicable, to create new habitats of value within the site landscaping proposals." (paragraph 4.18.18 of Draft NPS EN-1). 	
National Policy Statement for Renewable Energy Infrastructure (NPS EN-3) (2011)	"Effects of offshore wind farms can include temporary disturbance during the construction phase (including underwater noise) and ongoing disturbance during the operational phase and direct loss of habitat. Adverse effects can be on spawning, overwintering, nursery and feeding grounds and migratory pathways in the marine area. However, the presence of wind turbines can also have positive benefits to ecology and biodiversity." (Paragraph 2.6.63 of NPS EN- 3).	The assessment methodology includes the provision for assessment of both positive and negative effects (see Table 10.11). The potential effects on fish and shellfish ecology (inclusive of spawning, overwintering, nursery and feeding grounds and migratory pathways) are presented within this chapter, with the assessment of effects presented within Section 10.7
NPS EN-3	"Assessment of offshore ecology and biodiversity should be undertaken by the applicant for all stages of the lifespan of the proposed offshore wind farm) and in accordance with the appropriate policy for offshore wind farm EIAs." (NPS EN-3 Paragraph 2.6.64)	Construction, operation and maintenance (O&M) and decommissioning phases of the Project have been assessed in Section 10.7.
NPS EN-3	"Consultation on the assessment methodologies should be undertaken at early stages with the statutory consultees as appropriate." (NPS EN-3 Paragraph 2.6.65)	Consultation with relevant statutory and non-statutory stakeholders has been carried out from the early stages of the Project (see Table 10.4 for a summary of consultation with regards to fish and shellfish).
NPS EN-3	"Any relevant data that has been collected as part of post-construction ecological monitoring from existing, operational offshore wind farms should be referred to	Relevant data collected as part of post-construction monitoring from other OWF projects has informed the

Legislation/policy	Key provisions	Section where comment
		addressed
	where appropriate." (NPS EN-3 Paragraph 2.6.66)	assessment of the Project (see Table 10.5).
NPS EN-3	"The assessment should include the	The assessment methodology
	potential of the scheme to have both	includes the provision for
	positive and negative effects on marine	assessment of both positive and
	ecology and biodiversity." (NPS EN-3	negative effects on fish and
	Paragraph 2.6.67)	shellfish ecology (Section
		10.6Table 10.11).
NPS EN-3	"The [Secretary of State] should consider	The potential effects on fish and
	the effects of a proposal on marine ecology	shellfish ecology are presented
	and biodiversity taking into account all	within this chapter, with the
	relevant information made available to it.	assessment of effects
	(paragraph 2.0.08 of NPS EN-S)	
NPS FN-3	"The designation of an area as a [Furopean]	Designated sites within the
	site does not necessarily restrict the	region have been identified in
	construction or operation of offshore wind	Section 10.4 as appropriate,
	farms in or near that area." (paragraph	and any potential impacts to
	2.6.69 of NPS EN-3)	features of the sites have been
		assessed in Section 10.7.
NPS EN-3	"Mitigation may be possible in the form of	Embedded mitigation relevant
	careful design of the development itself and	for the fish and shellfish ecology
	the construction techniques employed	chapter is detailed in Table
	(paragraph 2.6.70 of NPS EN-3)	10.8.
NPS EN-3	"Ecological monitoring is likely to be	The requirement for fish and
	appropriate during the construction and	shellfish monitoring has been
	impact so that where appropriate adverse	considered within the impact
	effects can then be mitigated and to enable	10 710 7 In summary no fish
	further useful information to be published	and shellfish monitoring for the
	relevant to future projects." (paragraph	construction. O&M or
	2.6.71 of NPS EN-3)	decommissioning phases of the
	,	Project is considered necessary
		at this stage.
NPS EN-3	"There is the potential for the construction	The potential effects on fish and
	and decommissioning phases, including	shellfish ecology are presented
	activities occurring both above and below	within this chapter, with the
	the seabed, to interact with seabed	assessment of effects inclusive
	sediments and therefore have the potential	of impacts from underwater
	to impact tish communities, migration	noise presented within Section
	routes, spawning activities and nursery	10./10./, Impacts 1, 6 and 11.
	areas of particular species. In addition,	
	there are potential noise impacts, which	
	could affect fish during construction and	

Legislation/policy	Key provisions	Section where comment addressed
	decommissioning and to a lesser extent during operation." (Paragraph 2.6.73 of NPS EN-3).	
NPS EN-3	 "The applicant should identify fish species that are the most likely receptors of impacts with respect to: spawning grounds; nursery grounds; feeding grounds; over-wintering areas for crustaceans; and migration routes." (paragraph 2.6.74 of NPS EN-3). 	The key receptors of impacts are listed in Table 10.6. Consideration of receptors with regards to spawning grounds, nursery grounds, feeding grounds, over-wintering areas and migration routes has been given, with those receptors of potential sensitivity to impacts from the development of the Project assessed within Section 10.7.
NPS EN-3	"Where it is proposed that mitigation measures are applied to offshore export cables to reduce electromagnetic fields (EMF) (see below) the residual effects of EMF on sensitive species from cable infrastructure during operation are not likely to be significant. Once installed, operational EMF impacts are unlikely to be of sufficient range or strength to create a barrier to fish movement." (paragraph 2.6.75 of NPS EN-3)	The impacts of EMF on fish and shellfish receptors have been considered in Section 10.7, Impact 10.
NPS EN-3	"EMF during operation may be mitigated by use of armoured cable for inter-array and export cables which should be buried at a sufficient depth. Some research has shown that where cables are buried at depths greater than 1.5m below the seabed impacts are likely to be negligible. However sufficient depth to mitigate impacts will depend on the geology of the seabed" (paragraph 2.6.76 of NPS EN-3)	The impacts of EMF on fish and shellfish receptors have been considered in Section 10.7, Impact 10. Where possible cables will be buried but if not, cable protection will be installed (Table 10.8Table 10.8).
NPS EN-3	"During construction, 24 hour working practices may be employed so that the overall construction programme and the potential for impacts to fish communities are reduced in overall time." (paragraph 2.6.77 of NPS EN-3)	The Project can confirm that 24 hour working practices will be employed for offshore construction works (Volume 1, Chapter 3: Project Description).
NPS EN-3	"The construction and operation of offshore wind farms can have both positive and	The effects on fish and shellfish stocks from the construction

Legislation/policy	Key provisions	Section where comment
		addressed
	negative effects on fish and shellfish	and O&M of the Project have
	stocks." (paragraph 2.6.122 of NPS EN-3).	been assessed in Section10.7.
		Impacts on commercial
		fisheries are assessed in
		Volume 1, Chapter 14:
		Commercial Fisheries.
Draft NPS EN-3	"Assessment of offshore ecology and	Construction, O&M and
(2023)	biodiversity should be undertaken by the	decommissioning phases of the
	applicant for all stages of the lifespan of the	Project have been assessed in
	proposed offshore wind farm and in	Section 10.7.
	accordance with the appropriate policy for	
	offshore wind farm EIAs, HRAs and MCZ	
	assessments (Sections 4.2 and 5.4 of EN-1).	
	Applicants will also need to consider	
	environmental net gain as set out in the 25	
	1) " (paragraph 2.24 E of Draft NDS EN 2)	
	1). (paragraph 2.24.5 of Drait NPS EN-3).	Consultation with relevant
Didit NPS EN-S	mothodologies baseling data collection	statutory and non-statutory
	and notontial mitigation and componsation	statutory and non-statutory
	ontions should be undertaken at early	out from the early stages of the
	stages with the statutory consultees as	Project (see Section 10.3 for a
	appropriate " (paragraph 2.24.6 of Draft	summary of consultation
	NPS FN-3)	regarding fish and shellfish)
Draft NPS EN-3	"Any relevant data that has been collected	Relevant data collected as part
	as part of post-construction ecological	of post-construction
	monitoring from existing, operational	monitoring from other OWF
	offshore wind farms should be referred to	projects has informed the
	where appropriate. Reference must be	assessment (see Table 10.5).
	made to relevant scientific research and	
	literature." (paragraph 2.24.7 of Draft NPS	
	EN-3).	
Draft NPS EN-3	"The assessment should include the	The assessment methodology
	potential of the scheme to have both	includes the provision for
	positive and negative effects on marine	assessment of both positive and
	ecology and biodiversity." (paragraph	negative effects (see Table
	2.24.8 of Draft NPS EN-3).	10.11).
Draft NPS EN-3	"Mitigation may be possible in the form of	Embedded mitigation relevant
	careful design of the development itself and	to the fish and shellfish ecology
	the construction techniques employed"	chapter is detailed in Table
	(paragraph 2.24.10 of Draft NPS EN-3).	10.8.
Draft NPS EN-3	"Ecological monitoring will be appropriate	The requirement for fish and
	during the pre-construction, construction	shellfish monitoring has been
	and operational phases to identify the	considered within the impact

Legislation/policy	Key provisions	Section where comment
		addressed
	actual impacts caused by the project and compare them to what was predicted in the EIA/HRA". (paragraph 2.24.11 of Draft NPS EN-3).	assessments in Section 10.7. In summary, no fish and shellfish monitoring for the construction, O&M or decommissioning phases of the Project is considered necessary at this stage.
Draft NPS EN-3	"The Secretary of State should consider the effects of a proposal on marine ecology, biodiversity and the physical environment taking into account all relevant information made available." (paragraph 2.24.18 of Draft NPS EN-3).	Designated sites within the region have been identified in Section 10.4 as appropriate, and any potential impacts to features of the sites have been assessed in Section 10.7.
Draft NPS EN-3	 "The applicant should identify fish species that are the most likely receptors of impacts with respect to: spawning grounds nursery grounds feeding grounds over-wintering areas for crustaceans migration routes protected areas (e.g., HRA sites and MCZs)" (paragraph 2.26.2 of Draft NPS EN-3). 	The key receptors of impacts are listed in Table 10.6. Consideration of receptors with regards to spawning grounds, nursery grounds, feeding grounds, over-wintering areas and migration routes has been given, with those receptors of potential sensitivity to impacts from the development of the Project assessed within Section 10.7.
Draft NPS EN-3	"The assessment should also identify potential implications of underwater noise from construction and unexploded ordnance (both sound pressure and particle motion) and EMF on sensitive fish species." (paragraph 2.26.3 of Draft NPS EN-3).	Potential implications from underwater noise and EMF on fish and shellfish receptors have been assessed in Section 10.7, Impacts 1 and 10.
Draft NPS EN-3	"Review of up-to-date research should be undertaken, and all potential mitigation options presented. EMF in the water column during operation, is in the form of electric and magnetic fields, which are reduced by use of armoured cables for inter-array and export cables. Burial of the cable increases the physical distance between the maximum EMF intensity and sensitive species. However, what constitutes sufficient depth to reduce impact will depend on the geology of the seabed. It is unknown whether exposure to	The impacts of EMF on fish and shellfish receptors have been considered in Section 10.7, Impact 10. Where possible cables will be buried but if not, cable protection will be installed (see Table 10.8).

Legislation/policy	Key provisions	Section where comment addressed
	multiple cables and larger capacity cables may have a cumulative impact on sensitive species. Therefore, monitoring EMF emissions may provide the evidence to inform future EIAs." (paragraph 2.26.4 of Draft NPS EN-3).	
Draft NPS EN-3	"Construction of specific elements can also be timed to reduce impacts on spawning or migration. Underwater noise mitigation can also be used to prevent injury and death of fish species." (paragraph 2.26.5 of Draft NPS EN-3).	Spawning periods for relevant species are detailed in Section 10.7.

- 10.2.6 Guidance has been provided within the Marine Strategy Framework Directive (MSFD), adopted in July 2008, which has been considered in this assessment. The relevance of the MSFD to the Project has been described in Volume 1, Chapter 2: Need, Policy and Legislative Context.
- 10.2.7 The overarching aim of the MSFD is to achieve 'Good Environmental Status' (GES), across Europe's marine environment.` Annex I of the MSFD identifies 11 high level qualitative descriptors for determining GES, with those relevant to the fish and shellfish ecology assessment for the Project outlined in Table 10.2, with a brief description of how and where these have been addressed in this assessment.

Table 10.2: Summary of the MSFDs high level descriptors of GES relevant to fish and shellfish

ecology and consideration in the Project assessment.

Legislation/Policy	Key provisions	Section where comment addressed
MSFD	Descriptor 1 – Biological diversity: Biological diversity is maintained. The quality and occurrence of habitats and the distribution and abundance of species are in line with prevailing physiographic, geographic and climatic conditions.	The effects on biological diversity have been described and considered within the Impact Assessment for the Project alone (Section 10.7) and the Cumulative Impact Assessment (CIA) (Section 10.8).
MSFD	Descriptor 2 – Non-indigenous species: Non- indigenous species introduced by human activity are at levels that do not adversely alter the ecosystems.	Impacts from Invasive Non- Native Species (INNS) were scoped out in the scoping stage (Outer Dowsing Offshore Wind, 2022).

Legislation/Policy	Key provisions	Section where comment addressed
MSFD	Descriptor 3 – Commercial species: Population of all commercially exploited fish and shellfish are within safe biological limits, exhibiting a population age and size distribution that is indicative of a healthy stock.	Potential effects on commercial fish and shellfish species have been described and considered within the Impact Assessment for the Project alone (Section 10.7) and the CIA (Section 10.8).
MSFD	Descriptor 4 – Elements of marine food web: All elements of marine food webs, to the extent they are known, occur at normal abundance and diversity and levels capable of ensuring the long-term abundance of the species and the retention of their full reproductive capacity.	The effects on fish and shellfish ecology, inclusive of the interlinkages with interdependent ecological receptors described in other chapters is integral within this chapter and the wider ES with inter relationships described where appropriate.
MSFD	Descriptor 6 – Sea floor integrity: Seafloor integrity is at a level that ensures that the structure and functions of the ecosystems are safeguarded and benthic ecosystems, in particular, are not adversely affected.	The effects on fish and shellfish ecology, inclusive of any risk to ecological integrity, has been described and considered within the Impact Assessment for the Project alone (Section 10.7) and the CIA (Section 10.8).
MSFD	Descriptor 7 – Permanent alteration of hydrographical conditions does not adversely affect the ecosystem.	The effects on hydrographical conditions have been assessed in Volume 2, Chapter 1 Marine Processes, which concluded no significant effects. Therefore, the potential for impacts on fish and shellfish receptors from the alteration of hydrographical conditions have not been considered in this assessment.
MSFD	Descriptor 8 – Contaminants: Concentrations of contaminants are at levels not giving rise to pollution effects.	The effects of contaminants on fish and shellfish and species have been assessed in Section 10.7, Impact 4.
MSFD	Descriptor 9 – Contaminants in seafood: Contaminants in fish and other seafood for human consumption do not exceed levels established by Community legislation or other relevant standards.	The effects of contaminants on fish and shellfish and species have been assessed in Section 10.7, Impact 4.

Legislation/Policy	Key provisions	Section where comment
		addressed
MSFD	Descriptor 10 – Marine litter: Properties and quantities of marine litter do not cause harm to the coastal and marine environment.	A Project Environmental Management Plan (PEMP) will be produced prior to construction and followed to cover all phases of the Project (see Table 10.8). The PEMP will include planning for accidental spills, address all potential contaminant releases and include key emergency contact details (e.g., EA and Maritime and Coastguard Agency (MCA)). A Decommissioning Programme (DP) will be developed to cover the
		decommissioning phase.
MSFD	Descriptor 11 – Energy incl. underwater	The effects of underwater
	noise: introduction of energy, including	noise on fish and shellfish have
	underwater noise, is at levels that do not	been assessed in Section 10.7,
	adversely affect the marine environment.	Impact 1.

10.2.8 The assessment of potential changes to fish and shellfish ecology has also been made with consideration to the specific policies set out in the East Inshore and East Offshore Marine Plans (Department for Environment, Food and Rural Affairs (Defra), 2014) and the Southeast Marine Plan (Defra, 2021). Key provisions are set out in Table 10.8 along with details as to how these have been addressed within the EIA.

Table 10.3: East Marine Plan Policies of relevance to fish and shellfish ecology.

Legislation/policy	Key provisions	Section where comment addressed
East Inshore and East	Policy ECO1- Cumulative impacts affecting	Cumulative effects are considered within
Offshore Marine Plans	the ecosystem of the East marine plans and	Section 10.8.
	adjacent areas (marine, terrestrial) should be	
	addressed in decision-making and plan	
	implementation.	
	Policy BIO1- Appropriate weight should be	Due consideration to the baseline
	attached to biodiversity, reflecting the need	characterisation of the site has been given in
	to protect biodiversity as a whole, taking	Volume 2, Appendix 10.1: Fish and Shellfish
	account of the best available evidence	Ecology Technical Baseline, which is
	including on habitats and species that are	informed by the best available evidence,
	protected or of conservation concern in the	inclusive of consideration of protected or
	East marine plans and adjacent areas (marine,	conservation species. This is summarised in
	terrestrial).	Section 10.4. Potential impacts on protected
		or conservation species have been assessed
		in Sections 10.7 and 10.8.
	Policy FISH2- Proposals should demonstrate,	Potential impacts on fish and shellfish
	in order of preference:	receptors have been assessed in Sections
	that they will not have an adverse impact	10.7 and 10.8, and embedded mitigation
	upon spawning and nursery areas and	detailed in Table 10.8. To summarise, there
	any associated habitat	are no significant effects concluded on fish
	how, if there are adverse impacts upon	and shellfish receptors, therefore no
	the spawning and nursery areas and any	additional mitigation measures (other than
	associated habitat, they will minimise	the embedded mitigation) are proposed.
	them	
	how, if the adverse impacts cannot be	
	minimised they will be mitigated	

Legislation/policy	Key provisions	Section where comment addressed
	 the case for proceeding with their proposals if it is not possible to minimise or mitigate the adverse impacts 	
	 Policy SOC3- Proposals that may affect the terrestrial and marine character of an area should demonstrate, in order of preference: that they will not adversely impact the terrestrial and marine character of an area how, if there are adverse impacts on the terrestrial and marine character of an area, they will minimise them how, where these adverse impacts on the terrestrial and marine character of an area, they will minimise them how, where these adverse impacts on the terrestrial and marine character of an area cannot be minimised, they will be mitigated against the case for proceeding with the proposal if it is not possible to minimise or mitigate the adverse impacts 	The current marine character regarding fish and shellfish ecology aspects of the site has been detailed in Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline. Due regard has also been given to the Seascape Character Assessment (MMO, 2012) of the marine plan areas. Potential impacts that may affect the fish and shellfish ecology marine character of the Marine Plan areas (namely fish and shellfish spawning and nursery grounds and habitats) have been assessed in Section 10.7. Potential effects on the fishing heritage character of the marine plan areas have been assessed in Volume 2, Chapter 8: Commercial Fisheries.
	Policy BIO2- Where appropriate, proposals for development should incorporate features that enhance biodiversity and geological interests.	Consideration will be given to the use of ecoengineering or methods to enhance biodiversity and geological interests where technologies exist which are sufficient to ensure the integrity of the infrastructure.
	Policy MPA1- Any impacts on the overall marine protected area [MPA] network must be taken account of in strategic level measures and assessments, with due regard	Designated nature conservation sites within the Project study area have been described Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline. Potential impacts

Legislation/policy	Key provisions	Section where comment addressed
	given to any current agreed advice on an ecologically coherent network.	to features of designated sites have been assessed in Section 10.7.

10.3 Consultation

- 10.3.1 Consultation is a key part of the Development Consent Order (DCO) application process. Consultation regarding fish and shellfish ecology has been conducted through the Evidence Plan Process (EPP), Expert Technical Group (ETG) meetings and the EIA scoping process (Outer Dowsing Offshore Wind, 2022). An overview of the Project consultation process is presented in Volume 1, Chapter 6: Consultation Process.
- 10.3.2 A summary of the key issues raised during consultation to date, specific to fish and shellfish ecology, is presented in Table 10.4 below, together with how these issues have been considered in the production of this PEIR.
- 10.3.3 As part of the EIA for the Project, consultation has been undertaken with various statutory and non-statutory authorities, through the agreed Evidence Plan process (being used for the EIA process as well as for the HRA). A formal Scoping Opinion was sought from the Secretary of State (SoS) following submission of the Scoping Report (Outer Dowsing Offshore Wind, 2022). The Scoping Opinion (The Inspectorate, 2022) was issued in September by The Inspectorate.

Table 10.4: Summary of consultation relating to fish and shellfish ecology

Date and consultation phase/ type	Consultation and key issues raised	Section where comment addressed
Pre-scoping Evidence Plan meeting	5	
Marine Ecology & Coastal Processes Expert Topic Group (ETG) (11 January 2022)	Centre for Environment, Fisheries and Aquaculture (Cefas)noted there were no proposed fisheries surveys, and queried what data are being used. Confirmed that the age of data from Triton Knoll is becoming outdated for fisheries.	Further developer surveys which overlap with the Project study area as well as site- specific survey data have been used to characterise the fish and shellfish baseline environment. See Section 10.4.
Marine Ecology & Coastal Processes ETG (11 January 2022)	Cefas is not comfortable with the scoping out of direct damage impacts due to herring and sandeel and requested that these are scoped in.	Direct damage has been scoped in. See Section 10.5, Impacts 5 and 15.
Scoping Opinion		
Scoping Opinion (The Inspectorate, 9 September 2022) Comment ID: 2.1.4	The Inspectorate notes the intention to seek consent for Unexploded Ordnance_(UXO) removal through a future Marine Licence application but that the effects of removal of UXO will be considered as part of the EIA process for the Development Consent Order (DCO) application. The ES should address any cumulative effects from the construction of the Proposed Development with the likely effects from the UXO clearance.	Consideration of underwater noise effects on fish and shellfish receptors can be found within section 10.7.
Scoping Opinion (The Inspectorate, 9 September 2022)	Accidental pollution - Construction, O&M and Decommissioning The Scoping Report proposes to scope out accidental	Noted, details on pollution prevention can be found in Table 10.8 within Section 10.5.
Comment ID: 3.4.1	pollution resulting from all phases of the Proposed Development. The Inspectorate agrees that such effects are capable of being mitigated through standard management practices and can be scoped out of the assessment. The ES	

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	should provide details of the proposed mitigation measures	
	to be included in the PEMP/Project Environmental	
	Management Plan (PEMP) and its constituent Marine	
	Pollution Contingency Plan (MPCP). The ES should also	
	explain how such measures will be secured.	
Scoping Opinion (The	Direct disturbance resulting from O&M activities - O&M	Impacts from direct disturbance on fish and
Inspectorate, 9 September 2022)	The Scoping Report states that this is to be scoped out based	shellfish receptors during the operation and
	on the limited spatial extent and length of time of disturbing	maintenance phase have been assessed in
Comment ID: 3.4.2	activities during O&M. The Inspectorate accepts that	Section 10.7, Impact 9.
	maintenance activities are likely to be of lower impact than	
	construction; however, in the absence of any information as	
	to the nature, duration, frequency, and extent of O&M	
	activities, the Inspectorate is unable to agree to scope out	
	such effects at this stage. The ES should include an	
	assessment of the effects or provide evidence	
	demonstrating agreement with the relevant consultation	
	bodies that significant effects are not likely to occur.	
Scoping Opinion (The	Impacts on fishing pressure due to displacement -	Impacts on fishing pressure due to
Inspectorate, 9 September 2022)	Construction, O&M and Decommissioning	displacement have been scoped out of the
	The Scoping Report states that information will be collected	assessment as potential impacts on
Comment ID: 3.4.3	as part of the Commercial Fisheries aspect chapter of the ES;	commercial fisheries have been assessed
	however, as operational disturbance will be limited in	within Volume 1, Chapter 14: Commercial
	spatial extent, with the risk of displacement considered	Fisheries.
	minor, the Applicant proposes to scope out assessment of	
	impacts from fishing pressure due to displacement.	
	On the basis that potential impacts on fishing pressure will	
	be included and assessed in the Commercial Fisheries aspect	
	chapter of the ES, the Inspectorate is content for this matter	

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	to be scoped out of the Fish and Shellfish Ecology	
	assessment.	
Scoping Opinion (The	Cumulative effects	Impacts from cumulative underwater noise
Inspectorate, 9 September 2022)	The Scoping Report states that, impacts scoped into the	impacts and cumulative increases in SSC and
	assessment for the Project alone, are generally spatially	sediment deposition on fish and shellfish
Comment ID: 3.4.4	restricted to within the near field of the array and the	receptors have been assessed in Section
	offshore Export Cable Corridor (ECC) and that, with the	10.8. Impacts with limited spatial extents
	exception of those impacts identified in Table 7.4.4, it is	have been scoped out of the CIA as agreed.
	proposed that all other impacts with limited spatial extent,	
	where not having an effect on a designated species, site or	
	feature, are scoped out of further assessment in the ES. The	
	Inspectorate agrees that where there are no likely	
	significant effects on fish and shellfish receptors that could	
	occur alone or cumulatively with other projects or plans,	
	these can be scoped out of the assessment.	
Scoping Opinion (The	Transboundary effects	The potential for transboundary effects on
Inspectorate, 9 September 2022)	Transboundary effects on fish and shellfish receptors are	Annex II migratory fish species listed as
	proposed to be scoped out on the basis that the impacts of	features of European sites in other EEA
Comment ID: 3.4.5	the Proposed Development are localised in nature	States and on fish and shellfish receptors in
	(including those giving rise to the greatest footprint of effect	EEA States have been assessed in Section
	such as underwater noise from piling). The Scoping Report	10.10.
	includes a discussion about migratory fish, including UK	
	designated sites and migratory species of conservation	
	concern; however, the Scoping Report does not discuss	
	whether the Proposed Development would have the	
	potential to impact Annex II migratory fish species listed as	

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	features of European sites in other European Economic Area (EEA) States. The ES should clarify whether activities associated with the Proposed Development could have the potential to impact Annex II migratory fish species listed as features of European sites in other EEA States and assess transboundary effects on fish and shellfish receptors in EEA States, where likely significant effects could occur or provide further justification to support the scoping out of transboundary effects.	
Scoping Opinion (The	Baseline data and site surveys	Although the MMO were content that there
Inspectorate, 9 September 2022)	The Scoping Report identifies extensive baseline data for fish and shellfish available from existing literature and	was no requirement for new fish characterisation surveys to be undertaken
Comment ID: 3.4.6	surveys and thus no additional site-specific fish and shellfish surveys are proposed, although site-specific geophysical survey and grab samples which will be analysed for spawning habitat potential for species such as herring (<i>Clupea harengus</i>) and sandeel. Whilst the Inspectorate acknowledges the numerous data sources available to inform the fish and shellfish assessment, it notes that, with the exception of one, the OWF data listed sources do not cover the array or cable corridor Area of Search (AoS) and a number are over 10 years old. The Applicant should ensure that the baseline data used in the ES assessments are sufficiently up-to-date to provide a robust baseline. The ES should provide evidence to justify that the largely desk- based data constitutes a robust characterisation of the receiving environment, with reference to the date, seasonal period and geographic coverage of the data. It is	(comment ID 3.4.4 detailed below), site- specific surveys (inclusive of grab sampling, epibenthic trawls and Environmental DNA (eDNA) sampling) have been undertaken to ground truth existing data sources. These surveys are detailed in Table 10.5, and have been used to inform the baseline within the Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline. They are summarised in Section 10.6 and have been used to inform the assessments presented in Section 10.7.

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	recommended the Applicant makes use of the EPP to seek	
	to agree the use and extent of existing data with relevant	
	consultation bodies.	
Scoping Opinion (The	Nursery and spawning ground	Revised nursery and spawning figures have
Inspectorate, 9 September 2022)	assessment and figures	been presented within this chapter.
	The key to the nursery and spawning grounds for individual	The baseline data and assessment
Comment ID: 3.4.7	species on Figures 7.4.3 and 7.4.4 is not clear. The Applicant	methodology has been agreed with
	should ensure clear figures are provided in the ES. The	stakeholders through the evidence plan
	Applicant's attention is directed to the comments of the	process.
	Marine Management Organisation (MMO) at Appendix 2 of	
	this Opinion with regards to the assessment of herring and	
	sandeel potential spawning habitat and recommendations	
	for the assessment methodology, together with the	
	comments of Natural England (NE) with regards to potential	
	mitigation for herring. The Applicant should seek to agree	
	the baseline data and assessment methodology for the	
	assessment of effects on fish spawning grounds with the	
	relevant consultation bodies, including the MMO, NE and	
	the Environment Agency (EA), as part of the EPP.	
Scoping Opinion (The	Noise propagation modelling	Further details on noise modelling used to
Inspectorate, 9 September 2022)	The Scoping Report contains very limited information with	inform the impact assessment can be found
	regards to the noise modelling proposed to inform the fish	in Volume 2, Appendix 3.2: Underwater
Comment ID: 3.4.8	and shellfish ecology assessment, although the Inspectorate	Noise Assessment.
	notes and welcomes the intention to discuss the model and	
	parameters as part of the EPP. The ES, and/or accompanying	
	appendices, should provide details of the noise modelling	
	used to inform the impact assessment.	

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
Scoping Opinion (The Inspectorate, 9 September 2022)	Impacts on prey availability The ES should assess impacts on prey availability for birds at designated sites, where significant effects are likely to	Impacts on key prey species of birds at designated sites (such as sandeel) have been assessed within Section 10.7. Indirect
Comment ID: 3.4.9	occur. Appropriate cross-references should be included between aspect chapters.	impacts on bird species due to impacts on prey availability are assessed in Volume 1, Chapter 12: Offshore and Intertidal Ornithology.
Scoping Opinion (MMO, 26 August 2022)	Baseline data and site surveys Table 7.4.1. outlines the list of existing data sources and literature that will be used to inform the fish ecology	See below for responses to comments 3.4.2- 3.4.4.
Comment ID: 3.4.1	baseline. The sources are generally appropriate to characterise the study area, however, please note comments 3.4.2-3.4.4 below.	
Scoping Opinion (MMO, 26 August 2022)	Baseline data and site surveys The PEIR and ES should recognise the limitations of the data collected for fish characterisation surveys (e.g., Lynn, Inner	Site-specific surveys (inclusive of grab sampling, epibenthic trawls and eDNA sampling) have been undertaken to ground
Comment ID: 3.4.2	Dowsing and Lincs OWFs, Hornsea Zonal Characterisation, and Triton Knoll OWF) which are now in excess of 10 years old. These surveys were carried out prior to the placement and operation of OWF infrastructure. Factors such as loss of habitat, introduction of hard substrates, and temporal and natural variations in fish assemblages may have changed over this period.	truth existing data sources. These surveys are detailed in Table 10.5, and have been used to inform the baseline within the Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline. They are summarised in Section 10.4 and have been used to inform the assessments presented in Section 10.7.
Scoping Opinion (MMO, 26 August 2022) Comment ID: 3.4.3	Baseline data When using any fisheries data collected from past surveys, it is important that the data are interpreted and presented appropriately and that all survey limitations are	This is noted, abundance data used to inform the baseline environment in Section 10.4 is only referenced to as

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	acknowledged. Any catch data should be presented in the PEIR and ES in standardised units, e.g., Catch Per Unit Effort (CPUE). The survey methods, timings and limitations of survey and gear types as well as gear selectivity should be discussed or acknowledged within the PEIR and ES, especially with regard to the influence on species and life stages captured by individual gear types/sampling methods. For example, a 2m epibenthic beam trawl will not adequately target large/adult fish, or pelagic fish; otter trawls and epibenthic beam trawls will not adequately target sandeels; and the season in which a survey is undertaken may influence species abundance in that particular area.	presence/absence to avoid any concern with relative abundances. Limitations of data sources referenced within this chapter are addressed in Section 10.6.
Scoping Opinion (MMO, 26 August 2022) Comment ID: 3.4.4	Baseline data and site surveys Despite the age of some data sources, the MMO is generally content that there is no requirement for new fish characterisation surveys to be undertaken, as the various sources of data proposed to inform the desk-based assessment will be adequate to provide a general description of the fish species typically found in the Project study area. We note that a site-specific benthic survey of the study area will be undertaken which will include grab sampling of seabed sediments which will be used for particle size analysis (PSA). PSA data can then be used to determine sandeel habitat suitability and herring spawning habitat suitability.	Site-specific surveys (inclusive of grab sampling, epibenthic trawls and eDNA sampling) have been undertaken to ground truth existing data sources. These surveys are detailed in Table 10.5, and have been used to inform the baseline within Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline. They are summarised in Section 10.4 and have been used to inform the assessments presented in Section 10.7.

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
Scoping Opinion (MMO, 2 August 2022)	The MMO agrees with the potential impacts that have been identified and scoped in for fish ecology and fisheries receptors in relation to construction, operation and	Potential impacts from transboundary effects on fish and shellfish receptors have been scoped into the assessment following
Comment ID: 3.4.5	maintenance (O&M), decommissioning and cumulative impacts. Given the location of the project in relation to the nearest international boundaries, the MMO agrees that transboundary impacts can be scoped out for further assessment.	scoping responses from the Inspectorate. This is assessed in Section 10.10.
Scoping Opinion (MMO, 2 August 2022)	6 Impacts arising from accidental pollution during the construction, O&M and decommissioning phases have been scoped out of further assessment, on the basis that a PEMP	This is noted and impacts from accidental pollution are scoped out of the assessment. Impacts arising from direct disturbance
Comment ID: 3.4.6	will be implemented to manage and mitigate any pollution events. The MMO does not support the scoping out of impacts arising from direct disturbance resulting from O&M activities. The justification that the impacts will be limited in spatial extent and length of time cannot be supported until the spatial extent of the impacts in relation to specific species and/or habitats has been assessed.	resulting from O&M activities have been scoped into the assessment and are assessed in Section 10.7, Impact 9.
Scoping Opinion (MMO, 2 August 2022)	The MMO has no objection to impacts on fishing pressure due to displacement being scoped out during all phases of the Project Construction, O&M, and Decommissioning, in	Potential impacts to fishing pressure are scoped out of this assessment. Potential impacts to commercial fisheries as a result
Comment ID: 3.4.7	relation to Fish Ecology.	of the development are assessed in the Commercial Fisheries chapter (Volume 1, Chapter 14).
Scoping Opinion (MMO, 2 August 2022)	6 The Scoping Report recognises that there are a number of herring spawning grounds in the vicinity of the study area. However, it is unclear how many years of International	The herring larvae heat maps (Figure 10.14) has used IHLS data from 2009/2010 – 2020/2021. Description of the PSA data can
Comment ID: 3.4.8	Herring Larvae Survey (IHLS) data were used to provide the	be found in Section 10.4, along with

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	larvae heat map shown in Figure 7.4.2. This should be clearly stated in the PEIR and ES. An assessment of herring potential spawning habitat should be undertaken to inform the EIA, using the method described in MarineSpace (2013a). The assessment should be supported by 10 years of IHLS data (up to 2021 data are available). The applicant is intending to undertake a programme of geophysical and benthic sampling across the Project study area in order to characterise the seabed. PSA data from these surveys can be used to inform the potential herring spawning habitat assessment following the MarineSpace (2013a) method.	classifications for herring spawning habitat using Reach <i>et al</i> . (2013).
Scoping Opinion (MMO, 26	The commercial and ecological importance of sandeel as	Description of the PSA data can be found in
August 2022)	prey for fish, birds and marine mammals has been	Section 10.4, along with classifications for
Commont ID: 2.4.0	recognised in the Scoping Report and it is acknowledged	herring spawning habitat using Latto <i>et al.</i>
Comment ID: 3.4.9	snawn in the same areas that they inhabit show site fidelity	(2013). Presence of sandeer in site-specific grab sampling camera transects and
	to defined areas of seabed and do not tend to travel to other	epibenthic trawls is discussed in Section
	locations to spawn. As with herring, as assessment of	10.4.
	sandeel habitat suitability habitat should be undertaken to	
	inform the EIA, using the method described in MarineSpace	
	(2013b) using site specific PSA data that will be collected	
	during the benthic surveys. Any catches of sandeel observed	
	in benthic grabs can provide anecdotal evidence of their	
	presence in the array and export cable route areas.	
Scoping Upinion (IVIIVIU, 26	I the scoping Report states a cable burial risk assessment will	inis is welcomed by the Project, and
August 2022)	will be buried where possible to reduce the risk of EME	relevance to fish and shellfish ecology have
Comment ID: 3.4 10	impacts on sensitive recentors. The MMO supports these	been summarised in Table 10.8
0011111011011011110		

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	embedded mitigation measures and recommend that all	
	cables are buried to a minimum depth of 1.5m (subject to	
	local geology and obstructions) to minimise the effects of	
	EMF, as recommended in the Department of Energy and	
	Climate Change report (2011).	
Scoping Opinion (MMO, 26	The MMO supports the use of soft-start procedures on	A piling Marine Mammal Mitigation
August 2022)	commencement of piling. A 20-minute soft-start in	Programme (MMMP) will be developed and
	accordance with Joint Nature Conservation Committee	implemented during construction. This is
Comment ID: 3.4.11	(JNCC) protocol for minimising the risk to injury to marine	included in Table 10.8.
	mammals and other fauna from piling noise (JNCC, 2010).	
	Should piling cease for a period greater than 10 minutes,	
	then the soft-start procedure must be repeated.	
Scoping Opinion (MMO, 26	The MMO notes that the applicant is proposing to	Underwater noise modelling has been
August 2022)	undertake underwater noise modelling. We recommend	carried out on fish as both stationary and
	that fish are treated as stationary receptors in any modelling	fleeing receptors to ensure the full range of
Comment ID: 3.4.12	used to make predictions for noise propagation on fish	responses are modelled.
	spawning and nursery grounds. The MMO does not support	
	the use of a fleeing animal model for fish due to the reasons	
	outlined below, in paragraph 3.4.13.	
Scoping Opinion (MMO, 26	Fish respond to loud noise and vibration, through observed	Underwater noise modelling has been
August 2022)	reactions including: schooling more closely; moving to the	carried out on fish as both stationary and
	bottom of the water column; swimming away; and burying	fleeing receptors to ensure the full range of
Comment ID: 3.4.13	in substrate (Popper et al., 2014). However, this is not the	responses are modelled. This approach was
	same as fleeing, which would require a fish to flee directly	agreed with stakeholders in the Marine
	away from the source over the distance shown in the	Ecology & Coastal Processes ETG 12/10/22.
	modelling. We are not aware of scientific or empirical	
	evidence to support the assumption that fish will flee in this	
	manner. The assumption that a fish will flee from the source	

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	of noise is overly simplistic as it overlooks factors such as fish	
	size and mobility, biological drivers, and philopatric	
	behaviour which may cause an animal to remain/return to	
	the area of impacts. This is of particular relevance to herring,	
	as they are benthic spawners which spawn in a specific	
	location due to its substrate composition.	
Scoping Opinion (MMO, 26	Eggs and larvae have little to no mobility, which makes them	Eggs and larvae have been assessed and
August 2022)	vulnerable to barotrauma and developmental effects.	modelled as a stationary receptor within the
	Accordingly, they should also be assessed and modelled as	underwater noise assessment in Section
Comment ID: 3.4.14	a stationary receptor, as per the Popper <i>et al</i> . (2014) criteria.	10.7, Impact 1.
Scoping Opinion (MMO, 26	It should be clearly stated in the ES (and PEIR if applicable)	Both simultaneous piling and multiple piling
August 2022)	whether simultaneous piling is proposed to be undertaken,	events within 24-hours is included within
	i.e., the installation of more than one pile at a time, for the	the project design. Therefore, potential
Comment ID: 3.4.15	installation of Wind Turbine Generators (WTGs) or other	impacts from the simultaneous piling of
	offshore platform structures. If simultaneous piling is	foundations and multiple piling events in
	proposed, then underwater noise modelling for impacts to	24-hours on fish and shellfish receptors
	fish must be based on this scenario.	have been assessed within Section 10.7,
		Impact 1.
Scoping Opinion (MMO, 26	For the assessment of potential impacts to herring, 10 years	10 full years of IHLS data (2009/2010-
August 2022)	of IHLS data (2011–2021) should be presented in the form	2020/2021) are used to inform the baseline
	of a 'heat map' which should be overlaid with the mapped	and assessment in Section 10.7. These data
Comment ID: 3.4.16	noise contours from the modelling. This will provide a better	are presented in the form of a 'heat maps'
	understanding of the likely extent of noise propagation into	(Figure 10.14, Figure 10.15Figure
	herring spawning grounds and allow for a more robust	10.15Figure 10.15, Figure 10.16 and Figure
	assessment of impacts to be made.	10.17).
Scoping Opinion (MMO, 26	As stated above, the PEIR and ES should recognise the	Data limitations are addressed in Section
August 2022)	limitations of the data collected for fish characterisation	10.6 where it is noted that the methods of
	surveys (e.g., Lynn, Inner Dowsing and Lincs OWFs, Hornsea	surveying for fish and shellfish species vary

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
Comment ID: 3.5.1	Zonal Characterisation, and Triton Knoll OWF) which are now in excess of 10 years old. Further to this point, some cephalopods, such as squids, have shown expanding spatial ranges through the North Sea in recent years (van der Kooij <i>et al.</i> , 2016). Given the timeliness of the data sources, it is unlikely that such shellfish groups will be identified in the surveys listed, though it is noted that commercial landings	in their efficiency at capturing different species.
	data have been used, which does provide recent data of squids, and 'mixed squids and octopi' grouped together.	
Scoping Opinion (MMO, 26 August 2022)	Some surveys listed in Table 7.4.1 (such as the Hornsea One Benthic Subtidal Survey, and the Hornsea Project One Array Survey) uses epibenthic beam trawls. Whilst beam trawls	Data limitations are addressed in Section 10.6 where it is noted that the methods of surveying for fish and shellfish species vary
Comment ID: 3.5.2	may be suitable for capturing cuttlefish (typically <i>Sepia</i> officinalis), the gear type is unsuitable for capture of other shellfish (whelks <i>Buccinum undatum</i> are caught using specialised whelk pots, crabs <i>Cancer pagurus</i> and lobster <i>Homarus gammarus</i> are caught using pots, scampi / Norway lobster / langoustine / Dublin prawn <i>Nephrops norvegicus</i> are caught using otter trawls etc.). As such, any shellfish caught using the epibenthic beam trawls should be considered as indicative of presence/absence only, rather than abundance in the area.	in their efficiency at capturing different species. Shellfish caught using epibenthic beam trawls are therefore only considered as indicative of presence/absence.
Scoping Opinion (MMO, 26 August 2022)	It is appropriate for impacts arising from accidental pollution during the construction, O&M, and decommissioning phases be scoped out of further	Potential impacts from direct disturbance resulting from the operation of the project have been assessed in Section 10.7 Impact
Comment ID: 3.5.3	assessment, on the basis that a PEMP will be implemented to manage and mitigation any pollution events. However, the scoping out of impacts arising from direct disturbance	9.

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	resulting from O&M activities would be premature at this	
	stage. The justification that the impact/s will be limited in	
	spatial extent and length of time cannot be supported until	
	the spatial extent of the impact/s in relation to specific	
	species and/or habitats has been assessed.	
Scoping Opinion (MMO, 26	Given literature on detrimental effects of underwater noise	A MMMP will be developed and
August 2022)	to various squid species (Jones <i>et al.,</i> 2020), the use of soft-	implemented during construction. This is
	start procedures is supported on commencement of piling.	included in Table 10.8.
Comment ID: 3.5.3	A 20-minute soft-start is recommended in accordance with	
	JNCC's protocol for minimising the risk of injury to marine	
	mammals and other fauna from piling noise (JNCC, 2010).	
	Should piling cease for a period greater than 10 minutes,	
	then the soft-start procedure must be repeated.	
Scoping Opinion (Natural	Natural England advises Cefas is consulted	Cefas were consulted to review and
England, 30 August 2022)	to review and comment on the Fish and	comment on the Fish and Shellfish section
Comment ID: 68.	Shellfish section of the EIA Scoping Report. Please insert	of the EIA Scoping Report. In addition,
	information within this section referencing links to other	consultation with Cefas has been
	chapters of the report, such as marine mammals and	undertaken throughout the Evidence Plan
	offshore ornithology.	Process.
		Where appropriate links to other relevant
	Natural England would like to emphasise the need for	chapters have been made throughout this
	discussion and consideration for appropriate seasonal	Chapter. In addition, references to relevant
	restrictions to reduce impacts to commercially/ecologically	chapters have been made in Section 10.8.32
	important fish species within the assessment.	Inter-Relationships.
		Due consideration of mitigation measures
		have been considered in the event that
		significant effects on VERs are concluded
		following an assessment of impacts on fish

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
туре		and shellfish VERS, which is undertaken in
		Section 10.7.
Scoping Opinion (Natural	Natural England advise that designated	Impacts on key prey species of birds at
England, 30 August 2022)	sites including Flamborough and Filey Coast and the Greater	designated sites (such as sandeel) have
Comment ID: 69.	Wash SPAs should	been assessed within Section 1.7. Indirect
	be scoped in and the impacts on prey	impacts on bird species due to impacts on
	availability referred to/signposted in the	prey availability are assessed in Volume 1,
	Designated Sites section of the report.	Chapter 12: Offshore and Intertidal
		Ornithology.
Scoping Opinion (Lincolnshire	Lincolnshire Wildlife Trust (LWT) strongly disagrees with the	The MMO agreed that the baseline datasets
Wildlife Trust, 25 August 2022)	statement that 'given the significant extent of publicly	identified in the Scoping Report (Outer
	available data covering fish and shellfish species in the area	Dowsing Offshore Wind, 2022) were
	to enable a robust characterisation of the receiving	appropriate for characterisation and the
	environment, including identification of relevant valued fish	MMO confirmed no need for site-specific
	and shellfish receptors, additional site-specific fish and	surveys. Notwithstanding the above, some
	shellfish ecology surveys are not proposed to be	site-specific surveys were undertaken to
	undertaken'. LWT would urge that new, site-specific data be	provide validation of the existing datasets.
	collected, as the sources provided are invalid and	Information on these surveys can be found
	inappropriate.	in Table 10.5.
Scoping Opinion (Lincolnshire	While LWT supports the use of current data from ICES, UK	The MMO agreed that the baseline datasets
Wildlife Trust, 25 August 2022)	Fisheries, Cefas, and European Marine Observation and	identified in the Scoping Report (Outer
	Data Network (EMODnet), these datasets are mainly	Dowsing Offshore Wind, 2022) were
	applicable to commercial fish stocks (Section 7.8) and will	appropriate for characterisation and the
	lack coverage of protected and vulnerable species (e.g., Allis	MMO confirmed no need for site-specific
	shad, Atlantic salmon, European eel, porbeagle shark, sea	surveys. Notwithstanding the above, some
	lamprey, spotted ray, spurdog, thornback ray, tope shark	site-specific surveys were undertaken to
	Galeorhinus galeus, twaite shad, and blonde ray; Table	provide validation of the existing datasets.
	7.4.3). Furthermore, the Scoping Report states that data is	

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	'largely drawn upon work undertaken in support of various	Information on these surveys can be found
	wind farm projects in the vicinity of the study area'.	in Table 10.5.
	However, these datasets are outdated (>5 years old; and in	
	many cases 10–20 years old) and not site-specific to the	
	relevant study area. For example, Table 7.4.1 lists several	
	datasets that are over a decade old, including the six	
	datasets from the Hornsea Project (surveys conducted	
	between 2010 and 2012) and two datasets from the Triton	
	Knoll Project (2008 to 2011). The material evidence	
	provided for species present within the Project array and	
	offshore ECC AoS mainly cite the six datasets taken from the	
	Hornsea Project (2010 to 2012). Moreover, the principal	
	evidence used to inform fish and shellfish species	
	distributions in Table 7.4.2 is over 20 years old, having been	
	published in 2001 following the Hornsea Zone surveys.	
	These datasets are outdated and not appropriate for this	
	use, as the dynamic nature of ecosystems requires up-to-	
	date information for proper assessment.	
Scoping Opinion (Lincolnshire	The estimated distance from the closest Hornsea Project	Blonde ray, European eel and thornback ray
Wildlife Trust, 25 August 2022)	array to the proposed the Project array is roughly 17km	have all been included in the impact
	(according to the public shapefiles provided;	assessment (see Table 10.6).
	4coffshore.com). Given that several fish and shellfish	
	species are demersal with relatively small home ranges (e.g.,	
	demersal and shellfish species listed in Table 7.4.2),	
	localised data specific to the study areas will be needed to	
	properly assess fish and shellfish distributions and	
	associated disturbance impacts. For example, several of the	
	threatened and red-listed species provided in Table 7.4.3	

Date and consultation phase/	Consultation and key issues raised	Section where comment addressed
type		
	are demersal with localised home ranges (e.g., blonde ray, European eel, thornback ray), requiring the ecological assessment of the proposed project area to determine protected species distributions within the potential the Project array and ECC AoS.	
Scoping Opinion (Lincolnshire Wildlife Trust, 25 August 2022)	Lastly, LWT appreciates that fish and shellfish will be included in noise modelling assessments. However, LWT would advise that the same investigative scope of noise impacts on marine mammals be applied to fish and shellfish, including LWT recommendations for noise modelling practice detailed in the next response.	Detailed noise modelling has been undertaken, and is presented in full in Volume 2, Appendix 3.2: Underwater Noise Assessment. This underwater noise modelling has been used to inform the assessment of potential impacts on fish and shellfish receptors in Section 10.7, Impact 1.
Post-scoping Evidence Plan meetir	ng	
Marine Ecology & Coastal Processes ETG (12 October 2022)	Cefas queried if all cumulative effects are being scoped out or ones specific to particular impact.	Cumulative impacts related to underwater noise and increases in suspended sediments and deposition have been assessed. See Section 10.8.
Marine Ecology & Coastal Processes ETG (12 October 2022)	Cefas welcome that a full ten-year dataset is being addressed.	Ten years of IHLS data (2009-2010-2020/2021) have been used to inform the assessment of impacts on spawning herring (Figure 10.14).
Marine Ecology & Coastal Processes ETG (2 December 2022)	Cefas queried if the Project would be modelling and presenting the 135dB SEL contour from Hawkins <i>et al.</i> (2014). Natural England also confirmed via a post meeting note that they support the inclusion of this contour.	Whilst Hawkins <i>et al.</i> (2014) present a possible threshold for behavioural impacts on fish, the use of this threshold for noise impact assessments is expressly advised against by the authors of the paper. Specifically, this threshold is based on a study undertaken within a quiet loch on fish

Date and consultation phase/ type	Consultation and key issues raised	Section where comment addressed
		not involved in any particular activity (i.e. not spawning), and it is therefore not considered appropriate to use this threshold within a much noisier area such as the southern North Sea (which is subject to high levels of anthropogenic activity and consequently noise) as the fish within this area will be acclimated to the noise and would be expected to have a correspondingly lower sensitivity to noise levels. Also, as demonstrated by Skaret <i>et al.</i> (2005), herring are much less likely to respond to sound when engaged in life- history critical activities (e.g., feeding, spawning). The use of this threshold is not considered meaningful when attempting to describe the potential disturbance effects on spawning herring arising from piling activity.
Marine Ecology & Coastal Processes ETG	Cefas queried how the site-specific epi-benthic trawl survey data was being used for sandeels and when the data was	The surveys were undertaken in 2022, across the offshore ECC and array area. The
(2 December 2022)	collected.	data was used as presence/absence
		validation of the existing datasets listed in Table 10.5.

10.4 Baseline Environment

Study Area

- 10.4.1 The fish and shellfish study area is presented in Figure 10.1 and has been defined at three spatial scales. For primary impacts, the study area includes the Project wind farm array area and offshore ECC. For secondary impacts a wider study area has been used based on the Project specific hydrodynamic modelling undertaken (Volume 2, Appendix 7.2: Physical Processes Modelling Report). This Zone of Influence (ZoI) encapsulates the maximum extent of measurable plumes predicted by the modelling. Finally, although the maximum impact range from underwater noise will be up to 23km from the array areas, a precautionary 50km study area has been defined for underwater noise impacts on fish and shellfish receptors, to fully encapsulate maximum impact ranges for the 186dB re 1µPa²s Sound Exposure Level (SEL) for recent UK offshore wind farm applications.
- 10.4.2 The largest ZoI from activities within the ECC would result from increased suspended sediment concentrations (SSCs) and associated sediment deposition and smothering from foundation and cable installation works and seabed preparation works. The 'Sedimentary ZoI' is based on the mean spring tidal excursion buffer of the site, which represents the expected maximum distance that suspended sediments may be transported on a mean spring tide in a flood and/or ebb direction (although the majority of suspended sediment are expected to be deposited much closer to the disturbance activity).
- 10.4.3 The current study area overlaps with the International Council for the Exploration of the Sea (ICES) rectangles 35F0, 35F1, 36F0 and 36F1 and provides a regional context on fish and shellfish ecology and is sufficient to cover potential effects outside of the array area and offshore ECC.

Compensation Areas

10.4.4 Areas of search for potential compensation measures associated with the Project have been provided in Figure 10.1, with the baseline conditions in these areas detailed in Volume 2, Appendix 10.1. The compensation areas will be assessed within the Environmental Statement (ES) following refinement of the proposed areas and once details of the works to be undertaken have been finalised.

Page **48** of **197**

Data Sources

- 10.4.5 A detailed desktop review was carried out to establish the baseline of information available on fish and shellfish populations in the fish study area for the Project. Information was sought on fish and shellfish ecology in general and on spawning and nursery activity. The baseline characterisation utilises a broad combination of datasets and provides a robust temporal analysis and validation of regional monitoring datasets. In addition, the fish and shellfish ecology characterisation will be informed through site-specific benthic ecology surveys to be undertaken across the array area and offshore ECC. These surveys include PSA of sediment samples, epibenthic trawls and eDNA data. Data collected from these surveys will be used to inform on spawning habitat suitability for demersal spawning fish such as herring and sandeel, as well as presence/absence validation of the existing datasets listed in Table 10.5.
- 10.4.6 A combination of datasets have been used within this characterisation and this ensures a robust temporal and spatial coverage of fish and shellfish ecology in the area. These datasets and their utilisation are listed in Table 10.5.
- 10.4.7 The data available from existing literature and relevant surveys provide an appropriate evidence base for fish and shellfish populations within the Project study area, sufficient for the purposes of EIA and it is intended that these are utilised to characterise the fish and shellfish receptors in the vicinity of the Project array area and offshore ECC.
- 10.4.8 Additional information on the fish and shellfish characterisation for the Project and full details on the data sources and the utilisation of each data source are provided in Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline.

Data source	Data utilisation
Existing Data Sources	
ESs', and pre- and post-construction monitoring	Site-specific fish and shellfish surveys for OWF
reports from other OWF developments within	Projects in the area.
the defined study area:	Used to provide a fish and shellfish ecology
 Triton Knoll OWF herring larvae survey 	characterisation taken from previous OWF
(Linnane and Simpson, 2011), seasonal	project surveys of the area.
trawl surveys (Linnane et al., 2011) and ES	
(RWE, 2012);	
 Sheringham Shoal OWF herring spawning 	
survey, and pre- and post-construction	
elasmobranch surveys (Brown & May	
Marine Ltd, 2009, 2010, 2015) and ES (Scira,	
2006);	
 Dudgeon OWF pre-construction adult fish 	
surveys (Brown & May Marine Ltd,	
2008a,b), baseline ecology study (Fugro,	
2015) and ES (Royal Haskoning, 2009);	

Table 10.5: Data sources used to inform the Project baseline characterisation

Data source	Data utilisation
 Sheringham Shoal and Dudgeon Offshore 	
Wind Farm Extension Projects ES (Equinor,	
2022); and	
 Hornsea Project One, Hornsea Project Two 	
and Hornsea Project Three (as cited in	
Ørsted, 2018) and Hornsea Project Four ES	
(Ørsted, 2021).	
British Geological Survey (BGS) Seabed	PSA data presented to provide an indication on
Sediment datasets (BGS, 2015).	the location of suitable habitat and spawning
	grounds for sandeel and herring.
EUSea Map broadscale marine habitat data	Broadscale marine habitat data presented to
(2021).	provide an indication on the location of suitable
	habitat and spawning grounds for sandeel and
Fishering Constitute Mana in Duitich Matour	nerring.
(Coull of al. 1998)	or pursony provide information on likely spawning
[Coull et al. (2010) Manning snawning and nurson	Drovided information on fish species.
areas of species to be considered in Marine	nursery grounds
Protected Areas (MPAs)	
Ellis et al. (2012) Snawning and nursery grounds	
of selected fish species in LIK waters. Scientific	
Series Technical Report.	
IHLS data (ICES, 2009-2021).	Time-series trawl data on herring distribution
	used to characterise the herring populations
	throughout the North Sea and English Channel.
MMO UK Sea Fisheries Monthly Reports and	Commercial fisheries specific data (national and
Annual Statistics Reports.	regional coverage).
	Used to provide data related to fisheries
	landings and fishing effort within the area.
Screening spatial interactions between marine	Methodologies used to identify preferred
aggregate application areas and sandeel habitat	spawning habitats of herring and sandeel within
(Latto <i>et al.</i> , 2013).	the study area.
Screening Spatial Interactions between Marine	
Aggregate Application Areas and Atlantic	
Herring Potential Spawning Areas (Reach <i>et al.</i> ,	
2013).	The second second Calman and States and the second second
Ine International Bottom Trawi Surveys (IBTS)	Time-series groundfish survey data collected
(ICE3, 1903-2022).	the fish assemblage
ICES beam trawl surveys (ICES, 1995-2022).	the fish assemblage.
ICES North Sea International Bottom Trawl	
Survey (NSIBTS) data (ICES, 1965-2022).	
Boyle and New (2018) ORJIP Impacts from Piling	The study report presents a spatial analysis of
on Fish at Offshore Wind Sites: Collating	the International Herring Larval Survey (IHLS)
	herring larval data collected over a ten-year

Data source	Data utilisation
Population Information, Gap Analysis and Appraisal of Mitigation Options.	period. The methodology defined within this study was used to undertake a spatial analysis of the IHLS data in relation to the Project to identify areas of active spawning herring grounds with overlap with the array area and offshore ECC.
New Survey Data	
Site-specific Benthic Ecology Baseline Characterisation Surveys. Site-specific Geophysical Survey.	Site-specific survey data from the array area and the offshore ECC inclusive of benthic grabs; Drop Down Video (DDV); epibenthic trawls; PSA; sediment total carbon content; sediment contaminant analysis; and lab work, data analysis and reporting. Includes shallow geophysical, ultra-high resolution seismic (UHRS), side scan sonar (SSS), echo sounder (multi-beam echosystem) (MBES), magnetometer, high frequency sub-bottom profiler (SBP) and vibrocore collection. These surveys will be used to build a profile of any objects in the area e.g., wrecks.
Site-specific eDNA Survey.	Water column and sediment eDNA samples
	collected alongside the geophysical surveys,
	used to provide a snapshot of fish and shellfish
	species presence (from approximately the past
	24 nours) at each sample location.

Existing Environment

10.4.9 A detailed characterisation of the fish and shellfish baseline environment is provided in Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline, with a summary provided here. This PEIR chapter should therefore be read alongside the detailed fish and shellfish characterisation appendix. The baseline characterisation is informed by data collected across previous offshore wind farm projects.

Fish Ecology

10.4.10 The baseline description of the study area draws on site-specific data collected within the array area and ECC, regional datasets and industry specific monitoring undertaken for a number of regional offshore wind farms.

- 10.4.11 Sandeels were present within the site-specific grab macrofauna, epibenthic trawl datasets and the video analysis. Furthermore, the Project array site falls within sandeel spawning and nursery grounds; however, it should be noted that even optimal habitats may not be occupied by sandeel if populations are below the area's carrying capacity (Holland *et al.*, 2005). Chordata species were observed at the more sand dominated stations and came in the form of sandeels, plaice *Pleuronectes platessa*, dragonet *Callionymus lyra*, pogge *Agonus cataphractus*, lesser weaver *Echiichthys vipera* and unidentified fish. Sandeels were the most prominently identified Chordata, with higher abundances noticed at sand dominated stations with minimal surface shell fragments.
- 10.4.12 Site-specific epibenthic trawls conducted identified 21 fish species and revealed a fish community characterised by demersal species including dab *Limanda limanda*, plaice, pogge and dragonet as well as the inshore species lesser weever and longspined bullhead *Taurulus bubalis*. Several commercially important species such as whiting *Merlangius merlangus*, ling *Molva molva* and common sole *Solea solea* were recorded at low abundances. The greater sandeel *Hyperoplus lanceolatus*, lesser sandeel *Ammodytes tobianus*, smooth sandeel *Gymnammodytes semisquamatus* and Raitt's sandeel *Ammodytes marinus* were all recorded in the epibenthic trawls.
- 10.4.13 eDNA sampling within the array area and offshore ECC, identified 28 fish species, 24 bony and four elasmobranch species. Using haplotype variation as a proxy for species abundance¹, the most abundant species across the site were Painted Goby *Pomatoschistus pictus*, the right-eye flounder family *Pleuronectidae*, sand goby *Pomatoschistus minutus*, sandeel, common sole, Atlantic mackerel *Scomber scombrus*, lesser weever fish and European sprat *Sprattus sprattus*. Out of the 21 fish species observed across the epibenthic beam trawl data, eight were also identified in the eDNA dataset. Multiple haplotypes of demersal species such as the lesser weever fish, hooknose *Agonus cataphractus*, solenette *Buglossidium luteum* and common sole were recorded across both datasets. Additionally, species of conservation interest were recorded, these included;
 - Tope shark (UK BAP Priority species and IUCN 'Critically Endangered' species);
 - Starry smooth-hound (classed as 'Near threatened' on the IUCN Red List);
 - Spotted ray (afforded protection as an Oslo/Paris Convention (for the Protection of the Marine Environment of the North-East Atlantic) (OSPAR) Threatened or Declining Species);
 - Atlantic herring (UK BAP Priority species due to their 'National Scarcity');
 - Alosa spp. (UK BAP Priority species);
 - Atlantic salmon (UK BAP Priority species and afforded protection as an OSPAR Threatened or Declining Species);
 - Brown trout (Section 41 Priority species);
 - Sandeel (UK BAP Priority species); and

¹ 'Haplotype counts' refer to the number of distinct haplotypes of a specific taxa that are present in a single sample, which represents genetic diversity and can be used as a proxy for abundance (Mynott and Marsh, 2020), which can then be summed across multiple samples/stations.

- Atlantic mackerel (UK BAP Priority species).
- 10.4.14 Otter trawl and epibenthic beam trawl surveys conducted between 2010 and 2012 across the former Hornsea Zone (Hornsea Project One, Hornsea Project Two and Hornsea Three) (Ørsted, 2018) revealed a species assemblage typical of this area of the North Sea. The fish community was largely characterised by demersal species recorded in abundance during surveys, including whiting, dab, plaice, solenette and grey gurnard *Eutrigla gurnardus*. Less abundant species included lemon sole *Microstomus kitt*, common sole and Atlantic cod *Gadus morhua*. Surveys also recorded smaller demersal species such as the short-spined sea scorpion *Myoxocephalus scorpius*, lesser weaver, dragonet and Mediterranean scaldfish *Arnoglossus laterna*. Pelagic species were also recorded during surveys included Atlantic herring, sprat, European common squid *Alloteuthis subulata* and European squid *Loligo vulgaris*. A total of 84 species were recorded in the otter and epibenthic beam trawls undertaken within the Hornsea Four study area. Solonette dominated the trawls along with Mediterranean scaldfish, dab, place and lemon sole. Atlantic salmon, Atlantic cod, whiting and sandeel were also recorded in the area (Ørsted, 2021).

Shellfish Ecology

- 10.4.15 Site-specific grab samples identified brown shrimp *Crangon crangon* and pink shrimp *Pandalus* spp. Mobile Arthropoda such brown crab *Cancer pagurus*, harbour crab *Liocarcinus depurator* and spider crab *Inachus* spp. were all present within the samples. Camera transects showed homogenous sand with negligible hard substrate. Shellfish observed on the seabed stills and videos within the array area and offshore ECC were limited to sporadic sightings of brown crab, harbour crab, spider crab *Hyas* spp. and velvet swimming crab *Necora puber*. Site-specific epibenthic trawls additionally recorded hermit crab *Pagurus bernhardus*, queen scallop *Aequipecten opercularis*, king scallop and blue mussel *Mytilus edulis*.
- 10.4.16 Several shellfish species that are also known to be present and abundant within the study area, recorded in other offshore wind development and regional surveys include European lobster *Homarus gammarus* and Norway lobster *Nephrops norvegicus* (also known as *Nephrops*), with these species being particularly significant for commercial fisheries within the study area. Whilst *Nephrops* are likely present in the region, their known spawning and nursery area is located approximately 18km north-east of the array area.

Spawning and Nursery Grounds

- 10.4.17 This section describes fish species which have spawning and nursery areas that overlap, or are in close proximity to, the array area or ECC.
- 10.4.18 Spawning and nursery areas are categorised by Ellis *et al.* (2012) as either 'high' or 'low intensity' dependent on the level of spawning activity or abundance of juveniles recorded in these habitats. Coull *et al.* (1998) does not always provide this level of detail. The spatial extent of the spawning grounds and the duration of spawning periods indicated in these studies are therefore considered likely to represent the maximum theoretical extent of the areas and periods within which spawning could occur.

- 10.4.19 Due to the demersal spawning nature of herring and sandeel, and therefore their increased sensitivity to potential impacts from the development, herring and sandeel have been addressed separately below. The spawning and nursery grounds (Coull *et al.*, 1998; Ellis *et al.*, 2010) discussed and illustrated below are considered robust sources of information, as the physical drivers such as sediment type remain the same (EUSeaMap, 2021) and are supplemented by project specific PSA and geophysical survey data.
- 10.4.20 A 'high intensity' plaice spawning ground overlaps the study area (Ellis *et al.*, 2012). Plaice spawning sites are significant in size, and therefore the interaction between the sites and the study area is small. 'Low intensity' spawning grounds are present across the study area for whiting, cod, sandeel and sole (Ellis *et al.*, 2010). There are also spawning grounds present across the study area for lemon sole, mackerel, and sprat (Coull *et al.*, 1998) (Figure 10.2 and Figure 10.4). A *Nephrops* spawning ground lies to the east of the array area (Coull *et al.*, 1998). These spawning grounds are significant in size, spanning large areas across the southern North Sea and the Channel. As these species' spawning sites are significant in size, the interaction between the sites and the study area is small.
- 10.4.21 The fish and shellfish ecology study area coincides with 'high intensity' nursery grounds for cod, herring and whiting (Coull *et al.*, 1998). 'Low intensity' nursery grounds are present across the study area for anglerfish *Lophius piscatorius*, blue whiting *Micromesistius poutassou*, cod, European hake *Merluccius merluccius*, herring, ling, mackerel *Scomber scombrus*, plaice, sandeel, sole, spurdog *Squalus acanthias*, thornback ray *Raja clavata*, tope shark *Galeorhinus galeus* and whiting (Ellis *et al.*, 2010). There are also nursery grounds present across the study area for lemon sole, *Nephrops* and sprat (Coull *et al.*, 1998). These nursery grounds are significant in size, spanning large areas across the southern North Sea and the Channel. As these species' nursery grounds are significant in size, the interaction between the sites and the study area is small (Figure 10.5, Figure 10.6, Figure 10.7, Figure 10.8 and Figure 10.9).

Herring

- 10.4.22 Areas of potential herring spawning habitat have been identified using site specific PSA data (GEOxyz, 2022a, b), BGS sediment data (BGS, 2015) and broadscale habitat mapping (EUSeaMap, 2021). These data have been classified in accordance with the Reach *et al.* (2013) classifications to further refine the understanding of areas of potential herring spawning habitat within the proposed development site. Areas of potential herring spawning habitat are shown in Figure 10.10.
- 10.4.23 Site specific PSA data (GEOxyz, 2022a, b) collected within the array area were primarily characterised by sandy gravel and gravelly sand, which are characterised as 'prime, 'sub-prime' and 'suitable' herring spawning habitats. 'Prime' herring spawning habitat was found 22.2% of the sample points, which were mainly clustered towards the south of the array area and the majority of the array area was deemed as 'unsuitable' habitat (41.9%; GEOxyz, 2022a). EUSeaMap (2021) data, as presented in Figure 10.10, shows significant areas of fine sand and muddy sand sediments across the array area. Site specific PSA data (GEOxyz, 2022b) shows the ECC is largely dominated by 'unsuitable' herring spawning habitats (Figure 10.10). There are areas of 'sub-prime' and 'suitable' habitats located in the mid-section of the ECC.

10.4.24 Whist these data indicate the potential for herring spawning habitats within the array area and the mid-section of the ECC, IHLS data (ICES, 2009-2021) (as shown in Figure 10.14) indicate that areas of high intensity spawning activity located to the north of the Project.

Sandeel

- 10.4.25 Areas of potential sandeel spawning habitat have been identified using site-specific PSA data (GEOxyz 2022a, b) and broadscale habitat mapping (EUSeaMap, 2021). These data have been classified in accordance with the Latto *et al.* (2013) classifications to further refine the understanding of areas of potential sandeel spawning habitat within the Project site. Areas of potential sandeel spawning habitat are shown in Figure 10.18.
- 10.4.26 Site specific PSA data (GEOxyz 2022a) collected across the array area were primarily characterised by sandy gravel and gravelly sand, largely characterised as 'prime, preferred', 'sub-prime, preferred' and 'suitable, marginal' sandeel habitat (37%, 16% and 36%, respectively). EUSeaMap (2021) data, as presented in Figure 10.18, Figure 10.19, and Figure 10.20, shows significant areas of fine sand and muddy sand sediments across the array area. Site-specific PSA data (GEOxyz, 2022a,b) (Figure 10.21) collected along the ECC show areas of 'prime, preferred', 'sub-prime, preferred' and 'suitable, marginal' sandeel habitat in the offshore section and mid-section of the ECC, with the nearshore section of the ECC dominated by 'unsuitable' sandeel habitat. On a broader scale, as indicated by broadscale marine habitat mapping (EUSeaMap, 2021) there are areas of 'prime/preferred' habitat located to the south of the ECC, and to the north of the array area.

Species of Commercial Importance

10.4.27 Detailed information on species of commercial importance is provided in Volume 1, Chapter 14: Commercial Fisheries, which identifies brown crab, European lobster and common whelk as key species for potters, king scallop *Pecten maximus* as the key species for scallop dredgers, brown shrimp, plaice and common sole as key species for beam trawlers, whiting and sandeel as key species for demersal trawlers, and herring and Atlantic mackerel as the key species for pelagic trawlers in the study area.

Diadromous Species

- 10.4.28 Diadromous fish are fish that spend part of their life cycle in freshwater and part in seawater; such species are termed catadromous (born in marine habitats then migrate to freshwater areas) and anadromous (born in freshwater then migrate to, and mature in, the ocean). A number of diadromous fish species have the potential to occur in the fish and shellfish study area, migrating to and from rivers and other freshwater bodies in the area which these species use either for spawning habitat.
- 10.4.29 The Humber Estuary, to the north of the study area, is known to host several key diadromous species which are known to spawn in the freshwater environments of tributaries flowing into the estuary, including the River Derwent Special Area of Conservation (SAC). These include sea lamprey *Petromyzon marinus* and river lamprey *Lampetra fluviatilis* (both qualifying species of the Humber Estuary SAC and SSSI), Atlantic salmon *Salmo salar*, brown trout *Salmo trutta*, European eel *Anguilla anguilla*, twaite shad *Alosa fallax* and allis shad *Alosa alosa* (Perez-Dominguez, 2008; Allen, 2003; Proctor *et al.*, 2000; Proctor and Musk, 2001).

Elasmobranchs

10.4.30 Nursery grounds for thornback ray, spurdog and tope shark overlap with the study area (Figure 10.8). Furthermore, various elasmobranch species were caught in offshore wind development surveys, these include thornback ray, tope shark, small-spotted catshark *Scyliorhinus canicula*, starry smooth-hound and spotted ray.

Species of Conservation Importance

- 10.4.31 Within the study area there are number of marine and estuarine species protected under national and international legislation that have the potential to be present within the Project study area. These are discussed in full in Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline.
- 10.4.32 Those species which are designated under the Habitats Directive (among other legislation) are:
 - Allis shad;
 - Atlantic salmon;
 - River lamprey;
 - Sea lamprey;
 - Twaite shad; and
 - European eel (designated under The Eels (England and Wales) Regulations 2009 (hereafter the Eels Regulations), and Eel Recovery Plan (Council Regulation No 1100/2007).
- 10.4.33 As detailed in paragraph 10.4.13, several species of conservation importance were identified in the site-specific eDNA analysis. These were:
 - Tope shark (UK BAP Priority species and IUCN 'Critically Endangered' species);
 - Starry smooth-hound (classed as 'Near threatened' on the IUCN Red List);
 - Spotted ray (afforded protection as an OSPAR Threatened or Declining Species);
 - Atlantic herring (UK BAP Priority species due to their 'National Scarcity');
 - Alosa spp. (UK BAP Priority species);
 - Atlantic salmon (UK BAP Priority species and afforded protection as an OSPAR Threatened or Declining Species);
 - Brown trout (Section 41 Priority species);
 - Sandeel (UK BAP Priority species); and
 - Atlantic mackerel (UK BAP Priority species).
- 10.4.34 The Humber Estuary SAC, the Humber Estuary Ramsar and the Humber Estuary SSSI all have both the sea lamprey and river lamprey listed as qualifying features. These species are known to migrate through the Humber estuary to freshwater spawning habitats.

- 10.4.35 The Southern North Sea SAC is designated for the Annex II species harbour porpoise *Phocoena phocoena*. The SAC has a Conservation Objective to maintain Favourable Conservation for the harbour porpoise, which includes the maintenance of the availability of prey habitats (which typically consists of non-spiny fish such as herring, whiting, Atlantic cod, sprat and squid).
- 10.4.36 The Flamborough and Filey SPA is designated for a number of seabirds including blacklegged kittiwake *Rissa tridactyla*, northern gannet *Morus bassanus*, common guillemot *Uria aalge* and razorbill *Alca torda*, of which sandeels, sprats and young herring are key prey species.
- 10.4.37 The Greater Wash SPA is designated for Red-throated diver *Gavia stellata*, Common scoter *Melanitta nigra*, Little gull *Hydrocoloeus minutus*, Sandwich tern *Sterna sandvicensis*, Common tern *Sterna hirundo* and Little tern *Sternula albifrons*. Cod, herring and sticklebacks are key prey species for Red-throated diver. All other designated features feed on crustacea, juvenile or small fish and insects.
- 10.4.38 The only MCZ of relevance to fish and shellfish receptors within the study area is the Holderness Offshore MCZ which is designated for the ocean quahog, a bivalve mollusc found in sandy seabed throughout the North Sea.

Valued Ecological Receptors

- 10.4.39 The Project has taken a Valued Ecological Receptor (VER) approach, in line with the Chartered Institute of Ecology and Environmental Management (CIEEM) 2018 Guidance (CIEEM, 2018), which allows the assessment to focus on the ecological importance of the features. This is dependent upon their biodiversity, social, and economic value within a geographic framework of appropriate reference (CIEEM, 2016).
- 10.4.40 Based on the baseline characterisation summarised above, a number of VERs were identified within the fish and shellfish study area and include species which have:
 - Populations present within the fish and shellfish study area;
 - Spawning, nursery and migratory behaviour within the fish and shellfish study area; and
 - Commercial, conservation and ecological interest, including importance in supporting species of high trophic levels (e.g., prey species for bird and marine mammal species).
- 10.4.41 See Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline, for detailed justification for the identification of the VERs listed in Table 10.6.

Table 10.6: Summary of fish and shellfish VERs

VER	Valuation	Justification
Demersal VERs		
Atlantic cod	Regional	Study area overlaps low intensity spawning and low intensity nursery grounds. Cod were also recorded in OWF development surveys. Cod are listed as a Section 41 priority species and listed as vulnerable on the IUCN Red List.
Plaice	Regional	Study area overlaps high intensity spawning grounds and low intensity nursery grounds. UK BAP species (commercial

VER	Valuation	Justification
		marine fish grouped action plan) and NERC species of principal importance. Recorded throughout the Project fish and shellfish study area in site-specific trawls, regional trawls and offshore wind development surveys. Of commercial importance to the region.
Lemon sole	Local	Study area overlaps spawning grounds and low intensity nursery grounds. Recorded in regional trawls and offshore wind development surveys.
Common sole	Regional	Study area overlaps low intensity spawning ground. Of commercial importance to the region. Recorded in site- specific epibenthic trawls, regional trawls and offshore wind development surveys. Common sole is listed as a UK BAP and Section 41 Species.
Whiting	Regional	Study area overlaps low intensity spawning and low intensity nursery grounds. Whiting is listed as a UK BAP and Section 41 Species. Of commercial importance to the region. Recorded in site-specific epibenthic trawls, regional trawls and offshore wind development surveys.
Blue whiting	Local	Study area overlaps low intensity nursery grounds.
Ling	Local	Study area overlaps low intensity nursery grounds. Recorded in site-specific epibenthic trawls.
European bake	Local	Study area overlaps low intensity nursery ground.
Pelagic VFRs		
Atlantic	Regional	Study area overlaps snawning grounds and low intensity
mackerel		nursery grounds. Of commercial importance to the region. UK BAP Species, and Section 41 Priority Species. Prey species for birds and marine mammals and forming key components of the ecosystem. Recorded in site-specific water column eDNA samples, regional trawls and offshore wind development surveys.
Sprat	Regional	Study area overlaps a spawning ground. Recorded in site- specific water column eDNA samples and offshore wind development surveys. Of commercial importance to the region. Important prey species for bird and marine mammal species.
Migratory VERs		
Brown trout	Regional	Recorded in site-specific water column eDNA samples. Section 41 and UK BAP Priority species. Potential for this species to transit the site.
European eel	National	Designated under the Eel Regulations. Listed as UK BAP priority species and European eel is listed as critically endangered. Potential for this species to transit the site.

VER	Valuation	Justification
Atlantic	National	Recorded in site-specific water column eDNA samples and
salmon		offshore wind development surveys. Annex III of the Bern
		convention, listed on The Conservation of Habitats and
		Species Regulations (2017), and a UK BAP priority species.
Caslanana	Netional	Potential for this species to transit the site.
Sea lamprey	National	Annex III of the Bern Convention, listed on The Conservation
		Vildlife and Countryside Act. UK DAD priority fich species
		Retential for this species to transit the site
Pivor Jamprov	National	Approx III of the Born Convention listed on The Conservation
River lampiey	INACIONAL	of Habitats and Species Regulations (2017) Schedule 5 of the
		Wildlife and Countryside Act. LIK BAP priority fish species
		Potential for this species to transit the site
Twaite shad	Regional	Annex II of the Bern Conventions listed on The Conservation
i waite shad	Перопа	of Habitats and Species Regulations (2017) Schedule 5 of the
		Wildlife and Countryside Act 1981 and UK BAP priority fish
		species.
		Potential for this species to transit the site.
Allis shad	Regional	Annex II of the Bern Conventions, listed on The Conservation
	5	of Habitats and Species Regulations (2017), Schedule 5 of the
		Wildlife and Countryside Act 1981 and UK BAP priority fish
		species.
		Potential for this species to transit the site.
Benthopelagic V	VERs	
Herring	Regional	Spawning and low intensity nursery grounds occur across
		the study area. UK BAP species and nationally important
		marine feature. Prey species for birds and marine mammals.
		Important commercial fish species. Recorded in site-specific
		water column eDNA samples, regional trawls and offshore
		wind development surveys. Of commercial importance to
		the region.
Sandeel	Regional	Low intensity spawning and low intensity nursery grounds
		occur across the study area. Important prey species for fish,
		birds and marine mammals. UK BAP species and a nationally
		important marine feature. Recorded in site-specific grab
		samples, epibenthic trawls and water column eDNA
		samples, and offshore wind development surveys. Of
		commercial importance to the region.
Shellfish VERS	Deciencel	have start as your available builtight and size in the Dusiest study.
BLOWN CLOD	Regional	important commercial snellfish species in the Project study
		trawle and offshore wind development surveys
European	Pogional	Indivis, and onshore wind development surveys.
lohstor	INCEIUIIAI	area. Recorded in offshore wind development surveys
Nenhrons	Regional	Known snawning ground located within the study area
i i cpini ops	L NCBIOHAI	I KNOWN SPUWING STOUND IOCALCU WILINI LIE SLUUY ALEA.

VER	Valuation	Justification
Ocean	National	This species is on the OSPAR list of threatened and/or
quahog		declining species and habitats in the North Sea. It is also a
		Feature of Conservation Importance for which the
		Holderness Offshore MCZ is designated. As such these are
		considered of national importance.
Common	Regional	Important commercial shellfish species in the Project study
cockle		area.
Common	Regional	Important commercial shellfish species in the Project study
whelk		area. Recorded in site-specific epibenthic trawls.
Brown shrimp	Regional	Important commercial shellfish species in the Project study
		area. Important prey species. Recorded in site-specific grab
		samples and epibenthic trawls, and offshore wind
		development surveys.
Queen scallop	Regional	Recorded in site-specific epibenthic trawls. Important
		commercial shellfish species in the Project study area.
King scallop	Regional	Recorded in site-specific epibenthic trawls. Important
		commercial shellfish species in the Project study area.
Elasmobranch \	/ERS	
Thornback ray	Regional	Study area overlaps low intensity nursery grounds. OSPAR
		threatened and/or declining species and listed as near
		threatened by the IUCN red list. Recorded in site-specific
		epibenthic trawls and offshore wind development surveys.
Blonde ray	Regional	Blonde ray Raja brachyura is included as it has been
	Regional	
	negional	identified by Lincolnshire Wildlife Trust as a species of
	inc Biolini	identified by Lincolnshire Wildlife Trust as a species of concern.
Starry	Regional	identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded
Starry smooth-	Regional	identified by Lincolnshire Wildlife Trust as a species of concern.Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore
Starry smooth- hound	Regional	 identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore wind development surveys.
Starry smooth- hound Small-spotted	Regional	 identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Section 41 priority species. Recorded in site-specific water
Starry smooth- hound Small-spotted catshark	Regional	 identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Section 41 priority species. Recorded in site-specific water column eDNA samples and offshore wind development
Starry smooth- hound Small-spotted catshark	Regional	 identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Section 41 priority species. Recorded in site-specific water column eDNA samples and offshore wind development surveys.
Starry smooth- hound Small-spotted catshark Spurdog	Regional Regional	 identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Section 41 priority species. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Study area overlaps low intensity nursery grounds. UK BAP
Starry smooth- hound Small-spotted catshark Spurdog	Regional Regional Regional	 identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Section 41 priority species. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Study area overlaps low intensity nursery grounds. UK BAP species, OSPAR threatened and/or declining species and
Starry smooth- hound Small-spotted catshark Spurdog	Regional Regional Regional	 identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Section 41 priority species. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Study area overlaps low intensity nursery grounds. UK BAP species, OSPAR threatened and/or declining species and NERC Species of Principle Importance.
Starry smooth- hound Small-spotted catshark Spurdog Tope shark	Regional Regional Regional Regional	 identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Section 41 priority species. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Study area overlaps low intensity nursery grounds. UK BAP species, OSPAR threatened and/or declining species and NERC Species of Principle Importance. Study area overlaps low intensity nursery grounds. UK BAP
Starry smooth- hound Small-spotted catshark Spurdog Tope shark	Regional Regional Regional Regional	 identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Section 41 priority species. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Study area overlaps low intensity nursery grounds. UK BAP species, OSPAR threatened and/or declining species and NERC Species of Principle Importance. Study area overlaps low intensity nursery grounds. UK BAP species and listed as critically endangered by the IUCN red
Starry smooth- hound Small-spotted catshark Spurdog Tope shark	Regional Regional Regional Regional	 identified by Lincolnshire Wildlife Trust as a species of concern. Classed as 'Near Threatened' on the IUCN Red List. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Section 41 priority species. Recorded in site-specific water column eDNA samples and offshore wind development surveys. Study area overlaps low intensity nursery grounds. UK BAP species, OSPAR threatened and/or declining species and NERC Species of Principle Importance. Study area overlaps low intensity nursery grounds. UK BAP species and listed as critically endangered by the IUCN red list. Recorded in site-specific water column eDNA samples

Future Baseline

- 10.4.42 The Infrastructure Planning (Environmental Impact Assessment) Regulations 2017 require that "an outline of the likely evolution thereof without implementation of the development as far as natural changes from the baseline scenario can be assessed with reasonable effort on the basis of the availability of environmental information and scientific knowledge" is included within the ES (EIA Regulations, Schedule 4, Paragraph 3). From the point of assessment, over the course of the development and operational lifetime of the Project (operational lifetime is anticipated to be 35 years), long-term trends mean that the condition of the baseline environment is expected to evolve. This section provides a qualitative description of the evolution of the baseline environment, on the assumption that the Project is not constructed, using available information and scientific knowledge of fish and shellfish ecology.
- 10.4.43 Recent research has suggested that there have been substantial changes in the fish communities in the northeast Atlantic over several decades as a result of a number of factors including climate change and fishing activities (DECC, 2016). These communities consist of species that have complex interactions with one another and the natural environment. Fish and shellfish populations are subject to natural variations in population size and distributions, largely as a result of year-to-year variation in recruitment success and these population trends will be influenced by broad-scale climatic and hydrological variations, as well as anthropogenic effects such as climate change and overfishing.
- 10.4.44 Fish and shellfish play a pivotal role in the transfer of energy from some of the lowest to the highest trophic levels within the ecosystem and serve to recycle nutrients from higher levels through the consumption of detritus. Consequently, their populations will be determined by both top-down factors such as predation, and bottom-up factors such as ocean climate and plankton abundance. Fish and shellfish are important prey items for top marine predators including elasmobranchs, seabirds and cetaceans, and small planktivorous species such as sandeel and herring act as important links between zooplankton and top predators (Frederiksen *et al.*, 2006).
- 10.4.45 Climate change influences fish distribution and abundance, affecting growth rates, recruitment, behaviour, survival and response to changes of other trophic levels (Prakash and Srivastava, 2019). Climate change is contributing to the declining levels of primary production in the North Sea which in turn effects the dynamics of higher trophic levels and fish recruitment (Capuzzo *et al.*, 2018). Projected warming scenarios indicated regime shifts between sandeels and their copepod prey, resulting in sandeel recruitment declines (Regnier *et al.*, 2019). Increased sea surface temperatures in the North Sea may lead to an increase in the relative abundance of species associated with more southerly areas. For example, data on spawning herring and sardine *Sardina* spp. Landings at ports in the English Channel showed that higher spawning herring landings were correlated with colder winters, while warm winters were associated with large catches of sardine (Alheit and Hagen, 1997).

- 10.4.46 One potential effect of increased sea surface temperatures is that some fish species will extend their distribution into deeper, colder waters (Poloczanska *et al.*, 2013). In these cases, however, habitat requirements are likely to become important, with some shallow water species having specific habitat requirements in shallow water areas which are not available in these deeper areas. For example, sandeel is less likely to be able to adapt to increasing temperatures as a result of its specific habitat requirements for coarse sandy sediment and declining recruitment in sandeel in parts of the UK has been correlated with increasing temperature (Heath *et al.*, 2012). Climate change may also affect key life history stages of fish and shellfish species, including the timing of spawning migrations (DESNZ, 2016). However, climate change effects on marine fish populations are difficult to predict and the evidence is not easy to interpret and therefore it is difficult to make accurate estimations of the future baseline scenario for the entire lifetime of the Project (35 years).
- 10.4.47 In addition to climate change, overfishing subjects the populations of many fish species to considerable pressure, reducing the biomass of commercially valuable species, and non-target species. Overfishing can reduce the resilience of fish and shellfish populations to other pressures, including climate change and other anthropogenic impacts. For example, a study on cod in an area where trawl fishing has been banned since 1932 indicated that this population was significantly more resilient to environmental change (including climate change) than populations in neighbouring fished areas (Lindegren *et al.*, 2010). Modelling by Beggs *et al.* (2013) indicated that cod may be more sensitive to climate variability during periods of low spawning stock biomass.
- 10.4.48 The variations and trends in commercial fisheries activity are an important aspect of the future baseline, specifically as existing baseline data do not capture any potential changes in commercial fisheries activity resulting from the withdrawal of the UK from the EU.
- 10.4.49 Following withdrawal, the UK and the EU have agreed to a Trade and Cooperation Agreement (TCA), applicable on a provisional basis from 1 January 2021. The TCA sets out fisheries rights and confirms that from 1 May 2021 and during a transition period until 30 June 2026, UK and EU vessels will continue to access respective Exclusive Economic Zones (EEZs, 12nm to 200 nm) to fish. In this period, EU vessels will also be able to fish in specified parts of UK waters between 6nm to 12 nm.
- 10.4.50 As such, it is considered that current trends with regard to the northward shift of specific species (e.g. sandeel) and an increase in the abundance of typically warmer water species (e.g. sardines) will continue in a warming climate. It is not currently clear whether any changes in fishing pressure will occur following the end of the transition period for fishing post-Brexit, however, it is likely that general trends of fishing pressure will continue.
- 10.4.51 The Project fish and shellfish baseline characterisation described in the preceding sections (and presented in detail in Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline) represents a 'snapshot' of the fish and shellfish assemblages of the North Sea, within a gradual and continuously changing environment. Any changes that may occur during the lifetime of the project (i.e., construction, operation and decommissioning) should be considered in the context of the natural variability and other existing anthropogenic effects, including climate change and overfishing.

0152_FS_Fig10.7

Legend
Array Area Offshore Export Cable Corridor ORCP Search Area Secondary Zone of Influence Underwater Noise Impacts 50km Buffer Herring Nursery Grounds (Coull et al., 1998) Herring Nursery Grounds - Coull et al., 1998) Herring Nursery Grounds - High Intensity (Ellis et al., 2010) Herring Nursery Grounds - Low Intensity (Ellis et al., 2010) EUSeaMap 2021 (EMODnet, 2021) A3 1: Atlantic and Mediterrapean high energy
 infralittoral rock A3.2: Atlantic and Mediterranean moderate energy infralittoral rock A4.1: Atlantic and Mediterranean high energy circalittoral rock A4.2: Atlantic and Mediterranean moderate energy circalittoral rock A4.27: Faunal communities on deep moderate energy circalittoral rock A5.13: Infralittoral coarse sediment A5.14: Circalittoral coarse sediment A5.15: Deep circalittoral coarse sediment A5.23 or A5.24: Infralittoral fine sand or Infralittoral muddy sand A5.27: Deep circalittoral sand A5.33: Infralittoral sandy mud A5.34: Infralittoral fine mud A5.35: Circalittoral fine mud A5.36: Circalittoral fine mud A5.37: Deep circalittoral mud A5.37: Deep circalittoral mud A5.36: Circalittoral mixed sediments A5.44: Circalittoral mixed sediments A5.45: Deep circalittoral mixed sediments A5.41: Circalittoral polychaete worm reefs on sediment A5.611: [Sabellaria spinulosa] on stable circalittoral mixed sediment No EUNIS habitat assigned
Coordinate System: WGS 1984 UTM Zone 31N 0 10 20 km LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Preliminary Environmental Information Report
Herring Spawning and Nursery Grounds with EUSeaMap 2021 Relative to the Project Figure 10.10
OUTER DOWSING OFFSHORE WIND

Legend
Array Area
Offshore Export Cable Corridor
Secondary Zone of Influence
Underwater Noise Impacts 50km Buffer
Herring Nursery Grounds (Coull et al., 1998)
Herring Spawning Grounds (Coull et al., 1998
Herring Nursery Grounds - High Intensity
Herring Nursery Grounds - Low Intensity
(Ellis et al., 2010)
Herring Hebitet Switchility (Beech et al. 2042)
Prime Proferred
Sub-Prime Preferred
Suitable. Marginal
Data Source:
ං BGS, 2015
\triangle Outer Dowsing, 2022
Coordinate System: WGS 1984 UTM Zone 31N
0 10 20 km
Seele: 1:600.000
Preliminary Environmental Information Report
Herring Spawning and Nursery Grounds
WITH BGS and Site Specific Data
N OUTER
72 DOWSING
OFFSHORE WIND
Date: 19/04/2023
Produced By: BPHB GOBC Esri, Garmin, GEBCO, NOA NGDC, and othe
contributorsembonet 2020

Legend

Array Area

Offshore Export Cable Corridor

ORCP Search Area Secondary Zone of Influence

Herring Habitat Suitability (Reach et al., 2013)

- A Prime, Preferred
- Sub-Prime, Preferred
- Suitable, Marginal
- \triangle Unsuitable

5950000

590000

20 km 0 10 Scale: 1:350,000

Coordinate System: WGS 1984 UTM Zone 31N

Preliminary Environmental Information Report

Herring Habitat Suitability Site Specific Data

Figure 10.13

Date: 19/04/2023 Produced By: BPHB Revision: 0.1

Contains ESRI Basemapping; Esri, Garmin, GEBCO, NOAA NGDC, and other contributorsEMDOnet 2020

h: G:\GIS\GIS_Projects\0152 Outer Dowsing EIA\GIS\Figures\PEIR\Fish and Shellfish\ODOW_0152_FS_Fig10.17_IHLS_2019_2021_v1.mxd

Legend			
	Array Area Offshore Export Cable Corridor ORCP Search Area		
	Secondary Zone of Influence Underwater Noise Impacts 50km Buffer Sandeel Nursery and Spawning Grounds (Coull		
	Sandeel, High Intensity (Ellis et al., 2010) Sandeel, How Intensity (Ellis et al., 2010) Sandeel I ow Intensity Nursery Grounds (Ellis et		
	al., 2010)		
EUSe	eaMap 2021 (EMODnet, 2021)		
	A3.1: Atlantic and Mediterranean high energy infralittoral rock		
	A3.2: Atlantic and Mediterranean moderate energy infralittoral rock		
	circalittoral rock		
	energy circalittoral rock A4.27: Faunal communities on deep moderate		
	energy circalittoral rock		
	A5.13: Infralittoral coarse sediment		
	A5.15: Deep circalittoral coarse sediment		
	A5.23 or A5.24: Infralittoral fine sand or Infralittoral muddy sand		
	A5.25 or A5.26: Circalittoral fine sand or		
	A5.27: Deep circalittoral sand		
	A5.33: Infralittoral sandy mud		
	A5.34: Infralittoral fine mud		
	A5.35: Circalittoral sandy mud		
	A5.37: Deep circalittoral mud		
	A5.43: Infralittoral mixed sediments		
	A5.44: Circalittoral mixed sediments		
	A5.45: Deep circalittoral mixed sediments		
	A5.6: Sublittoral polychaete worm reefs on		
	sediment		
	A5.611: [Sabellaria spinulosa] on stable		
	circalittoral mixed sediment		
Coord	inate System: WGS 1984 UTM Zone 31N		
0	10 20 km		
Sca	ale: 1:600,000		
Preli	minary Environmental Information Report		
Sandeel Spawning and Nursery Grounds with EUSeaMap 2021 Relative to the Project			
Figu	re 10.18		
OUTER DOWSING OFFSHORE WIND			
Date: Produc Revisi	19/04/2023 ced By: BPHB GOBC Contains ESRI Basemapping; EMDOnet 2020 bathymetry on: 0.1		

10.5 Basis of Assessment

Scope of the Assessment

Impacts Scoped in for Assessment

- 10.5.1 The following impacts have been scoped into this assessment:
 - Construction:
 - Impact 1: Mortality, injury and behavioural changes resulting from underwater noise arising from construction activity;
 - Impact 2: Increase in SSC and sediment deposition;
 - Impact 3: Temporary seabed habitat loss/disturbance;
 - Impact 4: Direct and indirect seabed disturbances leading to the release of sediment contaminants; and
 - Impact 5: Direct damage (e.g., crushing) and disturbance to mobile demersal and pelagic fish species.
 - Operation and maintenance:
 - Impact 6: Underwater noise as a result of operational turbines;
 - Impact 7: Long-term habitat loss due to the presence of turbine foundations, scour protection and cable protection;
 - Impact 8: Increased hard substrate and structural complexity, as a result of the introduction of turbine foundations, scour protection and cable protection;
 - Impact 9: Direct disturbance resulting from O&M activities; and
 - Impact 10: EMF effects arising from cables.
 - Decommissioning:
 - Impact 11: Mortality, injury and behavioural changes resulting from underwater noise arising from decommissioning activity;
 - Impact 12: Increase in SSC and sediment deposition;
 - Impact 13: Temporary seabed habitat loss/disturbance;
 - Impact 14: Direct and indirect seabed disturbances leading to the release of sediment contaminants;
 - Impact 15: Direct damage (e.g., crushing) and disturbance to mobile demersal and pelagic fish species; and
 - Impact 16: Loss of additional habitat arising from the removal of infrastructure that have been used by fish and shellfish communities during the operational phase of the project.

Impacts Scoped out of Assessment

- 10.5.2 In line with the Scoping Opinion (The Inspectorate, 2022) and based on the receiving environment, expected parameters of the Project (Volume 1, Chapter 3: Project Description), and expected scale of impact/potential for a pathway for effect on the environment, the following impacts have been scoped out of the assessment:
 - Accidental pollution; and
 - Impacts on fishing pressure due to displacement.

Realistic Worst-Case Scenario

- 10.5.3 The following section identifies the Maximum Design Scenario (MDS) in environmental terms, defined by the project design envelope.
- 10.5.4 Should the Project be constructed to different parameters within the design scenario, then impacts would not be any greater than those set out in this PEIR using the MDS presented in Table 10.7.

Potential effect	Maximum design scenario assessed	Justification
Construction		
Impact 1: Mortality, injury and behavioural changes resulting from underwater noise arising from construction activity.	 Array Area (spatial MDS for stationary receptors, and temporal MDS for fleeing and stationary receptors): 93 jacket foundations (5 m diameter, 4 piles per foundation) with a maximum of four foundations installed sequentially; Four small Offshore Substation (OSS) jacket foundations (5 m diameter, 24 piles per foundation) One offshore accommodation platform (5 m diameter jacket foundation, 24 piles per foundation); Total of 492 pin piles Maximum hammer energy 3,500 kJ; Eight-hour piling duration; 3,192 hours piling Maximum separation distance between piling events will be the maximum extent of the array area. Array Area (spatial MDS for fleeing receptors): 93 monopile foundations (13 m diameter) with a maximum of two foundations installed sequentially; Four small OSS on monopile foundations (14 m diameter) One offshore accommodation platform (14 m diameter) Maximum hammer energy 6,600 kJ; Eight-hour piling duration; 784 hours piling; 	For the array area, the spatial MDS (for stationary receptors) and temporal MDS results from the sequential piling of up to four jacket foundations for 93 WTGs, four OSS and one accommodation platform using 3,500 kJ hammer energy. Total of 3,240 hours of piling across the whole project within a seven-year construction window. This scenario would result in the largest spatial noise impact at any given time, and the longest duration of piling. The spatial MDS for fleeing receptors results from the piling of monopiles for 93 WTGs and four OSSs, using 6,600 KJ hammer energy. This would result in the largest spatial noise impact at any given time when considering impacts to fleeing receptors.

Table 10.7: Maximum design scenario for fish and shellfish ecology for the Project alone.

Potential effect	Maximum design scenario assessed	Justification
	 Maximum separation distance between piling events will be the maximum extent of the array area. <u>ECC - ORCP Search Area (spatial MDS):</u> Two ORCPs on 14 m diameter monopile foundations; Maximum hammer energy 6,600 kJ; Eight-hour piling duration per pile; 16 hours piling. <u>ECC - ORCP Search Area (temporal MDS):</u> Two ORCPs on piled jacket (small OSS) foundations (six legs per jacket and four 5 m diameter pin piles per leg) – 48 pin piles; Eight-hour piling duration per pile; 384 hours piling <u>UXO Clearance:</u> 	
Impact 2: Increase in SSC and sediment deposition.	 Total subtidal sediment volume = 40,654,120m³ Foundation seabed preparation = 3,715,400m³ 93 GBS WTG foundations = 3,375,900m³ Four small OSS (GBS foundations) = 194,000m³ One Accommodation platform GBS foundations = 48,500m³ Two ORCPs = 97,000m³ Sandwave clearance for cable installation in the array = 15,245,280m³ Sandwave clearance for array cables resulting in the suspension of 10,108,800m³ of sediment 	The MDS for foundation installation results from the largest volume suspended from seabed preparation and presents the worst- case for WTG installation. For cable installation, the MDS results from the greatest volume from sandwave clearance and installation. This also assumes the largest number of cables and the greatest burial depth.

Potential effect	Maximum design scenario assessed	Justification
	 Sandwave clearance for interlink cables resulting in the suspension of 3,564,000m³ of sediment Sandwave clearance for 128.7km of export cables within the array area resulting in the suspension of 1,572,480m³ of sediment 	
	Sandwave clearance for cable installation in the offshore ECC = 5,840,640m ³	
	 Sandwave clearance for 101.4km of export cables within the offshore ECC resulting in the suspension of 5,840,640m³ of sediment. 	
	Cable trenching = 15.832.800 m ³	
	 Installation of 123.75km of inter-array cables, interlink 	
	cables and export cables by mass flow excavation resulting in the suspension of 15,832,800m ³ of sediment	
	Total nearshore sediment volume = 20,000m ³	
	 Four offshore trenchless technique exit pits require 	
	excavation of 20,000m3 which will be side cast onto the	
	adjacent seabed. Backfilling of exit pits will recover a similar amount from the surrounding seabed, as required.	
	Trenchless drilling fluid release	
	 Maximum volume and mass of drilling fluid released per 	
	HDD conduit: 773m ³ fluid (138,000kg bentonite); and	
	 Period of release: 12 hours with estimated release rate of 3,195g/s. 	

Potential effect	Maximum design scenario assessed	Justification
Potential effect Impact 3: Temporary seabed habitat loss/disturbance.	 Maximum design scenario assessed Temporary habitat disturbance of 35,593,700m². <u>Array Area</u> Foundation seabed Preparation = 860,600 m² 93 WTGs (jacket foundations with suction buckets) = 762,600m² Four small OSS (jacket foundations with suction buckets) = 78,400m² One accommodation platform = 19,600m² Jack-up vessels (JUV) and anchoring operations = 1,035,700m² 475 JUV operations with a maximum disturbance of 1,500m² 388 anchoring operations with a maximum disturbance of 200m² are non-operations = 240,400m² 	Justification This scenario represents the maximum total seabed disturbance and therefore the maximum amount of temporary habitat loss.
	 800m² per operation = 310,400m² 16 anchoring operations with a maximum disturbance of 800m2 per operation for Offshore Substation Platform (OSP) installation = 12,800m² Cable seabed preparation and installation in the array area = 119,056,600m² Total area of seabed disturbed by sandwave clearance in array = 9,528,300m² Total area of seabed disturbed by boulder clearance in array = 9,528,300m² Cable burial 	

Potential effect	Maximum design scenario assessed	Justification
	 Total area of seabed disturbed by cable burial in array = 10,511,100m² Impact will occur fully within combined footprint from sandwave and boulder clearance 	
	Offshore ECC	
	 Cable seabed preparation in the offshore ECC = 7,300,800m² Total area of seabed disturbed by sandwave clearance for offshore ECC = 3,650,400m² Total boulder clearance impact area in offshore ECC = 43,650,400m² 	
	 Cable burial in the offshore ECC = 7,300,800m² Burial of export cables = 7,300,800m² The seabed footprint for cable jointing is within the project design envelope for seabed preparation and cable installation. 	
	Offshore Substations = 39,200 m ²	
	 Two Offshore Reactive Compensation Platforms (ORCPs) (jacket foundations with suction buckets) = 39,200 m² 	
Impact 4: Direct and indirect seabed disturbances leading to the release of sediment contaminants.	The MDS for the maximum volumes of seabed sediment disturbance are presented in Impact 2.	This scenario represents the maximum total seabed disturbance and therefore the maximum amount of contaminated sediment that may be released into the water column during construction activities.

Potential effect	Maximum design scenario assessed	Justification
Impact 5: Direct damage (e.g., crushing) and disturbance to mobile demersal and pelagic fish species.	The MDS for direct damage/disturbance is presented in Impact 3.	The subtidal direct damage temporary disturbance relates to seabed preparation for foundations and cables, jack up and anchoring operations, and cable installation. It should be noted that where boulder clearance overlaps with sandwave clearance, the boulder clearance footprint will be within the sandwave clearance footprint. The MDS for direct damage in the intertidal area from the HDD works is included.
Operation and Maintenan	ce	
Impact 6: Underwater noise as a result of operational turbines. Impact 7: Long-term loss of habitat due to the presence of turbine foundations, scour protection and cable protection.	 Underwater noise during the operational phase from 93 WTGs and maintenance vessel operations over the lifetime of the project (i.e., up to 35 years). Habitat loss of 5,631,794m² Turbine total structure footprint including scour protection, based on 93 GBS (WTG-type) foundations = 1,143,900m² Structure footprint of four small OSS (GBS) = 64,968m² One Accommodation platform = 16,242m² Two ORCPs = 32,484m² Total area of seabed covered by cable protection (export cables, interlink and inter-array) required for cable crossings = 416,000m² Total area of seabed covered by cable protection (export cables, interlink and inter-array), assuming 25% of the cable requires protection = 3,958,200m² 	Maximum number of operational WTGs and related O&M visits by vessels during the lifetime of the project. The MDS is defined by the maximum area of seabed lost as a result of the placement of structures, scour protection, cable protection and cable crossings. The MDS also considers that scour protection is required for all foundations. Habitat loss from drilling and drill arisings is of a smaller magnitude than presence of project infrastructure.

Potential effect	Maximum design scenario assessed	Justification
Impact 8: Increased hard	Total surface area of introduced hard substrate in the water column = 7,933,384 m ²	The maximum scenario for introduced hard substrate is as for the maximum scenario for
substrate and structural		loss of habitat.
complexity, as a result of the introduction of	 Total area of introduced hard substrate at seabed level = 7,514,102m² 	
turbine foundations,	 Total surface area of subsea portions of WTG foundations in 	
scour protection and	contact with the water column = $407,282m^2$	
cable protection.	 Total surface area of subsea portions of OSS foundations in 	
	contact with the water column = 12,000m ²	
	Total direct disturbance to seabed from maintenance activities = 6,850,260m ²	Defined by the maximum number of jack-up vessel operations and maintenance activities that could have an interaction with the seabed
	 Total seabed area disturbed by inter-array cable repairs/replacements = 165,000m² 	anticipated during operation.
	 Total seabed area disturbed by inter-array cable remedial burial = 750,000m² 	
Impact 9: Direct	 Total seabed area disturbed by interlink cable repairs = 66,000m² 	
disturbance resulting from O&M activities.	 Total seabed area disturbed by interlink cable remedial burial = 270,000 	
	 Total seabed area disturbed by export cable repairs = 841,500m² 	
	 Total seabed area disturbed by export cable reburial = 1,080,000m² 	
	 Total seabed area disturbed by WTG maintenance activities (component replacements, anode/ladder replacements, etc.) = 3,331,260m² 	

Potential effect	Maximum design scenario assessed	Justification
	 Total seabed area disturbed by OSP and accommodation platform repairs = 346,500m² 	
Impact 10: EMF arising from cables.	 Up to 351km of inter-array cables, operating up to 132kV Up to 123.75km of interlink cables, operating from 66kV – 275kV. Up to 514.8km of export cable, operating at up to 275kV Cable burial depth (Inter-array, interlink and export cable) = 0 – 3m 	The maximum adverse scenario is associated with the use of 93 WTGs as this results in the greatest length of inter-array cables, interlink cables and export cables as this results in the longest total length of cable.
Decommissioning		
Impact 11: Mortality, injury and behavioural changes resulting from underwater noise arising from decommissioning activity.	Maximum levels of underwater noise during decommissioning would be from underwater cutting required to remove structures. This is much less than pile driving and therefore impacts would be less than as assessed during the construction phase/piled foundations would likely be cut approximately 1m below the seabed	This would result in the maximum potential disturbance associated with noise associated with decommissioning activities including foundation decommissioning.
Impact 12: Increase in SSC and sediment deposition.	MDS is identical (or less) to that of the construction phase. Total subtidal sediment volume = 40,654,120m ³	The maximum impacts from remedial cable burial and cable repairs of array, interlink and export cables result from the use of mass flow excavation. This assumes the largest number of cables, repair events, the greatest burial depth and greatest length/area of maintenance. This results in the maximum sediment volume disturbance.
Impact 13: Temporary seabed habitat loss/disturbance	MDS is identical (or less) to that of the construction phase. Temporary habitat disturbance of 35,593,700m ² .	MDS is assumed to be similar to the construction phase, with all infrastructure removed in reverse-construction order. The removal of cables and rock protection is considered the MDS, however the necessity to

Potential effect	Maximum design scenario assessed	Justification
		remove cables and rock protection will be reviewed at the time of decommissioning.
Impact 14: Direct and indirect seabed disturbances leading to the release of sediment contaminants.	MDS is identical (or less) to that of the construction phase. Total subtidal sediment volume = 40,654,120m ³	MDS is assumed to be as per the construction phase, with all infrastructure removed in reverse-construction order. The removal of cables is considered the MDS, however the necessity to remove cables will be reviewed at the time of decommissioning.
Impact 15: Direct damage (e.g., crushing) and disturbance to mobile demersal and pelagic fish and shellfish.	MDS is identical (or less) to that of the construction phase. Temporary habitat disturbance of 35,593,700m ² .	MDS is assumed to be similar to the construction phase, with all infrastructure removed in reverse-construction order. The removal of cables and rock protection is considered the MDS, however the necessity to remove cables and rock protection will be reviewed at the time of decommissioning.
Impact 16: Loss of additional habitat arising from the removal of infrastructure that have been used by fish and shellfish communities during the operational phase of the project.	MDS is identical (or less) to that of the operation phase. Total area of habitat loss = 5,631,794m ²	MDS is assumed to be similar to the construction phase, with all infrastructure removed in reverse-construction order.

Embedded Mitigation

10.5.5 Mitigation measures that were identified and adopted as part of the evolution of the project design (embedded into the project design) and that are relevant to fish and shellfish ecology are listed in Table 10.8. General mitigation measures, which would apply to all parts of the project, are set out first. Thereafter mitigation measures that would apply specifically to fish and shellfish ecology issues associated with the array, export cable corridor and landfall, are described separately.

Project phase	Mitigation measures embedded into the project design
General	
Definition of Development Boundaries	The development boundary selection was made following a series of constraints analyses, with the array area and offshore ECC route selected to ensure the impacts on sensitive environmental receptors are minimised.
Construction	
Cable Burial Risk Assessment (CBRA)	A cable burial risk assessment will be undertaken to inform front end engineering works. Cable burial will be the preferred option for cable protection, and this will minimise any impacts associated with habitat loss.
Project Design	Implementation of a piling Marine Mammal Mitigation Protocol (MMMP) (to minimize the risk of auditory injury to negligible levels).
Pollution Prevention	A Project Environmental Management Plan (PEMP) (for the construction and operation phases) and Decommissioning Plan (for the decommissioning phase) will be produced and followed. This will include a Marine Pollution Contingency Plan (MPCP) which will safeguard the marine environment in the event of accidental pollution occurring as a result of Project operations. Plans will also highlight key organisations and contact details in the event of a spill (e.g. Environment Agency, Marine Management Organisation, Natural England and the Maritime and Coastguard Agency (MCA)).
Marine INNS control	Relevant best practice guidelines will be followed and implemented through the implementation of a Biosecurity Plan to minimise marine INNS introduction/spread. Any vessels used for the delivery of materials to site will adhere to industry legislation, codes of conduct and/or best practice to reduce the risk of introduction or spread of invasive non-native species.
Operation and Maintenance	
Project Design	Development of a Scour Protection Management Plan (SPMP) and Cable Specification and Installation Plan (CSIP) which will consider the need for scour protection.
EMF	Where possible, cables will be buried to reduce the impacts of EMF on sensitive receptors and minimise the requirement for additional cable protection.
Docommissioning	

Project phase	Mitigation measures embedded into the project design
Decommissioning	Development of, and adherence to, a Decommissioning Programme
Programme	(DP).
Pollution prevention	Development of, and adherence to, an appropriate PEMP, which will
	include a MPCP.

10.6 Assessment Methodology

- 10.6.1 The criteria for determining the significance of effects is a two-stage process that involves defining the sensitivity of the receptors and the magnitude of the impacts. This section describes the criteria applied in this chapter to assign values to the sensitivity of receptors and the magnitude of potential impacts (see Volume 1, Chapter 5: EIA Methodology).
- 10.6.2 Information about the project and the project activities for all stages of the project life cycle (construction, O&M and decommissioning) have been combined with information about the environmental baseline to identify the potential interactions between the project and the environment. These potential interactions are known as potential impacts, the potential impacts are then assessed to give a level of significance of effect upon the receiving environment/receptors.
- 10.6.3 The outcome of the assessment is to determine the significance of these effects against predetermined criteria.
- 10.6.4 The magnitude of potential impacts is defined by a series of factors including the spatial extent of any interaction, the likelihood, duration, frequency and reversibility of a potential impact. The magnitude of impact is defined in Table 10.9.

Magnitude	Description/reason
High	Fundamental, permanent/irreversible changes, over the whole receptor, and/or fundamental alteration to key characteristics or features of the particular receptors character or distinctiveness.
Medium	Considerable, permanent/irreversible changes, over the majority of the receptor, and/or discernible alteration to key characteristics or features of the particular receptors character or distinctiveness.
Low	Discernible, temporary change, over a minority of the receptor, and/or limited but discernible alteration to key characteristics or features of the particular receptors character or distinctiveness.
Negligible	Discernible, temporary (for part of the Proposed Development duration) change, or barely discernible change for any length of time, over a small area of the receptor, and/or slight alteration to key characteristics or features of the particular receptors character or distinctiveness.

Table 10.9: Impact magnitude definitions

10.6.5 The sensitivities of fish and shellfish receptors are defined by both their potential vulnerability to an impact from the development, their recoverability, and the value or importance of the receptor. The following parameters are also taken into account:

- Timing of the impact: whether impacts overlap with critical life stages or seasons (i.e., spawning, migration); and
- Probability of the receptor-impact interaction occurring.
- 10.6.6 The determination of a receptor's vulnerability to an impact is based on the ability of a receptor to accommodate a temporary or permanent change. The assessment of the receptor's vulnerability also considers the mobility of the receptor. Receptors that can flee from an impact are considered less sensitive than those that are stationary and unable to flee. When applying this consideration to a fish and shellfish assessment, static receptors typically include shellfish of limited mobility, fish that will potentially be engaging in spawning behaviours, substrate dependant receptors, and eggs and larvae. On this basis, 'static' receptors are considered to be of increased vulnerability to an impact. In determining the overall sensitivity of a receptor to an impact, the vulnerability of a receptor to the impact is typically given the greatest weighting.
- 10.6.7 The recoverability of the receptor is defined as the extent to which a receptor will recover following an impact. The rate of recovery is also taken into consideration in this criterion. Regarding fish and shellfish receptors, the recoverability of a receptor typically relates to the ability of a receptor to return/recolonise an area after an impact, or for normal behaviours to resume.
- 10.6.8 The value and importance of a receptor is a measure of the importance of a receptor in terms of its relative ecological, social or economic value or status. Regarding fish and shellfish receptors, the value and importance of the receptors is primarily informed by the conservation status of the receptor, the receptor's role in the ecosystem, and the receptor's geographic frame of reference. Note that for stocks of species which support significant fisheries, commercial value is also taken into consideration.
- 10.6.9 The value and importance of the receptor is defined by the following criteria:
 - High value and importance: Internationally or nationally important (i.e., Annex II species listed as features of SACs);
 - Medium value and importance: Regionally important or internationally rare (i.e., MCZ/recommended MCZ (rMCZ) features (species classified as features of conservation importance), or Species that are of commercial value to the fisheries which operate within the Irish Sea);
 - Low value and importance: Locally important or nationally rare (i.e., species of commercial importance but do not form a key component of the fish assemblages within the fish and shellfish study area); and
 - Negligible value and importance: Not considered to be particularly important or rare.
- 10.6.10 Regarding the weighting of the sensitivity criteria (vulnerability, recoverability and value and importance), greater weighting is typically assigned to the vulnerability of a receptor. Expert judgement is used as appropriate, in line with the CIEEM 2018 Guidance (CIEEM, 2018), when applying the sensitivity criteria to the sensitivity assessment of receptors. For example, if receptors are considered of high value/importance, or have rapid recovery rates, these criteria may be given greater weighting in the assessment.
- 10.6.11 The sensitivity/importance of the receptor is defined in Table 10.10.

Table 10.10: Sensitivity/importance of the environment

Receptor sensitivity/importance	Definition
High	Nationally important receptors with high vulnerability and no
	ability for recovery.
Medium	Regionally important receptors with high vulnerability and no
	ability for recovery. Nationally important receptors with
	medium to high vulnerability and low to medium
	recoverability.
Low	Locally important receptors with medium to high vulnerability
	and low recoverability. Regionally important receptors with
	low vulnerability and medium recoverability. Nationally
	important receptors with low vulnerability and medium to
	high recoverability.
Negligible	Receptor is not vulnerable to impacts regardless of
	value/importance. Locally important receptors with low
	vulnerability and medium to high recoverability.

- 10.6.12 Assessment of the significance of potential effects is described in Table 10.11. The combination of the magnitude of the impact with the sensitivity of the receptor determines the assessment of significance of effect.
- 10.6.13 For the purposes of this assessment, any effect that is of major or moderate significance is considered to be significant in EIA terms, whether this be adverse or beneficial. Any effect that has a significance of minor or negligible is not significant.

Table 10.11: Matrix to determine effect significance

		Magnitude of impact			
		Negligible Low Medium High			
	Negligible	Negligible (Not significant)	Negligible (Not significant)	Minor (Not significant)	Minor (Not significant)
of receptor	мот	Negligible (Not significant)	Minor (Not significant)	Minor (Not significant)	Moderate (Significant)
Sensitivity of Minor (Not significant)		Minor (Not significant)	Moderate (Significant)	Major (Significant)	
	High	Minor (Not significant)	Moderate (Significant)	Major (Significant)	Major (Significant)

Assumptions and Limitations

Fish and shellfish ecology

10.6.14 Mobile species, such as fish, exhibit varying spatial and temporal patterns. All surveys from across the Project study area were undertaken to provide a semi-seasonal description of the fish and shellfish assemblages within the fish and shellfish study area. It should be noted, however, that the data collected during these surveys represent snapshots of the fish and shellfish assemblage within the study area at the time of sampling and the fish and shellfish assemblages may vary considerably both seasonally and annually. However, should species be absent from such surveys the outcome is not then to exclude consideration of these species from the baseline characterisation. Rather, the baseline description draws upon (or defaults to) the wider literature, as this provides a more thorough, robust, and longer time series evidence base, which therefore ensures a more comprehensive and precautionary baseline, identifying all species that are likely to be present within the study area.

10.6.15 It should also be noted that the methods of surveying for fish and shellfish species vary in their efficiency at capturing different species. For example, the semi-pelagic otter would not collect information on pelagic fish species (such as herring and sprat *Sprattus sprattus*) as efficiently as a pelagic trawl, and the 2m scientific beam trawl would not be as efficient at collecting sandeel and shellfish species as other methods used commercially in the study area (e.g., sandeel or shrimp trawls and shellfish potting). This limits the data utility in capturing relative abundances of species within the area. To minimise this limitation caused by trawl methodology of the survey, sensitive receptors have been chosen based on their presence or absence in surveys, rather than whether that species contributes more significantly to the fish assemblage in the survey data.

Spawning and nursery grounds

- 10.6.16 The description of spawning and nursery grounds provided in this report is primarily based on the information presented in Coull *et al.*, (1998) and Ellis *et al.*, (2010, 2012), data sources widely accepted across the offshore wind industry. The limitations of these sources of information should, however, be recognised. These publications provide an indication of the general location of spawning and nursery grounds. They do not define precise boundaries of spawning and nursery grounds. Similarly, the spawning times given in these publications represent the maximum duration of spawning on a species/stock basis. In some cases, the duration of spawning may be much more contracted, on a site-specific basis, than reported in Coull *et al.*, (1998) and Ellis *et al.*, (2010, 2012). Therefore, where available, additional research publications have also been reviewed to provide site-specific information.
- 10.6.17 It is important to note, that although the data used in the characterisation of the fish and shellfish baseline conditions span a long time period, with some sources published over a decade ago, the information presented represents a long-term dataset. Accordingly, this allows for a detailed overview of the characteristic fish and shellfish species in the study area. The diversity and abundance of many species, particularly demersal fish species, is linked to habitat types, which have remained relatively constant in the study area, indicating no major shift in the fish and shellfish communities over the time period of the data used in this report.
- 10.6.18 The EUSeaMap (2021) broadscale marine habitat data used as one of the data sets to identify preferred sandeel and herring spawning habitats is limited by the broadscale nature of the data, since it does not account for small scale, localised differences in seabed sediments, unlike the data obtained from site-specific grab sampling. In this case it is important to review all of the datasets presented, to develop a clear overview of preferred sandeel and herring habitat. Site-specific benthic surveys of the area can be used to confirm and validate broadscale marine habitat data.

10.6.19 It should also be noted that the use of PSA data and broadscale habitat mapping only provides a proxy for the presence of sandeel and herring spawning habitat in these locations (based on suitability of habitats, i.e., the potential for spawning rather than actual contemporary spawning activity); therefore, this has been reviewed alongside other datasets presented in this chapter in determining the location and relative importance of spawning habitats. A key dataset utilised to inform the location of actively spawning herring is the IHLS data, which is collected under the auspices of the International Council for the Exploration of the Sea (ICES). The surveys are designed to provide a quantitative estimate of herring larval abundance to be used as a relative index of the changes in herring spawning stock biomass (Boyle and New, 2018). The use of this data as proxy is necessary in the absence of time-series data of direct spawning behaviour observations, or the presence of eggs on the seafloor. Additionally, these data represent a single snapshot in time for each year, with annual surveys aligned year to year, as informed by expert judgement, rather than being triggered by environmental factors (such as sea temperature) which may affect the seasonality of spawning. Previous analyses (Boyle and New, 2018) have demonstrated the suitability of the IHLS data to be used to aid in informing the location and extent of active herring spawning grounds as an update to the historical spawning grounds as defined by Coull et al. (1998). This method has been broadly accepted for use in EIAs (including Hornsea Four) and is therefore considered the most suitable dataset through which to define areas of active spawning for herring.

eDNA

10.6.20 eDNA data have also been collected alongside the geophysical surveys to provide a snapshot of fish and shellfish species presence (from approximately the preceding 24-hours) at each sample location. As eDNA is a relatively new way of supplementing baseline characterisation in offshore wind projects, there is not a wealth of literature or protocols available to understand the implications of these data. Although eDNA shows great promise in identifying receptors and aiding EIA monitoring, there are potentially some challenges when applying such data within the context of a more generic EIA framework within marine environments. As a result of these challenges, the use of eDNA is recommended as a proxy for the presence of a receptor and not a direct measure of presence (Hinz et al., 2022). For example, one of the challenges is defining a sampling unit and sampling strategy with respect to the survey area which can create further challenges in drawing comparisons between different areas, across spatial and temporal scales (Hinz et al., 2022). In addition, statistical modelling presents itself as a challenge when using eDNA in marine EIA assessments due to the possibility of collecting both false positives and negatives in samples. As such, it is considered vital that the uncertainty in presence/absence estimates is provided during data processing (Hinz et al., 2022). The transport of eDNA fragments in marine environments is also generally unknown and influencing factors such as shedding dynamics, biogeochemical and physical processes need to be well understood in order to link a fragment of eDNA with a potential receptor's presence (Hinz et al., 2022).

10.7 Impact Assessment

Construction

10.7.1 This section presents the assessment of impacts arising from the construction phase of the Project.

Impact 1: Mortality, injury and behavioural changes resulting from underwater noise arising from construction activity

- 10.7.2 The assessment below focuses on underwater noise from pile-driving (pin piles and monopiles) for the installation of foundations for offshore structures within the array area and the ORCP search area (i.e., WTGs, OSS and ORCPs), cable installation, vessel disturbance and UXO clearance.
- 10.7.3 To inform the assessment of potential impacts associated with underwater noise as a result of the installation of foundations, predictive underwater noise modelling has been undertaken for the relevant piling MDS, full details of which are presented in Volume 2, Appendix 3.2: Underwater Noise Assessment. To inform the assessment of the potential impacts associated with underwater noise as a result of UXO clearance, a high-level consideration has been provided of the potential effects arising from UXO clearance below. It should be noted that whilst UXO clearance will be consented under a separate Marine Licence and will therefore not be consented as part of the Project consenting process, it is considered to be reasonably foreseeable as an activity and therefore has been included in this assessment.
- 10.7.4 General construction noise, arising from vessel movements, dredging and seabed preparation works will generate low levels of continuous sounds (i.e., from the vessels themselves and/or the sounds from dredging tools) throughout the construction phase. The PEIR Boundary is subject to relatively high levels of shipping activity currently, and it is expected that the vessel activity would be no greater than the baseline during construction activities (due to construction exclusion zones reducing current shipping activity and the number of construction vessels expected to be much lower than that which currently transit the area). The underwater noise impacts from vessel noise are generally spatially limited to the immediate area around the vessel rather than having impacts over a wide area (e.g., Mitson, 1993).
- 10.7.5 The spatial and temporal MDS for underwater noise impacts from foundation installation (piling of monopiles or pin piles in the array area or ORCP search area) are defined according to a maximum scenario, i.e., the maximum design parameters that may be utilised during the construction of the proposed development. In this context it is important to note that the maximum hammer energies assumed in the MDS are likely to be highly precautionary and that in fact for many piling events, a lesser hammer energy will be required to complete the pile installation (they represent the upper limit of the equipment, rather than the likely energy that will be required to install any given foundation²).
- 10.7.6 The spatial MDS equates to the greatest area of effect from subsea noise during piling. The following scenarios represent the spatial MDS:
 - Array area
 - Stationary receptors The sequential installation of four pin piles for jacket WTG foundations in the array area within a 24-hour period.

² This level of detail will be informed by detailed ground investigations, foundation types and locations, and installation methodology, all of which is established post consent and detailed within the pre-construction plans that will be submitted for approval prior to commencement of works.

- Fleeing receptors The sequential installation of two monopile WTGs in the array area within a 24-hour period.
- ORCP search area
 - Stationary receptors The sequential installation of four pin piles for jacket foundations within the ORCP search area in a 24-hour period.
 - Fleeing receptors The piling of a single monopile foundation within the ORCP search area in a 24-hour period.
- 10.7.7 The temporal MDS represents the longest duration of effects from subsea noise. The following scenarios represent the temporal MDS:
 - Array area
 - Stationary and fleeing receptors The sequential installation of four pin piles for jacket WTG foundations in the array area within a 24-hour period.
 - ORCP search area
 - Stationary and fleeing receptors The piling of a single pin pile for jacket foundations within the ORCP search area in a 24-hour period; or
 - Stationary and fleeing receptors The sequential installation of four pin piles for jacket foundations within the ORCP search area in a 24-hour period.
- 10.7.8 In addition, a simultaneous piling MDS has also been modelled. The simultaneous piling MDS equates to the greatest in combination area of effect from subsea noise from the piling of monopile or jacket foundations at two different locations (SW and NE) within the array area. Note simultaneous piling within the ORCP search area is not being considered as part of the Project design.
- 10.7.9 Table 10.12 below provides the MDS for each piling scenario for foundations within the array area.

Table 10.12: MDS Piling Scenarios within the Array Area

	Sequential piling scenarios		Simultaneous piling scenarios	
	Monopiles	Jacket Foundations	Monopiles	Jacket Foundations
Installation	Sequential of 2 monopile	Sequential piling of up to 4	Simultaneous piling of 2	Simultaneous piling of 2
approach	foundations in a 24-hour	pin piles for jacket	monopile foundations at	jacket foundations at SW
	period	foundations in a 24-hour	SW and NE piling locations	and NE piling locations in
		period	in the array area.	the array area.
Hammer energy	6,600kJ	3,500kJ	6,600kJ	3,500kJ
Maximum	Total = 98 monopiles	Total = 492 pin piles	Total = 98 monopiles Total = 492 pin piles	
number of piles				
	WTGs – 93 monopiles	WTGs – 372 pin piles	WTGs – 93 monopiles	WTGs – 372 pin piles
	OSS – four monopiles	OSS – 96 pin piles	OSS – four monopiles OSS – 96 pin piles	
	Accommodation platform	Accommodation platform =	Accommodation platform –	Accommodation platform =
	– one monopile	24 pin piles	one monopile 24 pin piles	
Maximum piling	784 hours (8 hours per	3,192 hours (8 hours per pin	392 hours (8 hours per pile,	1,596 hours (8 hours per pin
duration	monopile)	pile)	2 piles installed	pile, 2 piles installed
			simultaneously).	simultaneously).

Table 10.13: MDS Piling Scenarios within the ORCP search area

	Single Installation of Monopile	Single Installation of Jacket	Sequential Installation of Jacket
	Foundations	Foundations	Foundations
Installation	Single piling of monopile foundations	Single piling of jacket foundations at	Sequential piling of 4 jacket
approach	at the at NE and SW piling locations in	the at NE and SW piling locations in the	foundations at NE and SW piling
	the ORCP search area.	ORCP search area.	locations the ORCP search area within
			a 24-hour period.
Hammer energy	6,600kJ	3,500kJ	3,500kJ
Maximum number	2	48 (24 pin piles per ORCP)	48 (24 pin piles per ORCP)
of piles			
Maximum piling	16 (8 hours per pile)	288 hours (6 hours per pile).	288 hours (6 hours per pile).
duration			

- 10.7.10 With regards to the seabed clearance works associated with UXO, as part of the site preparation activities for the Project, UXO clearance may be required. Presence of UXO within the PEIR Boundary can be managed in a number of ways: avoidance (through micrositing), non-destructive clearance through moving or removal of the UXO, or destructive clearance (i.e., in-situ detonation).
- 10.7.11 If required, destructive UXO clearance through detonation of the UXO can introduce a further underwater noise effect-receptor pathway that may result in an effect on noise sensitive receptors. Any UXO clearance would be completed within the Project array and offshore ECC, as part of the pre-construction site preparatory works. Until detailed pre-construction surveys are undertaken across the array and offshore ECC, the exact number of potential UXO which will need to be cleared is unknown.
- 10.7.12 Detonation of UXO would represent a short-term (i.e., seconds) increase in underwater noise (i.e. sound pressure levels (SPL) and particle motion) and while noise levels will be elevated such that this may result in injury or behavioural effects on fish and shellfish species, UXO detonations are considered to have a lower likelihood of triggering a population level effect than that associated from piling operations, due to the significantly reduced temporal footprint that would arise from UXO operations.

Receptor sensitivity and injury criteria for assessment

- 10.7.13 The following sections consider the potential sensitive receptors to underwater noise, and provide information regarding the agreed metrics and thresholds for assessment, followed by the assessment of the following effect-receptor pathways:
 - Underwater noise associated with foundation installation within the array area;
 - Sequential installation of monopile foundations;
 - Sequential installation of jacket foundations;
 - Simultaneous piling scenario for monopile foundations; and
 - Simultaneous piling scenario for jacket foundations.
 - Underwater noise associated with ORCP foundation installation;
 - Single installation of monopile foundations;
 - Single installation of jacket foundations;
 - Sequential installation of jacket foundations.
 - Underwater noise associated with UXO clearance.

- 10.7.14 Underwater noise can potentially have a negative impact on fish and shellfish species ranging from behavioural effects to physical injury/mortality. In general, biological damage as a result of sound energy is either related to a large pressure change (barotrauma) or to the total quantity of sound energy received by a receptor. Barotrauma injury can result from exposure to a high intensity sound even if the sound is of short duration (i.e., UXO clearance or a single strike of a piling hammer). However, when considering injury due to the energy of an exposure, the time of the exposure becomes important. Fish and shellfish are also considered to be sensitive to the particle motion element of underwater noise; an impact considered more important than sound pressure for many species, particularly invertebrates. However, research into this impact on fish populations is scarce, representing a source of uncertainty in the assessment process. Despite the lack of thresholds for particle motion, the criteria detailed within Popper *et al.* (2014) remain the best available evidence to inform the assessment of underwater noise impacts to fish and shellfish (Popper and Hawkins, 2021).
- 10.7.15 For the purposes of the assessment, Volume 2, Appendix 3.2: Underwater Noise Assessment presents the results of modelling for a range of noise levels, representing the MDS for the installation of both monopiles and pin piles. The modelling results for cumulative sound exposure level (SEL_{cum}) provide outputs for both fleeing receptors (with the receptors fleeing from the source at a consistent rate of 1.5ms⁻¹), and stationary receptors to account for spawning activity for more static demersal spawners such as sandeel and herring, and for non-mobile receptors such as eggs and larvae.

Injury criteria

- 10.7.16 The fish VERs within the Project study area have been grouped into the Popper *et al.* (2014) categories based on their hearing system, as outlined in Table 10.14 below. It is important to note that there are differences in impact thresholds for the different hearing groups (see Table 10.15).
- 10.7.17 In the case of shellfish, there are no specific impact criteria; therefore, an assessment has been based on a review of peer-reviewed literature on the current understanding of the potential effects of underwater noise on shellfish species, with a focus on the potential implications of particle motion associated with underwater noise.

Category		VERs relevant to the Project
Group 1 (least	Sole, lemon sole, plaice, sandeel, mackerel, elasmobranchs (thornback ray,
sensitive)		blonde ray, spurdog, tope shark, small-spotted catshark, starry smooth-
		hound), river lamprey and sea lamprey
Group 2		Atlantic salmon, brown trout
Group 3 (r	nost	Herring, sprat, cod, whiting, blue whiting, twaite shad, allis shad, ling*,
sensitive)		European eel* and European hake.

Table 10.14: Hearing categories of fish receptors (Popper *et al.,* 2014).

(*denotes uncertainty or lack of current knowledge with regards to the potential role of the swim bladder in hearing).

Impact threshold noise level (dB re. 1µPa sound pressure level (SPL)/dB re. 1 µPa ² s sound exposure level (SEL))						
	Mortality and potential injury	Recoverable injury	TTS			
Group 1	219dB SEL _{cum} 213dB SPL _{peak}	216dB SEL _{cum} 213dB SPL _{peak}	>>186dB SEL _{cum}			
Group 2	210dB SEL _{cum} 207dB SPL _{peak}	203dB SEL _{cum} 207dB SPL _{peak}	>186dB SEL _{cum}			
Group 3	207dB SEL _{cum} 207dB SPL _{peak}	203dB SEL _{cum} 207dB SPL _{peak}	186dB SEL _{cum}			
Eggs and Larvae	210dB SEL _{cum} 207dB SPL _{peak}	N/A	N/A			

Table 10.15: Impact threshold criteria from Popper et al. (2014).

10.7.18 The noise modelling for injury ranges for fleeing and stationary fish is presented in the Underwater Noise Assessment (Volume 2, Appendix 3.2), and referred to as appropriate in the following assessments. Table 10.16, Table 10.17 and Table 10.18 below summarise the results for each of the relevant criteria against each of the MDS under consideration.

Table 10.16: Noise modelling results for injury ranges for fleeing and stationary receptors from the sequential piling of foundations scenarios within the array area.

Criteria	Noise Level (dB re 1µPa Sound Exposure Level (SEL)/dB re 1µPa ² Sound Exposure Level (SEL))	Monopile Foundation Impact Ranges		t Ranges	Jacket Foundation Impact Ranges			
		NW	NE	SW	NW	NE	SW	
Mortality and Potenti	ially Mortal Injury							
SPL _{peak}	213	100m	110m	80m	90m	100m	70m	
SPL _{peak}	207	250m	280m	190m	210m	240m	160m	
SEL _{cum} (static)	219	800m	950m	580m	980m	1.2km	680m	
SEL _{cum} (fleeing)	219	<100m	<100m	<100m	<100m	<100m	<100m	
SEL _{cum} (static)	210	2.5km	3km	1.9km	3.0km	3.7km	2.2km	
SEL _{cum} (fleeing)	210	<100m	<100m	<100m	<100m	<100m	<100m	
SEL _{cum} (static)	207	3.5km	4.5km	2.7km	4.0km	5.4km	3.0km	
SEL _{cum} (fleeing)	207	<100m	<100m	<100m	<100m	<100m	<100m	
Recoverable Injury	Recoverable Injury							
SPL _{peak}	213	100m	110m	80m	90m	100m	70m	
SPL _{peak}	207	250m	280m	190m	210m	240m	160m	
SEL _{cum} (static)	216	1.2km	1.4km	850m	1.5km	1.7km	1.0km	
SEL _{cum} (fleeing)	216	<100m	<100m	<100m	<100m	<100m	<100m	
SEL _{cum} (static)	203	5.2km	6.9km	4.0km	5.9km	7.8km	4.5km	
SEL _{cum} (fleeing)	203	<100m	<100m	<100m	<100m	<100m	<100m	
TTS	TTS							
SEL _{cum} (static)	186	18km	21km	14km	19km	23km	15km	
SEL _{cum} (fleeing)	186	6.8km	10km	4.8km	5.4km	8.4km	3.4km	

Table 10.17: Noise modelling results for in-combination impact areas for fleeing and stationary receptors from the simultaneous piling of foundations within the array area.

Criteria	Noise Level (dB re 1µPA Sound Exposure Level (SEL)/dB re 1µPA ² Sound Exposure Level (SEL))	Monopile Foundation Impact In- combination Area (from piling at the NE and SW piling locations)	Jacket Foundation Impact In- combination Area (from piling at the NE and SW piling locations)
Mortality and Potentially Mortal Injury			
SEL _{cum} (static)	219	3.6km ²	5.3km ²
SEL _{cum} (fleeing)	219	-	-
SEL _{cum} (static)	210	35km ²	49km ²
SEL _{cum} (fleeing)	210	-	-
SEL _{cum} (static)	207	70km ²	96km ²
SEL _{cum} (fleeing)	207	-	-
Recoverable Injury			
SEL _{cum} (static)	216	8.0km ²	12km ²
SEL _{cum} (fleeing)	216	-	-
SEL _{cum} (static)	203	160km ²	200km ²
SEL _{cum} (fleeing)	203	-	-
TTS			
SEL _{cum} (static)	186	1500km ²	1700km ²
SEL _{cum} (fleeing)	186	810km ²	670km ²

Table 10.18: Noise modelling results for injury ranges for fleeing and stationary receptors from the single and sequential piling of ORCP foundations.

Criteria	Noise Level (dB re 1µPA	Monopile Foundations		Jacket Foundations				
	Sound Exposure Level	Single piling at the NE and SW locations		Single piling at the NE and SW locations		Sequential piling of four piles at the NE and SW locations		
	(SEL)/dB re 1µPA ²	NE	SW	NE	SW	NE	SW	
	Sound							
	Exposure							
Mortality a	ad Potentially	Mortal Injury						
			220.00	250.00	200	720.00	550	
SEL _{cum} (static)	219	430m	330m	350m	280m	730m	550m	
SEL _{cum} (fleeing)	219	<100m	<100m	<100m	<100m	<100m	<100m	
SEL _{cum} (static)	210	1.3km	950m	1.1km	780m	2.2km	1.5km	
SEL _{cum} (fleeing)	210	<100m	<100m	<100m	<100m	<100m	<100m	
SEL _{cum} (static)	207	1.9km	1.3km	1.5km	1.1km	3.1km	2.1km	
SEL _{cum} (fleeing)	207	<100m	<100m	<100m	<100m	<100m	<100m	
Recoverable Injury								
SEL _{cum} (static)	216	630m	480m	500m	380m	1.1km	780m	
SEL _{cum} (fleeing)	216	<100m	<100m	<100m	<100m	<100m	<100m	

Criteria	ria Noise Level Monopile Foundations (dB re 1μPA Sound Exposure Level locations		tions	Jacket Foundations			
			NE and SW	Single piling at the NE and SW locations		Sequential piling of four piles at the NE and SW locations	
	(SEL)/dB re 1µPA² Sound	NE	SW	NE	SW	NE	SW
	Exposure Level (SEL))						
SEL _{cum} (static)	203	2.9km	2.0km	2.5km	1.7km	4.4km	3.0km
SEL _{cum} (fleeing)	203	<100m	<100m	<100m	<100m	<100m	<100m
TTS							
SEL _{cum} (static)	186	15km	7.6km	13km	6.9km	19km	9.5km
SEL _{cum} (fleeing)	186	5.8km	1.9km	4.0km	1.1km	4.0km	1.1km

Mortality and potential mortal injury of Group 1 VERs

- 10.7.19 The following paragraphs provide the assessment of potential impacts on each VER within their associated hearing group for the spatial MDS's and temporal MDS for underwater noise associated with foundation installation. Initial consideration is given to the sensitivity of each VER within the hearing group to underwater noise, before characterising the scale and magnitude of effect before providing the overall conclusion.
- 10.7.20 The potential for mortality or mortal injury is likely to only occur in extreme proximity to the pile, although the risk of this occurring will be reduced by use of soft start techniques at the start of the piling sequence. This means that fish in close proximity to piling operations will move outside of the impact range, before noise levels reach a level likely to cause irreversible injury.

Sensitivity

- 10.7.21 Group 1 VERs (mortality onset at >213dB SPL_{peak} or >219dB SEL_{cum}) lack a swim bladder and are therefore considered less sensitive to underwater noise (than other species). Sandeel lack a swim bladder and are therefore considered less sensitive to underwater noise. Sandeel spawning grounds are located within the Project study area and suitable spawning habitats are widely distributed across the North Sea; therefore, noise impacts are anticipated to be small in the context of the wider environment.
- 10.7.22 Sandeel are considered stationary receptors, due to their burrowing nature, substrate dependence, and demersal spawning behaviours, and therefore may have limited capacity to flee the area compared to other Group 1 receptors. Sandeel are thought to be affected by vibration through the seabed, particularly when buried in the seabed during hibernation. Sandeel are however, anticipated to recover from noise impacts shortly after noise disturbance, with normal behaviours resuming (Hassel *et al.*, 2004). Taking this into account, sandeel are deemed to be of low vulnerability, medium recoverability and are of regional importance (Section 41 priority species). The sensitivity of the receptor to underwater noise impacts is therefore considered to be low.
- 10.7.23 Lemon sole, mackerel, plaice and sole all have spawning grounds within the Project study area and across the southern North Sea (Coull *et al.*, 1998, Figure 10.2, Figure 10.3). These VERs are pelagic spawners and are therefore not limited to specific sedimentary areas for spawning, and consequently are considered likely to move away from injurious effects. Based on their mobile nature, these VERs are expected to recover quickly, return to normal behaviours, recolonizing areas shortly after disturbance. Therefore, the sensitivity of these VERs to noise impacts is considered to be low.
- 10.7.24 All other Group 1 receptors are of mobile nature and unconstrained and are therefore able to flee from noise disturbance. Based on their low vulnerability to noise impacts, and their mobile nature, these receptors are expected to recover quickly, returning to normal behaviours, and recolonising areas shortly after disturbance. Taking this into account, the receptors are deemed to be of low vulnerability, high recoverability and are of regional to national importance. The sensitivity of these receptors to underwater noise impacts is therefore considered to be low.

Magnitude of impact

- 10.7.25 Regarding the spatial MDS for stationary receptors from piling in the array area, the maximum predicted range of impact for mortality and potential mortal injury of stationary Group 1 receptors (e.g., sandeel) occurs from the sequential installation of jacket foundations (four pin piles installed in a 24-hour period) (hammer energy 3,500kJ). An impact range of up to 1.2km is predicted from this piling within the array area (Figure 10.25Figure 10.25).
- 10.7.26 Regarding the spatial MDS for fleeing receptors, from piling in the array area the maximum predicted range of impact for mortality and potential mortal injury of fleeing Group 1 receptors occurs from the sequential piling of 2 monopile foundations in a 24-hour period (hammer energy 6,600kJ). The maximum predicted range of impacts on fleeing Group 1 receptors are expected to occur within the immediate vicinity of the piling activity (<100m).
- 10.7.27 The potential for mortality and potential mortal injury of stationary Group 1 receptors (e.g., sandeel) from the simultaneous installation of 2 monopile foundations at the NE and SW piling locations in the array area equates to a maximum area of up to 3.6km² (Figure 10.30). The potential for mortality and potential mortal injury of stationary Group 1 receptors from the simultaneous installation of jacket foundations at both the NE and SW piling locations in the array area equates to a maximum area of up to 5.3km² (Figure 10.29). There is no incombination effect from the simultaneous piling of monopiles or jacket foundations on fleeing Group 1 receptors.
- 10.7.28 Regarding the spatial MDS for stationary receptors from piling within the ORCP search area, the maximum predicted range of impact for mortality and potential mortal injury of stationary Group 1 receptors occurs from the sequential installation of pin piles for jacket foundations (4 pin piles installed within a 24-hour period). A maximum impact range of up to 730m is predicted from this piling within the ORCP search area (Figure 10.34).
- 10.7.29 Regarding the spatial MDS for fleeing receptors within the ORCP search area, the maximum predicted range of impact for mortality and potential mortal injury of fleeing Group 1 receptors occurs from the piling of a single monopile foundation in a 24-hour period. The maximum predicted range of impacts on fleeing Group 1 receptors are expected to be <100m from the ECC and within the immediate vicinity of the piling activity.
- 10.7.30 With regards the temporal MDS, the maximum duration of piling results from the sequential piling of jacket foundations in the array area (492 pin piles) and in the ORCP search area (48 pin piles) resulting in a total piling time of 4,320 hours, within a 12-month piling campaign. This duration encapsulates the annual spawning periods for sandeel, lemon sole, mackerel, plaice and sole (November to February, November to January, May to August, December to March and March to May, respectively). However, for all receptors this assumes that all piling will occur within the spawning periods and that the noise contours overlap the entire spawning grounds, and therefore the actual temporal impact on the receptors will be significantly less.
- 10.7.31 Spawning grounds for all Group 1 receptors within the Project study area are widely distributed across the southern North Sea and therefore in the context of the wider environment, the impacts from underwater noise are considered to be of local scale (based on the modelling results).

Page **115** of **197**

10.7.32 Given the broadscale nature of the Group 1 receptors spawning grounds, and the intermittent nature of the piling activities, the impact magnitude for mortality and potential mortal injury on all Group 1 receptors is considered to be low for both the spatial and temporal MDS.

Significance of effect

10.7.33 The impact is considered to be of low magnitude and the sensitivity of Group 1 receptors is considered to be low. The significance of the effect is therefore concluded to be **minor** (adverse) in EIA terms.

Mortality and potential mortal injury of Group 2 VERs

Sensitivity

- 10.7.34 Group 2 receptors (mortality onset at >207dB SPL_{peak} or >210dB SEL_{cum}) have a swim bladder and are therefore considered more sensitive to underwater noise than Group 1 species (i.e., the species have an internal air sac which can be affected by sound pressure), however, the swim bladder is not involved in hearing (e.g., not linked to the inner ear) and as such they are less sensitive than Group 3 receptors.
- 10.7.35 Group 2 species identified as of relevance to the Project are Atlantic salmon and sea trout. As Group 2 receptors, they are considered to be primarily sensitive to particle motion and so are likely to mainly sense underwater noise through movement of the water particles.
- 10.7.36 Atlantic salmon and brown trout have swim bladders and are therefore considered more sensitive to underwater noise than Group 1 species. Atlantic salmon and brown trout are both diadromous species and are therefore likely to be transient receptors within the site. They are therefore considered to be mobile receptors, and able to flee from noise impacts.
- 10.7.37 Based on their low vulnerability to noise impacts, and their mobile nature, these receptors are expected to recover quickly, returning to normal behaviours, and recolonising areas shortly after disturbance. Brown trout and Atlantic salmon are therefore considered to be of low vulnerability, medium recovery, and regional (brown trout) to national (Atlantic salmon) importance. The sensitivity of these receptors to underwater noise impacts is therefore considered to be low.

- 10.7.38 Both salmon and brown trout are considered fleeing receptors within this assessment, as they are both migratory species and are therefore likely to be transient receptors within the site. Therefore, the magnitude of impact on static Group 2 receptors is not considered.
- 10.7.39 Regarding the spatial MDS for fleeing receptors from piling within the array area, the maximum predicted range of impact for mortality and potential mortal injury of fleeing Group 2 receptors (Atlantic salmon and brown trout) occurs from the sequential piling of 2 monopiles within a 24-hour period (hammer energy 6,600kJ). The spatial MDS for fleeing receptors from piling within the ORCP search area, results from piling of monopiles (installation of a single monopile foundation in a 24-hour period). The maximum predicted range of impacts on fleeing Group 2 receptors are expected to occur <100m from the array area and from the ORCP search area, within the immediate vicinity of the piling activities.

- 10.7.40 There is no in-combination effect from the simultaneous piling of monopiles or jacket foundations in the array area on fleeing Group 2 receptors.
- 10.7.41 Regarding the temporal MDS, Atlantic salmon and brown trout have the potential to be within range of injurious effects from piling noise, however these VERs are anticipated to be transient across the site, and therefore any temporal impacts on these receptors are anticipated to be minimal. In late spring to early summer, adult Atlantic salmon return to rivers to spawn, whilst juvenile salmon migrate out to sea to feed. Most brown trout will migrate into rivers in June and then migrate back out to sea in October. Taking into account that Atlantic salmon and brown trout will be transient across the site, any impacts will be temporary. Therefore, the magnitude of impact to Group 2 receptors from the temporal MDS is considered to be low.

10.7.42 Overall, the magnitude of the impact on Group 2 species has been assessed as low, with the sensitivity of the Group 2 VERs assessed as low. The effect is therefore considered to be **minor (adverse)** for the Group 2 fish species which is not significant in EIA terms.

Mortality and potential mortal injury of group 3 VERs

Sensitivity

- 10.7.43 Group 3 receptors (mortality onset at >207dB SPL_{peak} or >207dB SEL_{cum}) have a swim bladder which is linked to the inner ear and so is directly involved in hearing. These species are considered to be the most sensitive to underwater noise, with direct detection of sound pressure, rather than just particle motion.
- 10.7.44 Herring possesses a swim bladder that is involved in hearing, and therefore are known to be sensitive to underwater noise. The study area overlaps an area indicated by Coull et al. (1998) as being part of the wider Banks herring spawning grounds (August-October). However, IHLS data indicates that in fact the main spawning (based on distribution of larvae) is located to the north of the project, off of Flamborough Head, and that the spawning intensity of the Banks spawning grounds that overlap with the study area are much less intense. The 2009/2010 to 2020/2021 IHLS data presented in Figure 10.14, Figure 10.15 Figure 10.15, Figure 10.16 and Figure 10.17 also reflect these trends. Suitable herring spawning substrates are located within the array area and along the offshore ECC and are also widely distributed across the southern North Sea. Herring are demersal spawners and are therefore considered stationary receptors in the assessment during the spawning season, increasing their theoretical exposure to underwater noise from the construction phase of the development. Taking this into account, herring are considered to be of high vulnerability, with medium recoverability and of regional importance (Section 41 priority species), therefore the sensitivity of spawning herring to noise impacts is considered to be medium.

- 10.7.45 Cod, sprat and whiting all have spawning grounds within the Project study area and across the southern North Sea (Coull *et al.*, 1998). These VERs are pelagic spawners and are therefore not limited to specific sedimentary areas for spawning, and consequently are considered likely to move away from injurious effects. Based on their mobile nature, these VERs are expected to recover quickly, return to normal behaviours, recolonizing areas shortly after disturbance. Therefore, the sensitivity of these VERs to noise impacts is considered to be low.
- 10.7.46 All other Group 3 receptors (blue whiting, twaite shad, allis shad, ling, European eel, European hake, seabass) are key components of the fish assemblages within the Project study area, have nursery grounds overlapping the study area, or are of commercial or conservation importance to the region. Based on their mobile nature, these receptors are expected to recover quickly, returning to normal behaviours, recolonizing areas shortly after disturbance, therefore, the sensitivity of these VERs to noise impacts is considered to be low.
- 10.7.47 Group 3 receptors are deemed to be of medium vulnerability, medium recoverability and regional to national importance. The sensitivity of the Group 3 receptors to mortality and potential mortal injury from underwater noise is therefore considered to be low to medium.

Magnitude of impact

10.7.48 Regarding the spatial MDS for stationary receptors (spawning herring) from piling within the array area and within the ORCP search area, the maximum predicted range of impact for mortality and potential mortal injury of stationary Group 3 receptors (e.g., spawning herring) occurs from the sequential installation of pin piles for jacket foundations (four pin piles installed within a 24-hour period) (hammer energy 3,500kJ). A maximum impact range of up to 5.4km is predicted from piling within the array area (Figure 10.23), and a maximum range of up to 3.1km is predicted from piling within the ORCP search area (Figure 10.33). This assumes that an individual remains within this range of the piling activity for 24-hours which, even for a species engaged in spawning activity is deemed to be overly conservative.

- 10.7.49 The noise contours for piling within the array area and ORCP search area, in relation to herring spawning grounds and larvae abundances (Coull et al., 1998 and IHLS data (2009/2010 – 2020/2021)) in Figure 10.23 and Figure 10.33 indicate the potential for mortality and potential mortal injury of spawning herring. A partial overlap of the mortality and potential mortal injury noise contours with the Banks herring spawning grounds can be observed although as shown by annual IHLS data (ICES, 2009/2010 – 2020/2021), the main spawning area utilised by the Banks herring stock is located to the north of the study area, off Flamborough Head. The total larval density from the combined 10-year dataset within the potential mortal injury noise contour ranges from 0 to 6,000 herring larvae per m². In comparison, the peak larval density in the main spawning area off Flamborough Head ranges from 74,250 to 93,250 larvae per m². Therefore, as evidenced by the IHLS data, the larval density and therefore spawning herring stock that would be impacted is minimal when compared to areas of peak herring spawning off of Flamborough Head. In addition, as shown by PSA across the site (Volume 2, Appendix 7.1: Physical Processes Technical Baseline and Volume 2, Appendix 7.2: Physical Processes Modelling Report; BGS, 2015) suitable herring spawning substrates are located across the site, and across the wider region. Therefore, underwater noise from piling within the array area and within the ORCP search area is unlikely to have a population level effect on the Banks herring stock.
- 10.7.50 The spatial MDS for fleeing receptors results from the piling of monopiles within the array area and the ORCP search area. The maximum predicted range of impacts on fleeing Group 3 receptors are expected to occur and within the immediate vicinity of the piling activity (<100m) from piling in the array area and the ORCP search area.
- 10.7.51 The potential for mortality and potential mortal injury of stationary Group 3 receptors (e.g., herring) from the simultaneous installation of 2 monopile foundations at the NE and SW piling locations in the array area equates to a maximum area of up to 70km² (Figure 10.28). The potential for mortality and potential mortal injury of stationary Group 3 receptors from the simultaneous installation of jacket foundations at both the NE and SW piling locations in the array area equates to a maximum area of up to 96km² (Figure 10.27). There is no incombination effect from the simultaneous piling of monopiles or jacket foundations on fleeing Group 3 receptors.
- 10.7.52 With regards the temporal MDS, the maximum duration of piling results from the sequential piling of jacket foundations in the array area (492 pin piles) and in the ORCP search area (48 pin piles) within the array area, resulting in a total piling time of 4,320 hours, within a 12-month piling campaign In the context of the annual herring spawning period for the Banks herring spawning stock (August to October, Coull *et al.* (1998)) over one year the piling duration encapsulates the spawning period, therefore spawning herring have the potential to be disturbed throughout the entirety of the spawning period. The piling duration also encapsulates the spawning periods for cod and sprat (January to April and May to August respectively), and the whiting spawning period (February to June). However, for all receptors this assumes that all piling will occur within the spawning periods and that the noise contours overlap the entire spawning grounds, and therefore the actual temporal impact on the receptors will be significantly less.

- 10.7.53 Considering the small overlap of the mortality and potential mortal injury noise contours of the Banks herring spawning grounds and of areas of low-density herring larvae present within the noise contour extents, the magnitude of impact of spawning herring from piling activities is considered to be low.
- 10.7.54 Spawning grounds for cod, sprat and whiting are widely distributed across the southern North Sea and therefore in the context of the wider environment, the impacts from underwater noise are considered to be of local scale (based on the modelling results). All other Group 3 receptors are present in abundance within the region, and therefore any impacts from underwater noise are expected to be of local scale. Given the broadscale distribution of these receptors and their spawning grounds, and the intermittent nature of the piling activities, the maximum magnitude of impact from mortality and potential mortal injury is expected to be low.

- 10.7.55 Taking into account the sensitivity of the spawning herring to underwater noise, which is medium, and the magnitude of impact, which is considered to be low, the significance of effect is **minor (adverse)**, which is not significant in EIA terms.
- 10.7.56 The maximum sensitivity of all other Group 3 receptors is low, and the magnitude of impact is low. Therefore, the significance of effect is **minor (adverse)**, which is not significant in EIA terms.

Mortality and potential mortal injury of eggs and larvae

- 10.7.57 Cod, herring, lemon sole, mackerel, plaice, sandeel, sole, sprat and whiting all have spawning grounds within the vicinity of the Project (Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline). Eggs and larvae are considered organisms of concern by Popper *et al.* (2014), due to their vulnerability, reduced mobility and small size. Taking this into consideration and given the broadscale nature of the spawning grounds, the sensitivity of eggs and larvae to mortality and potential mortal injury from underwater noise is considered to be medium.
- 10.7.58 Thresholds of effects for eggs and larvae have been defined separately within the Popper *et al*. (2014) guidance, with damage expected to occur at 210dB SEL_{cum} or >207dB SPL_{peak}.
- 10.7.59 With regards the spatial MDS for eggs and larvae from piling in the array area (sequential piling of 4 jacket foundations within a 24-hour period) the modelling results indicate that the maximum potential range for mortality and potentially mortal injury of eggs and larvae is up to 3.7km from the array area (based on SEL_{cum} (static)).
- 10.7.60 The potential for mortality and potential mortal injury of eggs and larvae from the simultaneous installation of two monopile foundations at the NE and SW piling locations in the array area equates to a maximum area of up to 35km².
- 10.7.61 The potential for mortality and potential mortal injury of eggs and larvae from the simultaneous installation of jacket foundations at both the NE and SW piling locations in the array area equates to a maximum area of up to 49km^2 .

Page **120** of **197**

- 10.7.62 With regards the spatial MDS for eggs and larvae from piling in the ORCP search area (sequential piling of 4 jacket foundations within a 24-hour period) the modelling results indicate that the maximum potential range for mortality and potentially mortal injury of eggs and larvae is up to 2.2km from the ORCP search area (based on SEL_{cum} (static)).
- 10.7.63 Considering the small overlap of the mortality and potential mortal injury noise contours of the Banks herring spawning ground, the magnitude of impact on herring eggs and larvae from piling activities is considered to be low.
- 10.7.64 Considering the broad distribution of all other receptors spawning grounds across the southern North Sea, the magnitude of impact on eggs and larvae from piling activities is considered to be low.
- 10.7.65 Taking into account the sensitivity of eggs and larvae to underwater noise, which is medium, and the magnitude of impact associated with which is considered to be **low** for all receptors, the significance of effect is **minor (adverse)**, which is not significant in EIA terms.

Mortality and potential mortal injury of shellfish

- 10.7.66 On the basis that shellfish do not possess swim bladders or other gas filled organs, it is considered that shellfish are primarily sensitive to particle motion rather than sound pressure (e.g., Popper and Hawkins, 2018). As there are currently no criteria for assessing particle motion, it is not possible to undertake a threshold-based assessment of the potential for injury to shellfish in the same way as can be done for fish. As such, a qualitative assessment of the potential for mortality or mortal injury has been made based on peer-reviewed literature.
- 10.7.67 Pile driving is recognised as a source of particle motion, generating high levels of particle motion in the nearfield (Hazelwood and Macey, 2016) which could potentially result in injury or mortality to sensitive shellfish receptors. Impacts from particle motion are also likely to occur locally to the source, with studies having demonstrated the rapid attenuation of particle motion with distance (Mueller-Blenkle *et al.*, 2010). Studies on lobsters have shown no mortality effect on the species (>220dB) (Payne *et al.*, 2007). Similarly, studies of molluscs (e.g., blue mussel *Mytilus edulis* and periwinkles *Littorina* spp.) exposed to a single airgun at a distance of 0.5m have shown no effects after exposure (Kosheleva, 1992). Taking this into consideration, shellfish VERs within the study area are deemed to be of local to national importance (ocean quahog are of national importance due to being a feature of conservation importance for the Holderness Offshore MCZ), medium vulnerability, and high recoverability. The sensitivity of these receptors is therefore considered to be low.
- 10.7.68 Considering the broad distribution of these receptors across the study area, the available literature suggesting a low risk of mortality or significant injury, and the relatively short-term nature of the impact, it is considered unlikely that there will be any more than a highly localised effect, with rapid recovery of the remaining stock avoiding a population level effect. Taking into account the sensitivity of the receptor to underwater noise, which is low and the magnitude of impact associated with which is considered to be low, this results in a maximum of **minor (adverse)** significance of effect, which is not significant in EIA terms.

Recoverable injury of Group 1 VERs

10.7.69 Recoverable injury is a survivable injury with full recovery occurring after exposure, although decreased fitness during this recovery period may result in increased susceptibility to predation or disease (Popper *et al.*, 2014). The impact ranges for recoverable injury and mortality/potential mortal injury are more or less the same due to the thresholds used, the potential for mortality or mortal injury is likely to only occur in extreme proximity to the pile, although the risk of this occurring will be reduced by use of soft start techniques at the start of the piling sequence. This means that fish in close proximity to piling operations will move outside of the impact range, before noise levels reach a level likely to cause irreversible injury.

Sensitivity of VERs

10.7.70 As noted previously in paragraph 10.7.21 *et seq.*, all Group 1 receptors (recoverable injury onset at >216dB SEL_{cum} or >213dB SPL_{peak}) have low sensitivity to underwater noise impacts from piling activities.

- 10.7.71 Regarding the spatial MDS for stationary receptors for piling in the array area, and the ORCP search area, the maximum predicted range of impact for recoverable injury of stationary Group 1 receptors (e.g., sandeel) occurs from the sequential installation of four jacket foundations in a 24-hour period (hammer energy, 3,500kJ). An impact range of up to 1.7km is predicted from piling within the array area. An impact range of up to 1.1km from the ORCP search area. Sandeel are known to be present around a substantial proportion of the UK coast and have suitable habitats and spawning grounds that are correspondingly broad (as shown in Figure 10.25). Considering this broad distribution of suitable spawning habitats across the southern North Sea, the more distant areas and the localised range of any injurious impacts, there are not considered to be any population level effects on the species.
- 10.7.72 Regarding the spatial MDS for fleeing receptors for piling in the array area, the maximum predicted range of impact for mortality and potential mortal injury of fleeing Group 1 receptors occurs from the sequential piling of two monopiles in a 24-hour period (hammer energy, 6,600kJ). The spatial MDS for fleeing receptors for piling in the ORCP search area results from the piling of monopiles (one monopile installed in a 24-hour period). The maximum predicted impact ranges of impacts on fleeing Group 1 receptors are expected to occur <100 m from piling in the array area and the ORCP search area, within the immediate vicinity of the piling activity.
- 10.7.73 The potential for recoverable injury of stationary Group 1 receptors (e.g., sandeel) from the simultaneous installation of two monopile foundations at the NE and SW piling locations in the array area equates to a maximum area of up to 8km^2 (Figure 10.30). The potential for recoverable injury of stationary Group 1 receptors from the simultaneous installation of jacket foundations at both the NE and SW piling locations in the array area equates to a maximum area of up to 12km^2 (Figure 10.29). There is no in-combination effect from the simultaneous piling of monopiles or jacket foundations on fleeing Group 1 receptors.

- 10.7.74 Spawning grounds for all other Group 1 receptors within the Project study area are widely distributed across the southern North Sea and therefore in the context of the wider environment, the spatial impacts from underwater noise are considered to be of local scale (based on the modelling results).
- 10.7.75 The potential temporal impacts from piling activities within the array area and the ORCP search area on Group 1 receptors are detailed in paragraph 10.7.30.
- 10.7.76 Given the broadscale nature of the Group 1 receptors spawning grounds, and the intermittent nature of the piling activities, the impact magnitude for recoverable injury of all Group 1 receptors is considered to be low for both the spatial and temporal MDS.

10.7.77 Taking into account the maximum sensitivity of the receptors to underwater noise, which is low, and the low magnitude of impact, the significance of effect is **minor (adverse)**, which is not significant in EIA terms.

Recoverable injury of Group 2 VERs

Sensitivity of VERs

10.7.78 As detailed in paragraph 10.7.34 10.7.34 *et seq.*, Group 2 receptors (recoverable injury onset at >207dB SPL_{peak} or >203dB SEL_{cum}) are considered to be of low sensitivity to underwater noise.

- 10.7.79 Regarding the spatial MDS for fleeing receptors from piling within the array area, the maximum predicted range of impact for recoverable injury of fleeing Group 2 receptors (Atlantic salmon and brown trout) occurs from the sequential piling of 2 monopiles within a 24-hour period (hammer energy 6,600kJ). The spatial MDS for fleeing receptors from piling within the ORCP search area, results from piling of monopiles (installation of a single monopile foundation in a 24-hour period). The maximum predicted range of impacts on fleeing Group 2 receptors are expected to occur <100m from the array area and from the ORCP search area, within the immediate vicinity of the piling activities.
- 10.7.80 There is no in-combination effect from the simultaneous piling of monopiles or jacket foundations on fleeing Group 2 receptors.
- 10.7.81 Regarding the temporal MDS, Atlantic salmon and brown trout have the potential to be within range of injurious effects from piling noise, however these VERs are anticipated to be transient across the site, and therefore any temporal impacts on these receptors are anticipated to be minimal. In late spring to early summer, adult Atlantic salmon return to rivers to spawn, whilst juvenile salmon migrate out to sea to feed. Most brown trout will migrate into rivers in June and then migrate back out to sea in October. Taking into account the transient nature of these species across the site, the magnitude of impact to Group 2 receptors from the temporal MDS is considered to be low.

10.7.82 Overall, the magnitude of the impact on Group 2 species has been assessed as low, with the sensitivity of the Group 2 VERs assessed as low. The effect is therefore considered to be of **minor (adverse)** significance for the Group 2 fish species, which is not significant in EIA terms.

Recoverable injury of Group 3 VERs

Sensitivity of VERs

10.7.83 As noted above in paragraph 10.7.43 *et seq.*, herring (Group 3 receptor, recoverable injury onset at >203dB SEL_{cum} or >207dB SPL_{peak}) are considered to be of medium sensitivity to underwater noise. All other Group 3 receptors are of low sensitivity to underwater noise impacts from piling activities.

- 10.7.84 Regarding the spatial MDS for stationary receptors (e.g., spawning herring) for piling within the array area and within the ORCP search area, the maximum predicted range of impact for recoverable injury of stationary Group 3 receptors occurs from the sequential installation of pin piles for jacket foundations (four pin piles installed within a 24-hour period) (hammer energy 3,500kJ). A maximum impact range of up to 7.8km is predicted from piling within the array area (Figure 10.23), and a maximum range of up to 4.4km is predicted from piling within the ORCP search area (Figure 10.33). This assumes that an individual remains within this range of the piling activity for 24-hours which, even for a species engaged in spawning activity is deemed to be overly conservative.
- 10.7.85 The noise contours from piling in the array area and ORCP search area as shown in relation to herring spawning grounds and larvae abundances (Coull et al., 1998 and IHLS data (ICES, 2009 - 2021)) in Figure 10.23 and Figure 10.33 indicate the potential for recoverable injury of spawning herring. A partial overlap of the recoverable injury noise contour with the Banks herring spawning ground can be observed, although, as shown by annual IHLS data (ICES, 2009/2010-2020/2021) the main spawning of Banks herring stock consistently occurs north of the Project, off Flamborough Head. The larval density within the recoverable injury noise contour ranges from 0 to 6,000 herring larvae per m². In comparison, the peak larval density in the main spawning area off of Flamborough Head ranges from 74,250 to 93,250 larvae per m². Therefore, as evidenced by the IHLS data, the larval density and therefore spawning herring stock that would be impacted is minimal when compared to areas of peak herring spawning off of Flamborough Head. This is further supported by PSA datasets (as shown in Figure 10.11 and Figure 10.12), which show the availability of suitable herring spawning substrates across the Project, and the southern North Sea. Therefore, underwater noise from piling within the array area and within the ORCP search area is unlikely to have a population level effect on the Banks herring stock.
- 10.7.86 The spatial MDS for fleeing receptors results from the piling of monopiles within the array area and the ORCP search area. The maximum predicted range of impacts on fleeing Group 3 receptors are expected to occur and within the immediate vicinity of the piling activity (<100m) from piling in the array area and the ORCP search area.

- 10.7.87 The potential for recoverable injury of stationary Group 3 receptors (e.g., herring) from the simultaneous installation of 2 monopile foundations at the NE and SW piling locations in the array area equates to a maximum area of up to 160km² (Figure 10.28). The potential for recoverable injury of stationary Group 3 receptors from the simultaneous installation of jacket foundations at both the NE and SW piling locations in the array area equates to a maximum area of up to 200km² (Figure 10.27). There is no in-combination effect from the simultaneous piling of monopiles or jacket foundations on fleeing Group 3 receptors.
- 10.7.88 The potential temporal impacts from piling activities within the array area and the ORCP search area are detailed in paragraph 10.7.52.
- 10.7.89 Considering the overlap of the recoverable injury noise contours with the Banks herring spawning grounds and of areas of low-density herring larvae, and the broadscale distribution of available spawning substrates for herring across the southern North Sea, underwater noise from piling is not anticipated to cause a population level effect, and therefore the magnitude of impact is considered to be low.
- 10.7.90 Spawning grounds for cod, sprat and whiting are widely distributed across the southern North Sea and therefore in the context of the wider environment, the impacts from underwater noise are considered to be of local scale (based on the modelling results for fleeing receptors). All other Group 3 receptors are present in abundance within the region, and therefore any impacts from underwater noise are expected to be of local scale (based on the modelling results for fleeing receptors). Given the broadscale distribution of these receptors and their spawning grounds, and the intermittent nature of the piling activities, the maximum magnitude of impact from recoverable injury mortality and potential mortal injury is expected to be low.

- 10.7.91 Considering herring as a medium sensitivity receptor to an impact of low magnitude, the significance of effect is of **minor (adverse)** significance, which is not significant in EIA terms.
- 10.7.92 Taking into account the maximum sensitivity of all other Group 3 receptors to underwater noise, which is low, and the low magnitude of impact, the significance of effect is **minor** (adverse), which is not significant in EIA terms.

Recoverable injury of eggs and larvae

10.7.93 Cod, herring, lemon sole, mackerel, plaice, sandeel, sole, sprat and whiting all have spawning grounds within the vicinity of the Project (Volume 2, Appendix 10.1: Fish and Shellfish Ecology Technical Baseline). Eggs and larvae are considered organisms of concern by Popper *et al.* (2014), due to their broadscale distribution, vulnerability, reduced mobility and small size, and are considered sensitive to particle motion generated by pile driving. As a result of this, eggs and larvae are considered to be of medium sensitivity to impacts from underwater noise. Taking into consideration the Popper *et al.* (2014) criteria, the extent of noise disturbance potentially causing recoverable injury eggs and larvae would result in a moderate degree of disturbance at a near field distance from the source, and a low degree of disturbance in the near and far field.

- 10.7.94 Considering the broadscale distribution of the receptor spawning grounds across the wider Thames estuary and southern North Sea, the magnitude of impact on eggs and larvae from piling activities is considered to be low.
- 10.7.95 Taking into consideration the medium sensitivity of eggs and larvae to underwater noise, and the low magnitude of impact, the significance of effect is **minor (adverse)**, which is not significant in EIA terms.

Recoverable injury of shellfish

- 10.7.96 Shellfish VERs within the study area are deemed to be of local to national importance (ocean quahog are of national importance due to being a feature of conservation importance for the Holderness Offshore MCZ), medium vulnerability, and high recoverability. The sensitivity of these receptors is therefore considered to be low.
- 10.7.97 Taking into consideration the low sensitivity of shellfish receptors to underwater noise, and the low magnitude of impact, the significance of effect is a maximum of **minor (adverse)**, which is not significant in EIA terms.

Temporary threshold shift (TTS)/Hearing damage

10.7.98 Temporary threshold shift (TTS) is a temporary reduction in hearing sensitivity caused by exposure to intense sound. TTS has been demonstrated in some fishes, resulting from temporary changes in sensory hair cells of the inner ear and/or damage to auditory nerves. However, sensory hair cells are constantly added to fishes and are replaced when damaged and therefore the extent of TTS is of variable duration and magnitude. Normal hearing ability returns following cessation of the noise causing TTS, though this period is variable. When experiencing TTS, fish may have decreased fitness due to a reduced ability to communicate, detect predators or prey, and/or assess their environment.

TTS of Group 1 receptors

Sensitivity of VERs

10.7.99 As noted previously in paragraph 10.7.21 et seq., all Group 1 receptors (recoverable injury onset at >216dB SEL_{cum} or >213dB SPL_{peak}) have low sensitivity to underwater noise impacts from piling activities.

Magnitude of impact

10.7.100Regarding the spatial MDS for stationary Group 1 receptors from piling within the array area and the ORCP search area, the maximum predicted range of impact for TTS of stationary Group 1 receptors (e.g., sandeel) occurs from the sequential installation of four pin piles for jacket foundations within a 24-hour period (hammer energy 3,500kJ). An impact range from piling within the array area is predicted to occur up to 23km from the array area. A maximum impact range of up to 23km is predicted from piling within the array area, and a maximum range of up to 19km is predicted from piling within the ORCP search area. This however assumes that an individual remains within this range of the piling activity for 24-hours which, even for a species engaged in spawning activity is deemed to be overly conservative.

- 10.7.101Sandeel are known to be present around a substantial proportion of the UK coast and have suitable habitats and spawning grounds that are correspondingly broad. Considering the broad distribution of suitable spawning habitats across the southern North Sea (see Figure 10.18, Figure 10.19, Figure 10.20 and Figure 10.21) and the localised range of any injurious impacts, there are not considered to be any population level effects on the species.
- 10.7.102Regarding the spatial MDS for fleeing receptors, the maximum predicted range of impact of TTS on fleeing Group 1 receptors occurs from piling of monopiles (hammer energy 6,600kJ) within the array area and within the ORCP search area. A maximum impact range of up to 10km is predicted from piling within the array area, and a maximum range of up to 5.8km is predicted from piling within the ORCP search area. The potential for TTS of stationary Group 1 receptors (e.g., sandeel) from the simultaneous installation of 2 monopile foundations at the NE and SW piling locations in the array area equates to a maximum area of up to 1,500km² (Figure 10.30). The potential for TTS of stationary Group 1 receptors from the simultaneous installation of jacket foundations at both the NE and SW piling locations in the array area of up to 1,700km² (Figure 10.29). The potential for TTS of fleeing Group 1 receptors from the simultaneous installation of monopile foundations equates to a maximum area of up to 810km². The potential for TTS of fleeing Group 1 receptors from the simultaneous installation of a maximum area of up to 810km². The potential for TTS of fleeing Group 1 receptors from the simultaneous installation of monopile foundations equates to a maximum area of up to 810km². The potential for TTS of fleeing Group 1 receptors from the simultaneous installation of monopile foundations equates to a maximum area of up to 810km². The potential for TTS of fleeing Group 1 receptors from the simultaneous installation sequates to a maximum area of up to 810km². The potential for TTS of fleeing Group 1 receptors from the simultaneous installation sequates to a maximum area of up to 670km².
- 10.7.103Spawning grounds for all other Group 1 receptors within the Project study area are widely distributed across the southern North Sea and therefore in the context of the wider environment, the impacts from underwater noise are considered to be of local scale (based on the modelling results).
- 10.7.104The potential temporal impacts from piling activities within the array area and the ORCP search area on Group 1 receptors are detailed in paragraph 10.7.30.
- 10.7.105Given the broadscale nature of the Group 1 receptors spawning grounds, and the intermittent nature of the piling activities, the impact magnitude for TTS on all Group 1 receptors is considered to be low for both the spatial and temporal MDS.

10.7.106Taking into account the low sensitivity of the Group 1 receptors to underwater noise and the low magnitude of impact, the significance of effect is **minor (adverse)**, which is not significant in EIA terms.

TTS of Group 2 receptors

Sensitivity

10.7.107As detailed in paragraph 10.7.34 *et seq.*, Group 2 receptors (TTS onset at >186dB SEL_{cum}) are considered to be of low sensitivity to underwater noise.

Magnitude of impact

- 10.7.108Regarding the spatial MDS for fleeing receptors, the maximum predicted range of impact TTS on fleeing Group 2 receptors (Atlantic salmon and brown trout) occurs from the piling of monopile foundations(hammer energy 6,600kJ). A maximum impact range of up to 10km is predicted from piling within the array area, and a maximum range of up to 5.8km is predicted from piling within the ORCP search area.
- 10.7.109The potential for TTS of fleeing Group 2 receptors from the simultaneous installation of monopile foundations within the array area equates to a maximum area of up to 810km². The potential for TTS of fleeing Group 2 receptors from the simultaneous installation of jacket foundations equates to a maximum area of up to 670km².
- 10.7.110Regarding the temporal MDS, Atlantic salmon and brown trout have the potential to be within range of injurious effects from piling noise, however these VERs are anticipated to be transient across the site, and therefore any temporal impacts on these receptors are anticipated to be minimal. In late spring to early summer, adult Atlantic salmon return to rivers to spawn, whilst juvenile salmon migrate out to sea to feed. Most brown trout will migrate into rivers in June and then migrate back out to sea in October. Taking into account the limited impact range anticipated on fleeing Group 2 receptors, and the transient nature of Atlantic salmon and brown trout across the site, the magnitude of impact to Group 2 receptors from the spatial and temporal MDS is considered to be low.

Significance of effect

10.7.111Overall, the magnitude of the impact on Group 2 species has been assessed as low, with the sensitivity of the Group 2 VERs assessed as low. The significance of the effect is therefore considered to be **minor (adverse)** for the Group 2 fish species, which is not significant in EIA terms.

TTS of Group 3 receptors

Sensitivity

10.7.112As detailed in paragraph 10.7.43 *et seq.,* Group 3 receptors (TTS onset at 186dB SEL_{cum}) are considered to be of low to medium (herring) sensitivity to underwater noise.

Magnitude of impact

10.7.113Regarding the spatial MDS for stationary receptors (e.g., spawning herring), for piling within the array area and the ORCP search area the maximum predicted range of impact for TTS on stationary Group 3 receptors occurs from the sequential installation of four jacket foundations within a 24-hour period (hammer energy 3,500kJ). A maximum impact range of up to 23km is predicted from piling within the array area, and a maximum range of up to 19km is predicted from piling within the ORCP search area. However, this assumes that an individual remains within this range of the piling activity for 24-hours which, even for a species engaged in spawning activity is deemed to be overly conservative.

- 10.7.114The noise contours shown in relation to herring spawning grounds and larvae abundances (Coull *et al.*, 1998 and IHLS data (ICES, 2009/2010 2020/2021)) in Figure 10.14 indicates the potential for TTS of spawning herring. A partial overlap of the TTS noise contour with the Banks herring spawning ground can be observed in Figure 10.23, although, as shown by annual IHLS data (ICES, 2009/2010-2020/2021) the main spawning of Banks herring stock consistently occurs to the north of the Project, off Flamborough Head. The larval density within the TTS noise contours (from both piling within the array area and the ORCP search area) ranges from 0.1 to 6,000 herring larvae per m². In comparison, the peak larval density in the main spawning area off Flamborough Head ranges from 74,250 to 93,250 larvae per m². Therefore, as evidenced by the IHLS data, the larval density and therefore spawning herring stock that would be impacted is minimal when compared to areas of peak herring spawning off of Flamborough Head. This is further supported by PSA datasets (as shown in Figure 10.11, Figure 10.12 and Figure 10.13), which show the availability of suitable herring spawning substrates across the Project, and the southern North Sea.
- 10.7.115 Regarding the spatial MDS for fleeing receptors, from piling in the array area and the ORCP search area, the maximum predicted range of impact for TTS of fleeing Group 3 receptors occurs from the sequential piling of monopiles (hammer energy 6,600kJ). A maximum impact range of up to 10km is predicted from piling within the array area, and a maximum range of up to 5.8km is predicted from piling within the ORCP search area.
- 10.7.116The potential for TTS of stationary Group 3 receptors (e.g., herring) from the simultaneous installation of 2 monopile foundations at the NE and SW piling locations in the array area equates to a maximum area of up to 1,500km² (Figure 10.28). The potential for TTS of stationary Group 3 receptors from the simultaneous installation of jacket foundations at both the NE and SW piling locations in the array area equates to a maximum area of up to 1,700km² (Figure 10.27). The potential for TTS of fleeing Group 3 receptors from the simultaneous installation of monopile foundations equates to a maximum area of up to 810km². The potential for TTS of fleeing Group 3 receptors from the simultaneous installation of jacket foundations equates to a maximum area of up to 810km². The potential for TTS of fleeing Group 3 receptors from the simultaneous installation of jacket foundations equates to a maximum area of up to 810km².
- 10.7.117The potential temporal impacts from piling activities within the array area and the ORCP search area are detailed in paragraph 10.7.52.
- 10.7.118Considering the overlap of the recoverable injury noise contours with the Banks herring spawning grounds and of areas of low-density herring larvae, and the broadscale distribution of available spawning substrates for herring across the southern North Sea, underwater noise from piling is not anticipated to cause a population level effect, and therefore the magnitude of impact on spawning herring is considered to be low.
- 10.7.119Spawning grounds for cod, whiting and sprat are widely distributed across the southern North Sea and therefore in the context of the wider environment, the impacts from underwater noise are considered to be of local scale (based on the modelling results). All other Group 3 receptors are present in abundance within the region, and therefore any impacts from underwater noise are expected to be of local scale. Given the broadscale distribution of these receptors and their spawning grounds, and the intermittent nature of the piling activities, the maximum magnitude of impact from TTS on spawning cod, whiting and sprat is expected to be low.

Page **129** of **197**

- 10.7.120The impact of TTS on spawning herring is considered to be of low magnitude, and the maximum sensitivity of the receptor is considered to be medium. The significance of the residual effect is therefore concluded to be **minor (adverse)**, which is not significant in EIA terms.
- 10.7.121Taking into account the low maximum sensitivity of all other Group 3 receptors to underwater noise and the low magnitude of impact, the significance of effect is **minor** (adverse), which is not significant in EIA terms.

TTS of eggs and larvae

- 10.7.122Impacts on eggs and larvae were assessed using the Popper *et al.* (2014) criteria, in terms of risk of recoverable injury in paragraph 10.7.93 *et seq*. The Popper *et al.* (2014) criteria for TTS are the same, and therefore the impact assessment for eggs and larvae replicates that undertaken for recoverable injury in paragraph 10.7.93 *et seq*. Eggs and larvae were assessed as having medium sensitivity to underwater noise impacts, with a moderate degree of disturbance at a near field distance from the source predicted on the receptors. The magnitude of effect was considered to be low.
- 10.7.123The impact of TTS on eggs and larvae is considered to be of low magnitude, and the sensitivity of the receptors is considered to be medium. The significance of the effect is therefore concluded to be **minor (adverse)**, which is not significant in EIA terms.

TTS of shellfish

- 10.7.124There are no criteria for shellfish sensitivity to noise, and therefore a qualitative assessment has been undertaken using peer reviewed literature. On the basis that shellfish do not possess swim bladders or other gas filled organs, it is considered that shellfish are primarily sensitive to particle motion rather than sound pressure (e.g., Popper and Hawkins, 2018). As the understanding of marine invertebrate sensitivity to particle motion is in its infancy (Lewandowski *et al.*, 2016), there is limited information available on the potential for hearing damage on shellfish from particle motion. However, a study by Zhang *et al.* (2015) did suggest that severe particle motion could irreparably damage the statocysts of cephalopods at short range, causing hearing impairment. This was considered likely to occur as a result of pile driving, although thought to only occur at short range. Taking this into account, shellfish are considered to be of low sensitivity to underwater noise impacts.
- 10.7.125It is understood that particle motion attenuates rapidly, therefore any impacts on shellfish are likely to be localised. Taking this into account, and the broad distribution of these species along the UK coasts, and across the southern North Sea, the magnitude of magnitude of effect on shellfish receptors is assessed as low.
- 10.7.126The impact of TTS on shellfish is considered to be of low magnitude, and the maximum sensitivity of the receptor is considered to be low. The significance of the residual effect is therefore concluded to be **minor (adverse)**, which is not significant in EIA terms.

Behavioural Impacts

- 10.7.127Different fish and shellfish have varying sensitivities to piling noise, depending on how these species perceive sound in the environment. Behavioural effects in response to construction related underwater noise include a wide variety of responses including startle responses (C-turn), strong avoidance behaviour, changes in swimming or schooling behaviour, or changes of position in the water column (e.g., Hawkins *et al.*, 2014a). Depending on the strength of the response and the duration of the impact, there is the potential for some of these responses to lead to significant effects at an individual level (e.g. reduced fitness, increased susceptibility to predation) or at a population level (e.g. avoidance or delayed migration to key spawning grounds), although these may also result in short-term, intermittent changes in behaviour that have no wider effect, particularly once acclimatisation to the noise source is taken into account.
- 10.7.128There are no quantitative thresholds advised to be used to assess behavioural impacts, however, Popper *et al.* (2014) provide qualitative behavioural criteria for fish from a range of sources. These categorise the risks of effects in relative terms as 'high, moderate or low' at three distances from the source: near (10s of metres), intermediate (100s of metres), and far (1000s of metres), respectively.
- 10.7.129Information on the impact of underwater noise on marine invertebrates is scarce, and no attempt has been made to set exposure criteria (Hawkins *et al.*, 2014b). Studies on marine invertebrates have shown sensitivity of marine invertebrates to substrate borne vibration (Roberts *et al.*, 2016). It is generally their hairs which provide the sensitivity, although these animals also have other sensory systems which could be capable of detecting vibration. It has also been reported that slow, rolling interface waves that move out from a source like a pile driver can produce large particle motion amplitudes travelling considerable distances (Hawkins and Popper, 2016), with implications for demersal and sediment dwelling shellfish (e.g., *Nephrops*) in close proximity to piling operations.

Behavioural impacts of Group 1 receptors

Sensitivity of Group 1 VERs

10.7.130As noted previously in paragraph 10.7.21 *et seq.*, all Group 1 receptors are considered to be of low sensitivity to underwater noise.

Magnitude of impact

10.7.131Considering the Popper *et al.* (2014) criteria, any risk of behavioural effects or auditory masking in Group 1 species (particularly the less mobile species) from piling in the array area and ORCP search area are expected to be low in the intermediate field. Near field behavioural impacts are considered likely to be fully contained within TTS effects and so are not considered further. Taking this into consideration, the magnitude of impact on Group 1 species is considered to be low.

Significance of effect

10.7.132Overall, the magnitude of the impact on Group 1 species has been assessed as low, with the sensitivity of Group 1 receptors assessed as low. The effect is therefore considered to be of **minor (adverse)** significance for all Group 1 fish species which is not significant in EIA terms.

Behavioural impacts of Group 2 receptors

Sensitivity of Group 2 VERs

10.7.133As noted previously in paragraph 10.7.34 *et seq.*, Group 2 receptors are considered to be of low sensitivity to underwater noise.

Magnitude of impact

10.7.134Considering the Popper *et al.* (2014) criteria, any risk of behavioural effects or auditory masking in Group 2 species from piling is expected to be low in the intermediate field. Near field behavioural impacts are considered likely to be fully contained within TTS effects and so are not considered further. Atlantic salmon and brown trout are considered unlikely to be within range of any behavioural impacts from piling noise as these VERs are anticipated to be transient across the site. Any temporal impacts on these receptors are therefore anticipated to be minimal. Therefore, the magnitude of the impact to Group 2 receptors from the temporal MDS is considered to be low.

Significance of effect

10.7.135Overall, the magnitude of the impact on Group 2 species has been assessed as low, with the sensitivity of receptors assessed as low. The significance of the effect is therefore considered to be of **minor (adverse)** for all Group 2 fish species, which is not significant in EIA terms.

Behavioural impacts of Group 3 receptors

Sensitivity of Group 3 VERs

10.7.136As noted in paragraph 10.7.43 *et seq.*, spawning herring are considered to be of medium sensitivity to underwater noise. All other Group 3 receptors are considered to be of low sensitivity.

Magnitude of impact

10.7.137Spawning grounds for a number of Group 3 species overlap with the Project site or are within the wider area. Whilst the Popper *et al.* (2014) criteria suggest a high risk of behavioural disturbance in the intermediate field and a moderate risk in the far field, the risk assessment is likely to predicated on the individuals not being involved in activities with a strong biological driver (i.e., spawning or feeding). Specifically, Skaret *et al.* (2005) identified that herring (a Group 3 species), had a significantly reduced reaction to external stimulus when involved in spawning activity than when swimming. As such, it is likely that any behavioural impacts to fish would be significantly reduced when spawning, with consequently limited impact on spawning potential for the relevant species. Whilst there is a paucity of evidence on migratory behaviour of European eel, it is possible that migration would be an equally strong biological driver, with similar damping of behavioural reactions. Taking this into consideration, the magnitude of impact on Group 3 species is considered to be low.

Significance of effect

10.7.138The impact of behavioural effects on spawning herring are considered to be of low magnitude, and the maximum sensitivity of the receptor is considered to be medium. The significance of the effect is therefore concluded to be **minor (adverse)**, which is not significant in EIA terms.

10.7.139The impact of behavioural effects on all other Group 3 receptors are considered to be of low magnitude, and the maximum sensitivity of the receptors is considered to be low. The significance of the effect is therefore concluded to be **minor (adverse)**, which is not significant in EIA terms.

Eggs and larvae

10.7.140Given the considered stationary nature of eggs and larvae the potential for behavioural impacts is considered limited. As such, it is considered that the assessment of behavioural impacts to eggs and larvae is sufficiently captured within consideration of TTS for this group.

Shellfish VERs

Sensitivity of Shellfish VERs

10.7.141There are no criteria for shellfish sensitivity to noise, and therefore, a qualitative assessment has been undertaken based on published literature. Shellfish are considered a potential sensitive receptor to particle motion from piling, due to typically having low motility, and therefore are considered unlikely to be able to vacate the area at the onset of 'soft-start piling'; Roberts (2015) suggested that vibroacoustic stimuli may elicit and affect antipredator responses, such as startle response in crabs and valve closure in mussels. Such responses would effectively be distractions from routine activities such as feeding. Behavioural changes in mussels have also been observed in response to simulated piledriving, with increased filtration rates observed in blue mussels (Spiga *et al.*, 2016). In addition to this, Samson *et al.* (2016) recorded a range of behavioural responses to underwater noise in cephalopods, including inking, colour changes and startle responses. Taking this into consideration, shellfish were considered to be of low sensitivity to underwater noise impacts.

Magnitude of impact

10.7.142It is understood that particle motion attenuates rapidly, and therefore impacts on shellfish from particle motion are likely to occur local to the source. Taking this into account, and the broad distribution of these species within the southern North Sea and along UK coasts, the magnitude of impact on shellfish is considered to be low.

Significance of effect

10.7.143Overall, the magnitude of the impact on shellfish has been assessed as low, with the sensitivity assessed as low. The significance of the effect is therefore considered to be **minor** (adverse), which is not significant in EIA terms.

Noise and Vibration arising from UXO clearance

10.7.144 Prior to the start of construction UXO investigation works will be required which may require clearance of UXO through in-situ detonation, resulting in emission of underwater noise. The Applicant is not applying for consent for UXO clearance works as part of this DCO application (as at this stage it is not clear if it will be required, or indeed if required to what extent and location, and a separate Marine Licence will be sought for such works once these factors have been established). However, it is acknowledged that such UXO clearance could occur and therefore, it is appropriate to consider the potential impacts of this additional source of underwater noise on fish and shellfish species.

- 10.7.145UXO clearance activities are one of the loudest anthropogenic noise sources that occur underwater, with typically much higher source levels than those from piling. UXO clearance is expected to result in mortality, mortal injury, recoverable injury, TTS and disturbance to fish and shellfish species, depending on the proximity of the individuals to the UXO location and the size of the UXO. Small scale mortality of fish as a result of UXO detonation are frequently recorded (Dahl *et al.*, 2020), with dead fish recorded floating at the surface following the detonation by Marine Mammal Observers in accordance with the JNCC (2010) guidelines for minimising the risk of injury to marine mammals from using explosives (JNCC, 2010). The recordings for dead fish are typically made within the immediate vicinity of the detonation (Dahl *et al.*, 2020) and as such this is expected to be a small-scale impact.
- 10.7.146Injury and disturbance effects will impact a progressively larger area, with TTS and disturbance effects potentially reaching 10's of kilometres from the UXO location.
- 10.7.147Due to the potential impacts from underwater noise from UXO clearance, bubble curtains have become a standard requirement for high-order UXO clearance works to reduce the sound level received by marine animals from the detonation. While the primary driver for the deployment of bubble curtains is legislation protecting marine mammals, where bubble curtains are used, they will also result in a reduction of the impacts to fish and shellfish receptors as well. Recently, a new technique to the commercial sector for UXO clearance has been promoted: deflagration or "low order" detonation. This method, while currently in its infancy within the commercial offshore wind sector, is an alternative to standard techniques, and has been put forward as the primary clearance method for recent UXO licence applications (e.g. Sofia Offshore Wind Farm UXO Marine Licence Application -MLA/2020/00489; Dogger Bank Offshore Wind Farm UXO Marine Licence Application – MLA/2020/00581; evidence to date (e.g., Cheong et al., 2020) suggests a much quieter, standard source level (regardless of UXO charge size, with the sound level emitted only relating to the donor charge size) which is anticipated to result in reduced impacts on the marine environment. No monitoring data from these UXO campaigns is currently available to provide real-world evidence of the use of this technique in the offshore environment, however it is anticipated that some evidence may be available to inform the Project ES.
- 10.7.148It is possible that UXO operations will be planned to take place year-round during the UXO clearance campaign pre-construction and therefore have the potential to interact with the spawning period for different fish and shellfish species. However, each UXO clearance is a discrete event and while this may result in some temporary disturbance to spawning fish, it is less likely to result in the displacement of fish from specific spawning grounds, compared to more continuous noise sources such as piling.
- 10.7.149 While individual UXO detonations have the potential to result in greater impact ranges than a piling event, the discrete nature of a UXO detonation is considered to result in a lesser overall effect on fish and shellfish species populations. A full assessment of the potential impacts from UXO clearance works will be submitted to support a separate Marine Licence application prior to undertaking UXO clearance works at the Project, once the full number of potential UXO and the likely sizes of these UXO are known, following further surveys which will only be undertaken once consent for the project is granted.

Impact 2: Increase in SSC and sediment deposition

10.7.150Temporary localised increases in SSC and associated sediment deposition and smothering are expected from foundation and cable installation works (including trenchless technique installation) and seabed preparation works (including sandwave clearance). This assessment should be read in conjunction with Volume 1, Chapter 7: Marine Processes, Volume 2, Appendix 7.1: Physical Processes Technical Baseline and Volume 2, Appendix 7.2: Physical Processes Modelling Report which provides the detailed offshore physical environment assessment (including project specific modelling of sediment plumes).

Magnitude of impact

- 10.7.151Background surface SSCs within the Project array area are known to vary seasonally, with higher concentrations occurring during spring tides and storm conditions, with the greatest concentrations encountered close to the bed. Within the array area, surface SSCs are generally low, with concentrations of up to 5mg/l were recorded between the period 1998 to 2015 (Cefas, 2016). Within the nearshore zone of the offshore ECC, SSCs are much higher, being directly under the influence of terrestrial sources from the Humber Estuary and Holderness Cliffs, such that concentrations reach around 60mg/l, between the period 1998 to 2015 (Cefas, 2016). These concentrations also coincide with the winter months when a greater frequency of storm events and fluvial inputs (including storm runoff) can be expected to occur. During the summer months, for example July, maximum values are of the order of 12mg/l (Cefas, 2016). Site specific turbidity data from a metocean buoy currently deployed in the array area show similar concentrations, with surface values of approximately 5mg/l, rising to up to 12mg/l in the mid-water, and up to 18mg/l lower in the water column during the summer months.
- 10.7.152Table 10.7 presents the MDS associated with increases in SSC and deposition. Seabed preparation for foundations, sandwave clearance for cable installation, cable trenching, drilling for foundations and spoil disposal are all predicted to result in sediment plumes and localised increases in SSC. Site-specific modelling of sediment plumes and deposition (Volume 2, Chapter 7, Appendix 7.1: Physical Processes Technical Baseline) from seabed preparation and installation activities along the Project offshore ECC, and within the offshore array area has been undertaken to quantify the potential footprint of the plumes, their longevity and the concentration of SSC as well as the subsequent deposition of plume material on the seabed.
- 10.7.153 The release events that have been simulated within the numerical model, as described in Volume 2, Appendix 7.2: Physical Processes Modelling Report, have been specifically designed to capture the full range of realistic worst-case outcomes as the maximum:
 - Sediment plume concentrations;
 - Sediment plume extent;
 - Vertical deposition depth (bed level change); and
 - Horizontal extent of deposition (spatial extent (area) of bed level change).

- 10.7.154A full assessment of the above, including the methodological approach used to assess the characteristics of sediment plumes and associated changes in bed level arising from settling of material is set out in Part 6, Volume 2, Appendix 7.2: Physical Processes Modelling Report. To provide a robust assessment, a range of realistic combinations have been considered, based on conservatively representative location (environmental) and project (MDS) specific information, including a range of water depths, heights of sediment ejection/initial resuspension, and sediment types.
- 10.7.155Those Project activities within the array and offshore ECC which will result in the greatest disturbance of seabed sediments are:
 - Pre-lay cable trenching using a Mass Flow Excavation (MFE) tool at the seabed;
 - Seabed preparation (sandwave levelling) including spoil disposal via a Trailer Suction Hopper Dredger (TSHD); and
 - Foundation installation using drilling techniques.; and
 - Drilling fluid release during Horizontal Directional Drilling (HDD) operations.
- 10.7.156The maximum distance and as such the overall spatial extent that any resultant plume might be reasonably experienced can be estimated as the spring tidal excursion distance. Any location beyond the tidal excursion distance is unlikely to experience any measurable change in SSC from a sediment plume. Given the nature of the sediment disturbance (temporary), any impacts are also anticipated to be short-lived, with any deposited material re-worked. Specifically, the numerical modelling for seabed disturbance resulting from MFE, seabed levelling and sandwave clearance indicated that:
 - MFE, seabed levelling and sandwave clearance activities may produce sediment plumes with SSC up to thousands of mg/l, however these concentrations will be spatially restricted and of short-lived. Elevated SSC may be advected by tidal currents up to 20km away, although these concentrations will be low. In the vast majority of cases, elevated SSC will be indistinguishable from background levels after 20 hours from the start of activities and can therefore be considered temporary and localised; and
 - Associated deposition from sediment plumes is generally in the order of tens to low hundreds of mm within several hundreds of metres from the point of disturbance. Sediment deposition following MFE activities of up to 50mm is expected in the immediate vicinity of the active disturbance. With thicknesses between 5 and 20mm deposited up to 600m away from the active disturbance area, reducing to low tens of mm downstream of the disturbance. Sediment deposition is generally not measurable beyond 3km to 5km away from the associated activities and is therefore generally small-scale and restricted to the near-field. This deposition is likely to become integrated into the local sediment transport regime and will be redistributed by tidal currents.
- 10.7.157Further information on sediment plume distances and modelling are provided in Part 6, Volume 1, Chapter 7: Marine Processes and Part 6, Volume 2, Appendix 7.2: Physical Processes Modelling Report.

- 10.7.158Note the sediment plume and deposition modelling takes into consideration a single sediment dispersion event, from the deposition of one hopper load of sediment. As informed by the modelling, a single deposition event will result in the rapid dissipation of the sediment plume and localised deposition impacts. However, due consideration should also be given to the volume of sediment dispersion and deposition during the entire construction phase (as detailed in Table 10.7). It is likely that the sediments being dispersed and deposited locally will be combined during dispersion events and therefore increased deposition and SSC are expected compared to the single event modelling, discussed above.
- 10.7.159The subsea export cable ducts will be installed underneath the beach using trenchless installation techniques, with HDD techniques identified as the MDS (Table 10.7). The drilling activity utilises a viscous drilling fluid which consists of a mixture of water and bentonite, a non-toxic, naturally occurring clay mineral. The release of drilling fluid and drill cuttings from HDD operations will result in a plume of elevated SSC. The drilling fluid has an overall density and viscosity similar to seawater and so is expected to behave in a similar manner.
- 10.7.160The results of bentonite release modelling demonstrate that:
 - Elevated SSC will be of localised extent and temporary duration, with maximum concentrations of 7.5mg/l occurring within several hundreds of metres of the punchout in the intertidal. SSC is advected along the coast along the tidal axis to distances of up to 2km, although concentrations at this distance are limited to below 2.5mg/l. All measurable SSC will have dispersed after 15 hours. Considering generally higher background SSC conditions along the coast, these changes are likely to be indiscernible from background conditions; and
 - Sediment deposition of up to 10mm is predicted within several hundreds of metres of the punch-out, reducing rapidly to below 5mm. The maximum extent of deposition is predicted to be approximately 500m from release, with only thicknesses below 2mm identified at these distances. This deposition is small-scale and highly localised and is likely to be rapidly redistributed by wave action.
- 10.7.161Bentonite release during HDD operations will produce low levels of SSC and is likely to be indiscernible from background conditions. This will correspond to low sediment deposition of tens of mm within several hundred metres of the activity and a maximum deposition extent of 500m. The effect of these activities is therefore considered to be restricted to the near-field, temporary, and indiscernible from background conditions.
- 10.7.162Taking the above into consideration, the impact of increased SSC and smothering from sediment deposition associated with construction activities is noticeable but temporary, with the majority of effects limited to the near field. The magnitude of impact has therefore been assessed as low.

- 10.7.163Impacts from increased SSC and sediment deposition are of greatest concern for herring eggs as smothering of the eggs may disrupt the development of the larvae, through either the sediment grains retarding growth or a reduction in oxygen availability around the eggs. The PEIR Boundary has a slight overlap with the Banks herring spawning ground. However, any impacts on this species are expected to be relatively small in the context of the spawning habitat available across the southern North Sea; the maximum sediment plume dispersal extends across 6.1% of the Banks herring spawning grounds (Coull et al., 2010). In addition, the maximum extent of sediment dispersal in a spring tide only interacts with areas of low density herring larvae (Figure 10.14), overlapping with herring larval abundances ranging from 0 to 6,000 larvae per m^2 . Compared to peak larval abundances located off of Flamborough Head, ranging from 74,250 to 93,250 larvae per m². This indicates that there will be no significant impacts on spawning herring, and eggs and larvae from increased SSC and sediment deposition. Furthermore, adult herring are mobile and as such would be expected to avoid unfavourable areas. Taking into consideration the vulnerability of herring eggs and larvae to this impact, and the slight overlap with the Banks herring spawning ground, herring are considered to be of medium sensitivity to increases in SSC and sediment deposition from construction activity of the Project.
- 10.7.164Potential sandeel spawning grounds and prime and sub-prime habitats (Figure 10.13) are located within the ECC and the array area. However, any impacts on this species are expected to be relatively small in the context of the spawning habitat available across the southern North Sea (maximum sediment plume dispersal extends across 7.4% of the sandeel spawning ground (Coull et al., 2010)). Furthermore, the secondary effects of increased concentrations of SSC in the water column and smothering (from deposition of particles as a result of comparable activities such as dredging and screening of cargo), have been shown to be inconsequential to sandeel species (MarineSpace Ltd., 2010). Sandeel eggs are also considered tolerant to increases in SSC and smothering from sediment deposition, due to the nature of resuspension and deposition within their natural high energy environment. Sandeel deposit eggs on the seabed in the vicinity of their burrows between December and January. Grains of sand may become attached to the adhesive egg membranes. Tidal currents can cover sandeel eggs with sand to a depth of a few centimetres, however experiments have shown that the eggs are capable of developing normally and hatch as soon as currents uncover them again (Winslade, 1971). Buried eggs experiencing reduced current flow, and therefore lower oxygen tension, can have delayed hatching periods, which is considered a necessary adaptation to survival in a dynamic environment (Pérez-Domínguez and Vogel, 2010; Hassel et al. 2004).
- 10.7.165Based on the species reduced sensitivity to increased SSC and deposition, sandeel are deemed to be of low vulnerability, medium recoverability and of regional importance, and therefore the sensitivity of the receptor is low.

Page **150** of **197**

- 10.7.166Cod, plaice, lemon sole, sole, whiting, Atlantic mackerel and sprat all have spawning grounds overlapping the Project study area. These receptors are pelagic spawners and do not exhibit substrate dependency. Therefore, sediment deposition within these spawning grounds will not result in any potential loss of available spawning habitats. These receptors are mobile, widely spread across the southern North Sea, and will experience exposure to naturally high variability to SSC within their natural range. The receptors are therefore considered to be broadly insensitive to sediment deposition. The sensitivity of these receptors to increases in SSC and sediment deposition from construction activity at the Project is considered to be low.
- 10.7.167Common cockle is broadly distributed across the southern North Sea and found across a range of habitats. They are of commercial value to fisheries within the region. Cockle is adapted to life in a sedimentary environment and quite capable of burrowing. The MarLIN sensitivity review has assessed common cockle as having a low sensitivity to smothering and not sensitive to an increase in suspended sediment (Tyler-Walters, 2007). Therefore, taking into account their burrowing nature and their broad distribution, common cockle is therefore considered to be able to adapt to localised and short-term SSC plumes and smothering. Common cockle is considered to be of low vulnerability, high recoverability and of regional importance, and therefore the sensitivity of the receptor is low.
- 10.7.168Common whelk is broadly distributed across the southern North Sea and are found across a range of habitats. They are of commercial value to fisheries within the region. Whelk typically burrows into mud to overwinter and emerge to feed when conditions improve. Therefore, taking into account their burrowing nature and their broad distribution, common whelk is therefore considered to be able to adapt to localised and short-term SSC plumes and smothering. Common whelk is considered to be of low vulnerability, high recoverability and of regional importance, and therefore the sensitivity of the receptor is low.
- 10.7.169European lobster is considered a key species within the area (ecologically and commercially); however, the species are not thought to exhibit a sedentary overwintering habit (as is observed in brown crab), being typically mobile and therefore considered able to move away from sources of disturbance. Berried females are likely to be more vulnerable to increased SSC and smothering impacts as the eggs carried require regular aeration. European lobster is therefore considered to be of medium vulnerability, high recoverability and of regional importance, and therefore the sensitivity of the receptor is medium.
- 10.7.170King scallop are of commercial value to fisheries within the region and are broadly distributed across the southern North Sea. King scallop can undertake limited swimming, although this is considered to be at a high energy cost and generally associated with predator avoidance, therefore this species is not expected to be able to travel large distances to avoid disturbance. The MarLIN sensitivity review has assessed king scallop as having a low sensitivity to smothering and an increase in suspended sediment (Marshall and Wilson, 2008). King scallop is therefore considered to be of low vulnerability, high recoverability and of regional importance, and therefore the sensitivity of the receptor is low.

- 10.7.171Brown crab is of commercial value to fisheries within the region and are broadly distributed across the southern North Sea. Brown crab is considered to have a high tolerance to SSC and are reported to be insensitive to short-term increases in turbidity; however, they may avoid areas of increased SSC as they rely on visual acuity during predation (Neal and Wilson, 2008). Berried female edible crab exhibit a largely sedentary lifestyle during the overwintering period whilst brooding eggs. During this time, they are considered a stationary receptor, burying themselves into soft mud and sand, and are therefore unlikely to move away from disturbances. Berried females are considered more vulnerable to smothering from sediment deposition, due to their sedentary nature at this time, and as the eggs carried require regular aeration. The MarLIN sensitivity review has assessed brown crab as having a very low sensitivity to smothering and low sensitivity to an increase in suspended sediment (Neal and Wilson, 2008). Taking all considerations into account, brown crab is considered to be of high vulnerability during the overwintering period, high recoverability (Neal and Wilson, 2008) and of regional importance, and therefore the sensitivity of the receptor is medium.
- 10.7.172*Nephrops* has a known spawning ground that lies approximately 17.5km from the Project array area, and outside of the maximum sediment plume dispersal extent. The MarLIN sensitivity review has assessed *Nephrops* as not being sensitive to smothering or an increase in suspended sediment (Sabatini and Hill, 2008). Therefore, no impacts are anticipated on spawning *Nephrops* from increased SSC and deposition during the construction phase, and this receptor is not considered further in the assessment of this impact.
- 10.7.173Ocean quahog, a bivalve species is a Feature of Conservation Importance for which the Holderness Offshore MCZ is designated. The Holderness Offshore MCZ is located 14.4km from the Project array area, and outside of the maximum sediment plume dispersal extent. Therefore, no impacts are anticipated on this feature within the MCZ. Ocean quahog are also afforded protected status under the OSPAR Commission. Ocean quahog lives buried vertically in the top few centimetres of the sediment (soft sands and muddy sands) with is inhalant and exhalent siphons at the surface (Taylor, 1976; Morton, 2011 as cited in Tyler-Walters and Sabatini, 2017). Studies have recorded responses of ocean quahog to smothering and siltation rate changes, observing the bivalve being able to reach the surface, and recording no mortality, or effects on its growth or population structure (Powilliet *et al.*, 2006; 2009 as cited in Tyler-Walters and Sabatini, 2017). The MarLIN sensitivity review has assessed ocean quahog as not being sensitive to smothering or an increase in suspended sediment (Tyler-Walters and Sabatini, 2017). Taking this into consideration, ocean quahog is considered to be of low vulnerability, high recoverability and of national importance, and therefore the sensitivity of the receptor is low.
- 10.7.174All other shellfish VERs and their respective spawning grounds are distributed widely throughout the southern North Sea, and experience exposure to naturally high variability in SSC within their natural range. As a result of this, all other VERs are considered to be of low sensitivity.
- 10.7.175All other identified VERs are mobile, and widespread throughout the southern North Sea and will experience exposure to naturally high variability to SSC within their natural range, with no substrate dependence for spawning. Therefore, the sensitivity of all other fish species is considered to be low.

10.7.176Overall, the magnitude of the impact of an increase in SSC and sediment deposition on all fish and shellfish species has been assessed as low. The maximum sensitivity of the receptors was assessed as medium. The significance of the effect is therefore considered to be a maximum of **minor (adverse)**, which is not significant in EIA terms.

Impact 3: Temporary seabed habitat loss/disturbance

10.7.177Temporary habitat loss and disturbance in the Project fish and shellfish study area will be a likely occurrence from foundation seabed preparation, the use of jack-ups and anchored vessels and cable seabed preparation and installation works during the construction phase of the development. These construction activities have the potential to impact on fish and shellfish ecology by the removal of essential habitats for survival (e.g., spawning, nursery and feeding habitats).

Magnitude of impact

- 10.7.178The maximum area of temporary habitat loss due to the presence of foundations, scour protection and cable protection is presented in Table 10.7 and equates to 4.8% of the total seabed areas within the PEIR Boundary. Comparable habitats are present and widespread within the wider area.
- 10.7.179The impact is predicted to be of local spatial extent (i.e., within the PEIR Boundary), of shortterm duration and reversible. It is predicted that the impact will affect fish and shellfish receptors directly. Taking this into account, the magnitude of impact is considered to be low.

Sensitivity of the receptor

- 10.7.180Sandeel are demersal spawners and are reliant upon the presence of suitable substrates for spawning (i.e., sandy sediments). Furthermore, as well as laying demersal eggs, sandeel also have specific habitat requirements throughout their juvenile and adult life history. Sandeel habitats are widely distributed across the southern North Sea. The overlap of the Project with sandeel spawning grounds is small compared to the overall extent of spawning grounds across the southern North Sea (overlap of the Project of approximately 1.56% of the sandeel spawning ground (Coull *et al.*, 1998). Sandeel are consequently deemed to be of high vulnerability to long-term changes in substrate, with limited ability for recovery, and of regional importance within the southern North Sea, and therefore are considered to be of medium sensitivity.
- 10.7.181Herring are also demersal spawners, reliant upon the presence of suitable substrates for spawning (i.e., gravelly sediments). Herring spawning habitats are widely distributed across the southern North Sea. In addition, the overlap of the Project with herring spawning grounds is small compared to the overall extent of the Banks herring spawning ground across the southern North Sea (overlap of the Project of approximately 0.5% of the Banks herring spawning grounds (Coull *et al.*, 1998). Herring is deemed to be of medium vulnerability to temporary habitat loss, and of regional importance within the southern North Sea, and therefore are considered to be of medium sensitivity.
- 10.7.182These receptors are pelagic spawners and therefore do not display substrate dependency, and therefore are not considered vulnerable to temporary habitat loss and as such the sensitivity of these species is considered to be negligible.

- 10.7.183Whelk, cockle, king scallop, queen scallop, brown crab, European lobster, are broadly distributed across the southern North Sea and are found across a range of habitats. These species are also of commercial importance to the region.
- 10.7.184Common whelk typically burrows into mud to overwinter and emerge to feed when conditions improve. Common cockle is adapted to life in a sedimentary environment and quite capable of burrowing. Brown crab bedrock including under boulders, mixed coarse grounds, and offshore in muddy sand, and berried females overwinter in pits dug in the sediment or under rocks. Common cockle, common whelk and brown crab are therefore considered potentially sensitive to temporary habitat loss during the overwintering period. King scallop typically prefer clean firm sand, fine or sandy gravel substrates, and European lobster typically inhabit rocky substrata, typically living in holes and excavated tunnels. However common whelk, common cockle, king scallop, brown crab, and European lobster, are substrate dependent rather than being philopatric and can therefore fully utilise adjacent areas which will be unaffected. Furthermore, the MarLIN sensitivity review has assessed common cockle, king scallop and brown crab as having a low sensitivity to abrasion and physical displacement (Tyler-Walters, 2007; Marshall, and Wilson, 2008; Neal and Wilson, 2008). Therefore, the sensitivity of these receptors is considered to be low.
- 10.7.185*Nephrops* have a known spawning ground that lies approximately 17.5km from the Project array area, and therefore no impacts are anticipated on spawning *Nephrops* from temporary habitat loss during the construction phase. The MarLIN sensitivity review has assessed *Nephrops* as having a low sensitivity to abrasion and physical displacement (Tyler-Walters and Sabatini, 2017). Therefore, this receptor is not considered further in the assessment of this impact.
- 10.7.186Ocean quahog is a Feature of Conservation Importance for which the Holderness Offshore MCZ is designated. The Holderness Offshore MCZ is located 14.4km from the Project array area, and therefore no impacts are anticipated on ocean quahog within the MCZ during the construction phase. Ocean quahog are also afforded protected status under the OSPAR Commission. Ocean quahog lives buried vertically in the top few centimetres of the sediment (soft sands and muddy sands) with is inhalant and exhalent siphons at the surface (Taylor, 1976; Morton, 2011 as cited in Tyler-Walters and Sabatini, 2017), and is therefore considered potentially sensitive to temporary habitat loss due to their burrowing nature. The MarLIN sensitivity review has assessed ocean quahog as having a high sensitivity to abrasion/disturbance of the seabed (Tyler-Walters and Sabatini, 2017). However, ocean quahog are substrate dependent rather than being philopatric and can therefore fully utilise adjacent areas which will be unaffected. Therefore, the sensitivity of these receptors is considered to be low.
- 10.7.187All other shellfish VERs are distributed widely throughout the southern North Sea and are not of high value to fisheries in the region. As a result of this, all other VERs are considered to be of low sensitivity to impacts from temporary habitat loss.
- 10.7.188These species do not display substrate dependency, and therefore are not considered vulnerable to temporary habitat loss and as such the sensitivity of these species is considered to be negligible.

10.7.189Temporary habitat loss during the construction phase will represent a short-term and localised effect. The magnitude of the impact was determined to be low. The maximum sensitivity of the receptors was assessed as medium. The significance of the effect is therefore considered to be a maximum of **minor (adverse)**, which is not significant in EIA terms.

Impact 4: Direct and indirect seabed disturbances leading to the release of the sediment contaminants

10.7.190 As identified in Table 10.7, and discussed in under Impact 2, construction activities will resuspend sediments. While in suspension, there is the potential for sediment-bound contaminants, such as metals, hydrocarbons and organic pollutants, to be released into the water column and lead to an effect on fish and shellfish receptors.

Magnitude of impact

- 10.7.191A review of subtidal sediment contamination within the Project site was undertaken in Volume 1, Chapter 9: Benthic and Intertidal Ecology. When considering the contaminant levels present within the array and offshore ECC, it becomes important to note that this area has a large number of oil and gas facilities within it. Further detail is provided in Volume 2, Chapter 18: Infrastructure and Other Marine Users. Contaminant surveys in the array and the offshore ECC reported three metal concentrations that exceeded Cefas Level 1; Arsenic, Nickel and Chromium. Within the array area, one station recorded Polycyclic Aromatic Hydrocarbons (PAHs) that exceeded the Threshold Effect Limit (TEL) threshold; the TEL thresholds were exceeded for Acenaphthene and Phenanthrene. Within the offshore ECC, two stations recorded contaminants exceeding the TEL threshold; TEL thresholds were exceeded for Dibenz(a,h)anthracene, Naphthalene and Phenanthrene. No PAH concentrations recorded across the array or ECC exceeded the Probable Effect Limit (PEL) threshold.
- 10.7.192Following disturbance as a result of construction activities, the majority of re-suspended sediments are expected to be deposited in the immediate vicinity of the works. The release of contaminants such as metals, hydrocarbons and organic pollutants from the small proportion of fine sediments is likely to be rapidly dispersed with the tide and/or currents and therefore increased bioavailability resulting in adverse eco-toxicological effects are not expected. The contaminants levels found are all comparable to the wider regional background and not considered to be recorded at a level that could result in a significant effect-receptor pathway if made bioavailable. The impacts as a result of the release of sediment-bound contaminants are therefore considered to be of negligible magnitude.

Sensitivity of the receptor

10.7.193Construction activities leading to the resuspension of sediments will have varying levels of effect dependent on the species present and pollutants involved. As sediment-bound contaminants would be expected to be dispersed quickly in the subtidal environment, the level of effect is predicted to be small.

- 10.7.194Due to their increased mobility, adult fish are less likely to be affected by marine pollution and are therefore not considered to be vulnerable to the release of sediment bound contaminants, and as such the sensitivity of the VERs is considered to be low.
- 10.7.195Fish eggs and larvae are, however, likely to be particularly sensitive, with potentially toxic effects of pollutants on fish eggs and larvae (Westerhagen, 1988). Effects of resuspension of sediment-bound contaminants (e.g., heavy metals and hydrocarbon pollution) on fish eggs and larvae are likely to include abnormal development, delayed hatching and reduced hatching success (Bunn *et al.*, 2000). It is on this basis, that eggs and larvae are considered to be of medium sensitivity to the impact.
- 10.7.196Filter-feeding shellfish are considered to be more sensitive to marine pollution due to the recognised bioaccumulation which occurs within this group. Shellfish also display limited mobility and are therefore not anticipated to flee from the impact. These VERs are therefore considered to be of medium sensitivity to the impact.

10.7.197The resuspension of contaminants as a result of sediment disturbance is predicted to occur on a small scale, with contaminants predicted to be rapidly dispersed by the tide. Overall, the magnitude of the impact is deemed to be negligible, and the maximum sensitivity of receptors is medium. The significance of the effect is therefore considered to be a maximum of **minor (adverse)**, which is not significant in EIA terms.

Impact 5: Direct damage (e.g., crushing) and disturbance to mobile demersal and pelagic fish species

10.7.198Direct damage and disturbance in the Project fish and shellfish study area will be a likely occurrence from foundation seabed preparation, the use of jack-ups and anchored vessels and cable seabed preparation and installation works during the construction phase of the development.

Magnitude of Impact

- 10.7.199The maximum area of direct damage and disturbance of subtidal habitat due to construction activities are described in Table 10.7. This equates to approximately 4.8% of the total seabed areas within the PEIR Boundary. This impact has the potential to result in direct damage and disturbance to fish and shellfish receptors and their habitats within this footprint. The impact is predicted to be of local spatial extent (only affects the areas directly within the construction footprint), or short-term duration, intermittent and reversible. It is predicted that the impact will affect fish and shellfish receptors directly, through direct damage (crushing) and disturbance.
- 10.7.200 In general, fish are able to avoid temporary direct disturbance (EMU, 2004). Shellfish species are considered to have a more limited ability to avoid direct effects due to the relative energetic costs or speed of movement (i.e., scallops) or behaviours (e.g., during breeding) that may make them more susceptible to direct effects due to a sedentary habit.
- 10.7.201Due to the predicted local spatial extent, short-term duration and intermittent and reversible nature of the impact, the magnitude of the impact will be low.

- 10.7.202On account of the demersal spawning nature of herring and sandeel they are considered to be vulnerable to the effects of direct damage and disturbance during the construction phase of development. Both receptors are considered most vulnerable during spawning when they are less mobile, with their eggs and larvae also considered to be unable to avoid this impact; therefore, in the case of this assessment, herring and sandeel are considered stationary receptors. In addition to this, the species are both considered to be reliant on the presence of suitable spawning substrates. Therefore, both herring and sandeel are considered to be more vulnerable to direct damage and disturbance compared to other fish receptors as a result of this reliance on a specific habitat type (which is present for both receptors within the Project site).
- 10.7.203 Herring spawning habitats are widely distributed across the southern North Sea. In addition, the overlap of the Project with herring spawning grounds is small compared to the overall extent of the Downs herring spawning ground across the southern North Sea (overlap of the Project of approximately 0.5% of herring spawning ground (Coull *et al.*, 1998)).
- 10.7.204Sandeel habitats are widely distributed across the southern North Sea. In addition, the overlap of the Project with sandeel spawning grounds is small compared to the overall extent of spawning grounds across the southern North Sea (overlap of the Project of approximately 1.56% of sandeel spawning ground (Coull *et al.*, 1998).
- 10.7.205Consequently, herring and sandeel are deemed to be of high vulnerability to direct damage and disturbance, with medium recoverability (due to the temporary nature of the impact) and are of regional importance in the southern North Sea and are therefore considered to be of medium sensitivity to direct damage and disturbance during the construction phase.
- 10.7.206Due to the mobile nature of the other relevant fish species within the study area these species are considered to be not vulnerable to direct damage and as such the sensitivity of these species is considered to be negligible.
- 10.7.207Typically, less mobile species (such as shellfish) are considered likely to have a greater vulnerability to direct damage and disturbance. Berried female brown crab, for example, exhibit a largely sedentary lifestyle during the overwintering period; for the purposes of the assessment brown crab are therefore considered a stationary receptor, and are considered unlikely to be able to move away from physical impacts to the seabed. Taking this into account, brown crab is considered to be of high vulnerability particularly during the overwintering period, but with high recoverability (Neal and Wilson, 2008) and are considered to be of regional importance, and therefore the sensitivity of the receptor to direct damage and disturbance during the construction phase is medium.
- 10.7.208Common whelk is broadly distributed across the southern North Sea and are found across a range of habitats. Whelk typically burrow into mud to overwinter and emerge to feed when conditions improve. Common whelk is therefore considered to be of high vulnerability during the overwintering period, is considered to exhibit high recoverability and to be of regional importance, and therefore the sensitivity of the receptor to direct damage and disturbance from construction activities is medium.

- 10.7.209Common cockle is broadly distributed across the southern North Sea and is found across a range of habitats. Common cockle is of commercial value to fisheries within the region. Cockle is adapted to life in a sedimentary environment and quite capable of burrowing. Common cockle is considered to be of high vulnerability, high recoverability and of regional importance, and therefore the sensitivity of the receptor to direct damage and disturbance from construction activities is medium.
- 10.7.210King scallop is broadly distributed across the southern North Sea and are found across a range of habitats. They are of commercial value to fisheries within the region. The species exhibits limited swimming, with this behaviour generally limited to predator avoidance. King scallop is therefore considered unlikely to be able to actively avoid disturbance. King scallop is therefore considered to be of medium vulnerability, high recoverability (Marshall and Wilson, 2008) and of regional importance, and therefore the sensitivity of the receptor to direct damage and disturbance from construction activities is medium.
- 10.7.211European lobster is considered a species of commercial importance within the region. The species is not known to exhibit a sedentary overwintering habit, being typically mobile and therefore the species is considered to have a greater ability to move away from disturbances by comparison to brown crab. European lobster is therefore considered to be of medium vulnerability, is considered to have a high recoverability and to be of regional importance and is therefore considered to be of low sensitivity to direct damage and disturbance from construction activities.
- 10.7.212Ocean quahog is also afforded protected status under the OSPAR Commission. Ocean quahog lives buried vertically in the top few centimetres of the sediment (soft sands and muddy sands) with is inhalant and exhalent siphons at the surface (Taylor, 1976; Morton, 2011 as cited in Tyler-Walters and Sabatini, 2017). Ocean quahog is therefore adapted to life in a sedimentary environment and quite capable of burrowing. Ocean quahog is considered to be of high vulnerability, high recoverability and of national importance, and therefore the sensitivity of the receptor to direct damage and disturbance from construction activities is medium.
- 10.7.213All other shellfish VERs and their respective spawning grounds are distributed widely throughout the southern North Sea and are not of high value to fisheries in the region. As a result of this, all other VERs are considered to be of low sensitivity to impacts from direct damage and disturbance.

10.7.214Direct damage and disturbance during the construction phase will represent a short-term and localised effect. The magnitude of the impact was determined to be low. The maximum sensitivity of the receptors was assessed as medium. The significance of the effect is therefore considered to be a maximum of **minor (adverse)**, which is not significant in EIA terms.

Operations and Maintenance

Impact 6: Underwater noise as a result of operational turbines

10.7.215Underwater noise levels during the operational phase are predicted to be considerably lower than those of the construction phase, being limited to noise from operational turbines and maintenance vessel traffic.

Magnitude of impact

- 10.7.216 Underwater noise from an operational turbine mainly originates from the gearbox and the generator and has tonal characteristics (Madsen *et al.*, 2005; Tougaard *et al.*, 2009). The radiated levels are low and the spatial extent of the potential impact of the operational wind farm noise on marine receptors is generally estimated to be small and thus unlikely to result in any injury to fish (Wahlberg and Westerberg, 2005). Besides the sound source level, the potential for impact will also depend on the propagation environment, the receptor's hearing ability and the ambient sound levels.
- 10.7.217 Marine animals may perceive the radiated tonal components where they exist above the ambient noise levels, which may result in a behavioural response of the receptor or lead to a reduced detection of other sounds due to masking. Previous studies show that behavioural responses of fish are only likely at close ranges from the turbine, (i.e., a few metres) (Wahlberg and Westerberg, 2005).
- 10.7.218Although effects on fish are difficult to establish given the lack of information available in the scientific literature, there is indicative evidence that fish would be unlikely to show significant avoidance to the noise levels radiating from the turbine. ICES has formulated recommendations for maximum radiated underwater noise from research vessels which are approximately 30dB above the hearing threshold of cod and herring (Mitson, 1995). The implication of this is that the presence of continuous noise that is not significantly above the hearing threshold of fish is not thought to cause any significant movement of fish away from the source. Studies of very low frequency sound have indicated that consistent deterrence from the source is only likely to occur at particle accelerations equivalent to a free-field sound pressure level of 160dB re 1µPa (RMS) (Sand et al., 2001). This is higher than the noise levels reported in the open literature for operational wind farms measured at a number of ranges, all within a few hundred metres of the turbine (Nedwell et al., 2007a; Edwards et al., 2007; Betke et al., 2004, see also Wahlberg and Westerberg, 2005 and Madsen et al., 2006). The particle acceleration resulting from an operational wind turbine has also been measured by Sigray et al. (2011) with the resultant levels being considered too low to be of concern for behavioural reactions from fish. Furthermore, the particle acceleration levels measured at 10m from the turbine were comparable with hearing thresholds. Whilst limited, the available data provides an indicator that operational wind turbines are unlikely to result in disturbance of fish except within very close proximity of the turbine structure, as postulated by Wahlberg and Westerberg (2005). However, the available measurement data is mostly for smaller turbines (up to 1.5MW), and it would be expected that larger wind turbines would result in different acoustic characteristics, with foundation type also having an influence on the acoustic characteristics of the noise radiated from the structure.

- 10.7.219 Noise would also result from surface vessels servicing the wind farm. However, noise levels reported by Malme *et al.* (1989) and Richardson *et al.* (1995) for large surface vessels indicate that physiological damage to fish and shellfish is unlikely, although the levels could be sufficient to cause local disturbance of sensitive marine fauna (e.g., clupeids such as herring and sprat) in the immediate vicinity of the vessel, depending on ambient noise levels.
- 10.7.220Considering the operational turbine noise of the wind farm and any associated service vessels, the ambient noise levels within the site would be expected to be lower than those present in the vicinity of nearby shipping lanes.
- 10.7.221The impact is predicted to be of a highly localised spatial extent, long term duration, continuous and irreversible (during the lifetime of the project). It is predicted that the impact will affect the fish and shellfish receptors indirectly. Due to the extremely localised spatial extent, the magnitude is therefore, considered to be negligible.

10.7.222The sensitivities of fish and shellfish receptors were assessed as having a maximum sensitivity of medium (for Group 3 receptors).

Significance of effect

10.7.223Subsea noise resulting from turbine operation will represent a long term and continuous impact throughout the lifetime of the project. However, any risk of significant behavioural disturbance for fish and shellfish would be limited to the area immediately surrounding the turbine. The sensitivity of receptors is low, and the magnitude of the impact on fish and shellfish is negligible. Therefore, the significance of the effect of subsea noise on fish and shellfish will be **minor (adverse)** to **negligible (adverse)**, which is not significant in EIA terms.

Impact 7: Long-term habitat loss due to the presence of turbine foundations, scour protection and cable protection

10.7.224The presence of infrastructure such as foundations and cable protection at crossings have the potential to impact on fish and shellfish ecology by the removal of essential habitats for survival (e.g., spawning, nursery and feeding habitats).

Magnitude of impact

- 10.7.225The long-term habitat loss due to the presence of foundations, scour protection and cable protection is expected to be up to approximately 5.6km², which represents approximately 0.8% of the total seabed areas within the PEIR Boundary. Comparable habitats are present and widespread within the wider area.
- 10.7.226The impact is predicted to be of local spatial extent (i.e., within the PEIR Boundary), of longterm duration, continuous and irreversible (within the lifetime of the project). It is predicted that the impact will affect fish and shellfish receptors directly. The magnitude of impact is therefore deemed to be low.

- 10.7.227Sandeel are demersal spawners and are reliant upon the presence of suitable substrates for spawning (i.e., sandy sediments). Furthermore, as well as laying demersal eggs, sandeel also have specific habitat requirements throughout their juvenile and adult life history. Sandeel habitats are widely distributed across the southern North Sea. The overlap of the Project with sandeel spawning grounds is small compared to the overall extent of spawning grounds across the southern North Sea (overlap of Project of approximately 1.56% of sandeel spawning ground (Coull *et al.*, 1998). Sandeel are consequently deemed to be of high vulnerability to long-term changes in substrate, with limited ability for recovery, and of regional importance within the southern North Sea, and therefore are considered to be of medium sensitivity.
- 10.7.228Herring are also demersal spawners, reliant upon the presence of suitable substrates for spawning (i.e., gravelly sediments). Herring spawning habitats are widely distributed across the southern North Sea. In addition, the overlap of the Project with herring spawning grounds is small compared to the overall extent of the Banks herring spawning ground across the southern North Sea (overlap of the Project of approximately 0.5% of the Banks herring spawning grounds (Coull *et al.*, 1998). Herring is deemed to be of medium vulnerability to long-term habitat loss, and of regional importance within the southern North Sea, and therefore are considered to be of medium sensitivity.
- 10.7.229Cod, plaice, whiting, lemon sole, mackerel, common sole and sprat are pelagic spawners and do not display substrate dependency, and therefore are not considered vulnerable to temporary habitat loss and as such the sensitivity of these species is considered to be negligible.
- 10.7.230 Mobile VERs (without spawning grounds within the vicinity of the project) do not display substrate dependency, and therefore are not considered vulnerable to long-term habitat loss and as such the sensitivity of these species is considered to be negligible.

- 10.7.231Common whelk, common cockle, king scallop, brown crab and European lobster are broadly distributed across the southern North Sea and are found across a range of habitats. These species are also of commercial importance to the region. Whelk typically burrow into mud to overwinter and emerge to feed when conditions improve. Cockle is adapted to life in a sedimentary environment and quite capable of burrowing. Brown crab bedrock including under boulders, mixed coarse grounds, and offshore in muddy sand, and berried females overwinter in pits dug in the sediment or under rocks. Common cockle, common whelk and brown crab are therefore considered potentially sensitive to long-term habitat loss during the overwintering period. King scallop typically prefer clean firm sand, fine or sandy gravel substrates. European lobster typically inhabit rocky substrata, living in holes and excavated tunnels. The MarLIN sensitivity review has assessed common cockle, king scallop and brown crab as having a moderate sensitivity to substratum loss (Tyler-Walters, 2007; Marshall and Wilson, 2008; Neal and Wilson, 2008). Ocean quahog are of national importance. Ocean quahog lives buried vertically in the top few centimetres of the sediment (soft sands and muddy sands) with is inhalant and exhalent siphons at the surface (Taylor, 1976; Morton, 2011 as cited in Tyler-Walters and Sabatini, 2017). The MarLIN sensitivity review has assessed ocean quahog as having a high sensitivity to physical change (Tyler-Walters and Sabatini, 2017.) and is therefore considered potentially sensitive to long-term habitat loss due to their burrowing nature.
- 10.7.232However, common whelk, common cockle, king scallop, brown crab, European lobster and ocean quahog are substrate dependent rather than being philopatric and can therefore fully utilise adjacent areas which will be unaffected. Therefore, the sensitivity of these receptors is considered to be low.
- 10.7.233All other shellfish VERs are distributed widely throughout the southern North Sea and are not of high value to fisheries in the region. As a result of this, all other VERs are considered to be of low sensitivity to impacts from long-term habitat loss.

10.7.234Long-term habitat loss will represent a long-term and continuous impact throughout the lifetime of the project. However only a relatively small proportion of the fish and shellfish habitats are likely to be affected in the context of wider habitats in the area. Most receptors are predicted to have some tolerance to this impact. Overall, the magnitude of the impact has been assessed as low for all species. The sensitivity of sandeel and herring is assessed as medium, with all other species having lower sensitivities. The significance of the effect is therefore considered to be of **negligible (adverse)** to **minor (adverse)**, which is not significant in EIA terms.

Impact 8: Increased hard substrate and structural complexity, as a result of the introduction of turbine foundations, scour protection and cable protection

10.7.235Any introduction of infrastructure such as foundations and scour protection would result in the introduction of hard substrate to the currently predominantly soft seabed habitat of the PEIR Boundary. This would result in an increase in the heterogeneity of the seabed habitat and a change of the composition of the benthic community. As a result, an increase in the biodiversity of the benthic community in the vicinity of the area where hard substrate is introduced is expected to occur (Wilhelmsson and Malm, 2008). This increase in diversity and productivity of the seabed communities expected may have an impact on fish and shellfish receptors, resulting in either attraction or increased productivity.

Magnitude of impact

10.7.236Up to 7.9km² of new hard substrate is likely to be created in the Project as a result of foundation installation, scour protection and cable protection, which represents less than 1.1% of the total seabed areas within the PEIR Boundary. The potential impact is predicted to be of local spatial extent, and of long-term duration, continuous and irreversible (during the lifetime of the Project). It is predicted that the impact has the potential to affect fish and shellfish receptors both directly and indirectly, and therefore the magnitude of effect is therefore considered to be low.

Sensitivity of the receptor

- 10.7.237Sandeel preferred habitats and spawning areas are typically dominated by coarse sediments and sandy habitats. The array area and offshore ECC are located in preferred sandeel habitat and spawning grounds (see Figure 10.18). Due to the demersal nature of sandeel spawning, and their specific habitat requirements, they are considered to be of high vulnerability to permanent changes in the substrate, with no ability for recovery, and of regional importance. As a result of this, sandeel are of medium sensitivity to this impact.
- 10.7.238Herring are also demersal spawners, reliant upon the presence of suitable substrates for spawning (i.e., gravelly sediments). Herring spawning habitats are widely distributed across the southern North Sea. The overlap of the Project with herring spawning grounds is small compared to the overall extent of the Banks herring spawning ground across the southern North Sea (overlap of the Project of approximately 0.5% of the Banks herring spawning grounds (Coull *et al.*, 1998). Herring is deemed to be of medium vulnerability to temporary habitat loss, and of regional importance within the southern North Sea, and therefore are considered to be of medium sensitivity.
- 10.7.239Pelagic spawners (cod, plaice, whiting, lemon sole, mackerel, sole, sprat) with spawning grounds overlapping the project are widespread across the southern North Sea and do no display substrate dependency (unlike herring and sandeel). These VERs are therefore considered to be of low vulnerability and medium recoverability and so are assessed as being of low sensitivity.

- 10.7.240There is the potential for positive effects on crustacean species, such as brown crab and European lobster, due to expansion of their natural habitats (Linley *et al.*, 2007) and the creation of additional refuge areas. Novel habitats and new potential food sources may be created from foundations and scour protection installed in areas of sandy and coarse sediments, which could extend the habitat ranges of some shellfish species. However, the colonisation of new habitats by shellfish receptors could lead to the introduction of non-indigenous and invasive species (see Volume 1, Chapter 9: Benthic and Intertidal Ecology for detailed discussion), this may have indirect adverse effects on shellfish populations as a result of competition. However, the implementation of a PEMP, which will include a biosecurity plan, will ensure that the risk of potential introduction and spread INNS will be minimised. Taking the above into consideration, shellfish receptors are deemed to not be vulnerable to increased hard substrate and structural complexity and are considered to be of local to regional importance to the area. Shellfish are therefore considered to be of low sensitivity to this impact.
- 10.7.241 Mobile VERs (without spawning grounds within the vicinity of the project) are widespread across the southern North Sea and do no display substrate dependency behaviours (unlike herring and sandeel). These VERs are therefore considered to be of low vulnerability and medium recoverability and so are assessed as being of low sensitivity.

- 10.7.242There is some uncertainty associated with the likely effects of introduction of hard substrates into the marine environment on fish and shellfish receptors. Fish populations are unlikely to show noticeable benefits as a result of this impact, though there is evidence that shellfish populations (particularly brown crab and European lobster) would benefit from the introduction of hard substrates (Roach and Cohen, 2015; Hooper and Austen, 2014; Krone *et al.*, 2013). Demersal spawners, herring and sandeel, are considered to have increased sensitivity to the introduction of hard substrate, due to their specific habitat requirements.
- 10.7.243Overall, the magnitude of the impact on all receptors has been assessed as low. Herring and sandeel, having specific requirements for spawning habitats, are considered to be of medium sensitivity, with all other fish and shellfish species considered to be of low sensitivity. The significance of the effect is therefore considered to be **minor (adverse)** for all receptors, which is not significant in EIA terms.

Impact 9: Direct disturbance resulting from O&M activities

10.7.244Direct disturbance is likely to occur during the operational phase of the project as a result of major repairs within the array (including jack-up operations, cable repairs/replacements, and repairs to OSSs and accommodation platforms), along the cable corridor (cable reburial, protection replacement and cable repairs/replacements).

Magnitude of impact

- 10.7.245The maximum area of disturbance to subtidal habitat will arise from cable repair and/or replacement during the operation and maintenance phase of the development (including de-burial and reburial of export and array cables). The maximum area of direct damage is presented in Table 10.7, and equates to approximately 0.7% of the total seabed areas within the PEIR Boundary over the operational lifetime of the project. Given that the habitats are common and widespread throughout the region impacts from the individual O&M activities will represent a very small footprint compared to their overall extent.
- 10.7.246In general, fish are able to avoid temporary direct disturbance (EMU, 2004). Shellfish species are considered to have a more limited ability to avoid direct effects due to the relative energetic costs or speed of movement (i.e., scallops) or behaviours (e.g., during breeding) that may make them more susceptible to direct effects due to a sedentary habitat.
- 10.7.247Due to the predicted local spatial extent, short-term duration and intermittent and reversible nature of the impact, the magnitude of the impact will be low.

Sensitivity of the receptor

10.7.248The sensitivities of fish and shellfish receptors to direct damage and disturbance assessed as having a maximum sensitivity of medium.

Significance of effect

10.7.249The impact of direct damage and disturbance on fish and shellfish receptors is considered to be of low magnitude, and the maximum sensitivity of the receptors is considered to be medium. The significance of the effect is therefore concluded to be **minor (adverse)**, which is not significant in EIA terms.

Impact 10: EMF effects arising from cables

- 10.7.250EMFs are produced as a result of the electricity passing through the cables (inter-array and export cables). EMFs will result from operation of up to 351km of inter-array cable, up to 123.75km of interlink cables and 514.8km of export cable. Three different EMF types can be generated by offshore wind cables: electric fields (E fields); magnetic fields (B fields); and induced electric fields (iE fields). Industry standard offshore wind cables all contain shielding which prevents E fields from passing into the marine environment and as such, these are not considered any further.
- 10.7.251Cable shielding does not however significantly alter or prevent the emission of B fields. It is the movement of the B fields within a medium (i.e., seawater) which generates iE fields. These iE fields can either be produced by the movement of the alternating B field (in the case of alternating current (AC) transmission) through the seawater or by the movement of seawater and/or an organism through a static B field (in the case of direct current (DC) transmission).

Magnitude of impact

- 10.7.252Many fish and shellfish species are thought to be able to sense electric and magnetic fields, with some species having developed specialised organs to facilitate this. The most wellknown example of these is the Ampullae of Lorenzini in elasmobranchs, with this group of animals using electroreceptors to find prey. iE fields may cause either attraction or repulsion, with varying strength fields having been demonstrated to cause both reactions (Gill and Taylor, 2001; Yano *et al.*, 2000; Kimber *et al.*, 2011; Kalmijn, 1982). The threshold for the change between attraction and avoidance of E fields in elasmobranchs is considered to be between 400-1,000μV/m (reviewed in CMACS, 2012) and these levels would only likely be found at or within 1–2m of the seabed for a cable buried at 1m. For deeper burial, the iE field at the seabed would be correspondingly lower.
- 10.7.253In a review by Tricas and Gill (2011) it was noted that the sensitivity of elasmobranchs to E fields was highest at frequencies of 1-10Hz, with a broader response frequency range of 0.01-25Hz where fields intensities of 10x or greater were required to elicit a reaction. This suggests that weak fields such as those generated by offshore wind AC cables are likely to be mostly undetectable.
- 10.7.254Some fish species are known to have magneto-receptors, with this thought to primarily be for the purposes of navigation (Walker *et al.*, 2007). However, most of the research to date on magneto-reception in fish has been undertaken in migratory species such as Salmonidae, Anguillidae and Scombridae, with information on other species being limited (reviewed in Tricas and Gill, 2011). There have been suggestions (Gill and Kimber, 2005) that the presence of magnetic fields generated by cables may interrupt navigation and consequently migration.
- 10.7.255EMFs monitored around subsea electricity cables have been shown to attenuate exponentially vertically and horizontally away from the cables, with the magnetic field generated by the cables typically having reached zero within 10m of the cable (reviewed by Tricas and Gill, 2011). Burial of the cables and protection with cable protection where shallow buried or surface laid will not reduce the strength of the fields, however, it moves the cables further from the receptors, and as such the receptors will be subject to reduced field strengths.
- 10.7.256The impact is predicted to be highly localised, long-term duration, continuous and irreversible (within the lifetime of the project). It is predicted that the impact will affect fish and shellfish receptors directly. The magnitude is therefore considered to be low.

Page **166** of **197**

- 10.7.257 Many marine invertebrates are thought to be magneto-sensitive, with this often being used for navigational purposes (migration etc.). However, evidence for potential impacts from anthropogenic B fields is limited and can be contradictory even within the same species. Studies on the green shore crab Carcinus maenas have been directly contradictory, with one study demonstrating reduced aggression in response to AC B fields matching those from an offshore wind farm (Everitt, 2008), however, another study showed no effects from static B fields (Bochert and Zettler, 2004). Brown shrimp were recorded as being attracted to B fields of the magnitude expected from offshore wind cabling (ICES, 2003). One recent study (Hutchinson et al., 2020) has suggested potential changes to exploratory behaviour in American lobster Homarus americanus in response to DC B fields when in tanks placed near a subsea cable. Recent studies have also identified both behavioural (Scott et al., 2018) and physiological (Scott et al., 2021) reactions in brown crab from EMF. Scott et al. (2018) suggests that the natural roaming behaviour, where individuals will actively seek food and/or mates has been overridden by an attraction to the source of the EMF (strength $2,800\mu T$ to $40,000\mu T$). However, the exposure to EMF does not affect the activity levels of the crabs but affects their ability to select a site to rest. Scott *et al.* (2021) investigated the effects of EMF (strengths 250μ T, 500μ T and 1000μ T) from submarine power cables on edible crab, showed limited physiological and behavioural effects on the crabs exposed to EMF of 250 μ T. EMFs of 500 μ T or above showed physiological stress in crabs, and changes to behavioural trends, specifically an attraction to EMF. It is to be noted however, that these studies investigated EMF strengths significantly higher than those that receptors will typically be exposed to as a result of offshore wind cables in the marine environment. Specifically, the lowest experimental EMF used in Scott et al. (2021) was a factor of 10 higher than that expected for the Project, with no impacts identified at this EMF strength. Effects were only noted in these studies using EMF strengths which were a factor of 20 - 1,000 higher than those expected from the Project cables. Therefore, it is considered that it is unlikely that there would be any impacts to crustaceans from EMF. Taking this into consideration, any effects on marine invertebrates are anticipated to only occur in the immediate vicinity of the cable. Therefore, marine invertebrates are deemed to be of low sensitivity to impacts from EMF.
- 10.7.258Elasmobranchs (sharks, skates and rays), especially demersal species, are known to be the most electro-receptive of all fish. A study commissioned by the MMO (2014) found no evidence to suggest that EMF posed a significant risk to elasmobranchs at the site or population level. A recent study by Hutchison *et al.* (2020) observed an increase in exploratory/foraging behaviour in little skate *Leucoraja erinacea* in response to EMF. Taking this into consideration, elasmobranchs are deemed to be of low sensitivity to impacts from EMF.

Page **167** of **197**

- 10.7.259Studies on European eel have shown some deviation from migratory routes in response to low (5µT) DC B fields, however, the effects were short-term and short scale and not thought to impact on overall migration (Westerberg, 2000; Ohman *et al.*, 2007). Interestingly, no effects were seen in European eel from AC fields of 9.6µT (Orpwood *et al.*, 2015), suggesting that there may be differences in effects between DC and AC cabling. A review of potential effects of EMF on migratory fish for Scottish Natural Heritage (Gill and Bartlett, 2010) identified that there was insufficient evidence to be able to confirm whether any impacts would arise from the field strengths generated by offshore wind farm cabling. Taking this into consideration, it is considered unlikely that EMF will impact any migratory behaviours, and therefore migratory species are deemed to be of low sensitivity to impacts from EMF.
- 10.7.260A broad scale study of fish aggregations and directional movement around cable at Nysted offshore wind farm in Denmark, showed no evidence of any change in directionality or distribution of species as a result of the cable installation (Hvidt *et al.*, 2004). Taking this into consideration, all other fish VERs are deemed to be of low sensitivity to impacts from EMF.

10.7.261The power cables used for the project will produce both magnetic and induced electric fields in the surrounding water sediment and water column. The EMFs created will rapidly attenuate away from the cables and are unlikely to be at strengths which would result in any impacts to fish and shellfish. Overall, it is predicted that the sensitivity of fish and shellfish receptors to EMF from the project is considered to be low and the magnitude is deemed to be low. The significance of the effect is therefore considered to be **minor** (adverse), which is not significant in EIA terms.

Decommissioning

Impact 11: Mortality, injury and behavioural changes resulting from underwater noise arising from decommissioning activity

10.7.262Decommissioning of offshore infrastructure for the Project may result in temporarily elevated underwater noise levels which may have effects on fish and shellfish species, with subsequent effects on spawning and nursery habitats. These elevated noise levels may be due to increased vessel movements and removal of the turbine foundations with the resulting noise levels dependant on the method used for removal of the foundation. The decommissioning sequence will generally be the reverse of the construction sequence and involve similar types and numbers of vessels and equipment. The maximum levels of underwater noise during decommissioning would be from underwater cutting required to remove structures, with piled foundations cut approximately 1m below the seabed. The noise levels from this process are expected to be much less than pile driving and therefore impacts would be less than as assessed during the construction phase.

Page **168** of **197**

10.7.263Studies of underwater construction noise (decommissioning) reported source levels which are similar to those reported for medium sized surface vessels and ferries (Malme *et al.*, 1989; Richardson *et al.*, 1995). The noise resulting from wind turbine decommissioning employing abrasive cutting is unlikely to result in any injury, avoidance or significant disturbance of local marine animals. Some temporary minor disturbance might be experienced in the immediate vicinity of the decommissioning activity, for example, from dynamically positioned vessels. The impact is predicted to be of highly local spatial extent, short-term duration, intermittent and reversible. Based on the information available at the time of writing, and due to the localised spatial extent, the expected magnitude is considered to be negligible for all receptors. The sensitivity of all receptors to underwater noise is a maximum of medium. Therefore, the significance of the effect is considered to be a maximum of minor (adverse), which is not significant in EIA terms.

Impact 12: Temporary increase in SSC and sediment deposition

- 10.7.264Increases in SSC and sediment deposition from the decommissioning works will be similar to that for construction and are of a similar magnitude. The magnitude of the impact and the sensitivities of fish and shellfish to increased SSC and sediment deposition are described in detail in paragraph 10.7.47 *et seq*.
- 10.7.265Overall, the magnitude of the impact has been assessed as minor adverse, with the maximum sensitivity of receptors assessed as medium. Therefore, the significance of effect from changes in SSC and associated sediment deposition occurring as a result of decommissioning activities is considered to be **minor (adverse)** for all receptors, which is not significant in EIA terms.

Impact 13: Temporary seabed habitat loss/disturbance

- 10.7.266Temporary habitat loss and disturbance from the decommissioning works will be similar to that for construction and are of similar magnitude. The magnitude of the impact and the sensitivities of fish and shellfish to temporary habitat loss and disturbance are described in detail in paragraph 10.7.58 *et seq*.
- 10.7.267The magnitude of the impact was determined to be low, with the maximum sensitivity of the receptors being medium. Therefore, the significance of the effect of temporary seabed habitat loss/disturbance occurring as a result of decommissioning activities is a maximum of **minor (adverse)**, which is not significant in EIA terms.

Impact 14: Direct and indirect seabed disturbances leading to the release of sediment contaminants

- 10.7.268Direct and indirect seabed disturbances leading to release of sediment contaminants from the decommissioning works will be similar to that for construction and are of a similar magnitude. The magnitude of the impact and the sensitivities of fish and shellfish to the impact are detailed in paragraph 10.7.67 *et seq*. of this chapter.
- 10.7.269To summarise, the resuspension of contaminants as a result of sediment disturbance is predicted to occur on a small scale, with contaminants predicted to be rapidly dispersed by the tide. Overall, the magnitude of the impact is deemed to be negligible, and the maximum sensitivity of receptors is considered to be medium. The significance of the effect is therefore considered to be a maximum of **minor (adverse)**, which is not significant in EIA terms.

Impact 15: Direct damage (e.g., crushing) and disturbance to mobile demersal and pelagic fish species

- 10.7.270Direct damage and disturbance from the decommissioning works will be similar to that for construction and are of a similar magnitude. The magnitude of the impact and the sensitivities of fish and shellfish to the impact are detailed in paragraph 10.7.72 *et seq*. of this chapter.
- 10.7.271The magnitude of the impact has been assessed as low for sandeel (due to the small area affected relative to the wider spawning habitat). The maximum sensitivity of receptors is considered to be medium and the magnitude of impact has been assessed as negligible. The significance of the effect is therefore considered to be a maximum of **minor (adverse)**, which is not significant in EIA terms.

Impact 16: Loss of additional habitat arising from the removal of infrastructure that have been used by fish and shellfish communities during the operational phase of the project

- 10.7.272Temporary habitat loss/disturbance from the decommissioning works will be similar to that for construction and are of a similar magnitude. The magnitude of the impact and the sensitivities of fish and shellfish to the impact are detailed in paragraph 10.7.189 *et seq*.
- 10.7.273To summarise, temporary habitat loss or disturbance from decommissioning works will represent a spatially discrete impact, of short term and intermittent nature, affecting a small proportion of the fish and shellfish habitats within the study area.
- 10.7.274The impact of habitat loss/disturbance on fish and shellfish receptors is considered to be of low magnitude, and the maximum sensitivity of the receptor is considered to be medium. The significance of the effect is therefore concluded to be **minor (adverse)**, which is not significant in EIA terms.

10.8 Cumulative Effects Assessment

- 10.8.1 This CEA for fish and shellfish ecology has been undertaken in accordance with the methodology provided in Volume 2, Appendix 5.1: Offshore Cumulative Effects Assessment.
- 10.8.2 The projects and plans selected as relevant to the assessment of impacts to fish and shellfish ecology are based upon an initial screening exercise undertaken on a long list. Each project, plan or activity has been considered and scoped in or out on the basis of effect-receptor pathway, data confidence and the temporal and spatial scales involved.
- 10.8.3 For potential effects on fish and shellfish, planned projects were screened into the assessment based on a screening range that encapsulates the project fish and shellfish study area as defined by the secondary ZoI, which has been defined based on the expected maximum distance that sediment within the Project might be transported on a single mean spring tide, in the flood and/or ebb direction. An additional screening range of 100km has also been applied around the array areas to encapsulate potential cumulative impacts from underwater noise. This screening area therefore encompasses the extent of impacts to fish and shellfish ecology associated with the project.
- 10.8.4 The operational projects included within Table 10.19 are included due to their completion/commissioning occurring subsequent to the data collection process for the Project, and as such are not included within the baseline characterisation. Note that this table only includes the projects screened into the assessment for fish and shellfish ecology.

Table 10.19: Projects considered within the fish and shellfish ecology cumulative effect assessment

Development type	Project	Status	Data confidence assessment/phase	Tier	Reason for inclusion in CEA
Offshore Wind	Scroby Sands	Active/In Operation	High - Third party project details	Tier 1	Potential cumulative impact exists Temporal overlap with
1 di lili		operation	confirmed as being 'accurate' by The		the Project construction
			Crown Estate		during Scroby Sands
					decommissioning.
	Norfolk Boreas	Consented	High - Third party project details	Tier 1	Potential cumulative impact
			published in the public domain and		exists. Temporal overlap with
			confirmed as being 'accurate' by The		construction.
			Crown Estate.		
	Sheringham Shoal	Examination	High - Third party project details	Tier 1	Potential cumulative impact
	Extension		published in the public domain and		exists. Temporal overlap with
			confirmed as being 'accurate' by The		construction.
			Crown Estate.		
	Dudgeon	Examination	High - Third party project details	Tier 1	Potential cumulative impact
	Extension		published in the public domain and		exists. Temporal overlap with
			confirmed as being 'accurate' by The		construction.
			Crown Estate.		
	Dudgeon	Active/In	High - Third party project details	Tier 1	Part of the baseline but has
		Operation	published in the public domain and		ongoing impact and is
			confirmed as being 'accurate' by The		therefore considered relevant
			Crown Estate.		to the CIA.
	Lincs	Active/In	High - Third party project details	Tier 1	Part of the baseline but has
		Operation	published in the public domain and		ongoing impact and is
			confirmed as being 'accurate' by The		therefore considered relevant
			Crown Estate.		to the CIA.
	Race Bank	Active/In	High - Third party project details	Tier 1	Part of the baseline but has
		Operation	published in the public domain and		ongoing impact and is

Development type	Project	Status	Data confidence assessment/phase	Tier	Reason for inclusion in CEA
			confirmed as being 'accurate' by The		therefore considered relevant
			Crown Estate.		to the CIA.
	Inner Dowsing	Active/In	High - Third party project details	Tier 1	Part of the baseline but has
		Operation	published in the public domain and		ongoing impact and is
			confirmed as being 'accurate' by The		therefore considered relevant
			Crown Estate.		to the CIA.
	Triton Knoll	Active/In	High - Third party project details	Tier 1	Part of the baseline but has
		Operation	published in the public domain and		ongoing impact and is
			confirmed as being 'accurate' by The		therefore considered relevant
			Crown Estate.		to the CIA.
	Hornsea Project	Consented	High - Third party project details	Tier 1	Potential cumulative impact
	Three		published in the public domain and		exists. Temporal overlap with
			confirmed as being 'accurate' by The		construction.
	Llamana Dusiant	la Disercia a	Crown Estate.	Tion 1	Detertial availative increast
	Hornsea Project	In Planning	High - Inito party project details	Tier I	Potential cumulative impact
	Four		published in the public domain and		exists. Temporal overlap with
			Crown Estate		
Aggregate	Westminster	Operation	High - Third party project details	Tier 1	Potential ongoing cumulative
Production Area	Gravels Ltd		published in the public domain and		impact exists.
	(515/2)		confirmed as being 'accurate' by the		
			developer.		
	Westminster	Operation	High - Third party project details	Tier 1	Potential ongoing cumulative
	Gravels Ltd		published in the public domain and		impact exists.
	(515/1)		confirmed as being 'accurate' by the		
			developer.		
	Hanson	Operation	High - Third party project details	Tier 1	Potential ongoing cumulative
	Aggregates		published in the public domain and		impact exists.

Development type	Project	Status	Data confidence assessment/phase	Tier	Reason for inclusion in CEA
	Marine Ltd		confirmed as being 'accurate' by the		
	(106/2)		developer.		
	Hanson	Operation	High - Third party project details	Tier 1	Potential ongoing cumulative
	Aggregates		published in the public domain and		impact exists.
	Marine Ltd		confirmed as being 'accurate' by the		
	(106/3)		developer.		
	Hanson	Operation	High - Third party project details	Tier 1	Potential ongoing cumulative
	Aggregates		published in the public domain and		impact exists.
	Marine Ltd		confirmed as being 'accurate' by the		
	(106/1)		developer.		
	Hanson	Operation	High - Third party project details	Tier 1	Potential ongoing cumulative
	Aggregates		published in the public domain and		impact exists.
	Marine Ltd (400)		confirmed as being 'accurate' by the		
		a	developer.		
	Tarmac Marine	Operation	High - Third party project details	Tier 1	Potential ongoing cumulative
	Ltd (197)		published in the public domain and		impact exists.
			confirmed as being 'accurate' by the		
	Tannaa Marina	Oraquetica	developer.	Tion 1	Determinel an active annualities
	Tarmac Marine	Operation	High - Third party project details	TIELT	Potential ongoing cumulative
	LLU (493)		confirmed as being (accurate' by the		Impact exists.
			doveloper		
	Innor Dowsing	Operation	High _ Third party project details	Tior 1	Retential engoing cumulative
	Tarmac Marine	Operation	nublished in the nublic domain and	TICLT	impact exists
	1+d (/181/1)		confirmed as being 'accurate' by the		
			Crown Estate		
	Inner Dowsing	Operation	High - Third party project details	Tier 1	Potential ongoing cumulative
	Tarmac Marine		published in the public domain and		impact exists.
	Ltd (481/2)				

Development type	Project	Status	Data confidence assessment/phase	Tier	Reason for inclusion in CEA
			confirmed as being 'accurate' by the		
			Crown Estate		
	Inner Dowsing Operation Hanson (Exploration		Low – no information available	Tier 3	Potential ongoing cumulative
					impact exists.
	Aggregates	and Option			
	Marine Ltd (1805)	Area,			
		application for			
		Extraction			
		expected			
		shortly)			
	Aggregate Tender	Tender Area	Low – no information available	Tier 3	Potential ongoing cumulative
	Area (2103)	(2021/2022)			impact exists.
Subsea Cables	Viking Link	Under	Medium – Third party project details	Tier 1	Not part of the baseline, and
	Interconnector	Construction	published in the public domain but		so potential cumulative
			not confirmed as being 'accurate'		impact exists.

- 10.8.5 Certain impacts assessed for the Project alone are not considered in the cumulative assessment due to:
 - The highly localised nature of the impacts (i.e., they occur entirely within the PEIR Boundary only);
 - Management measures in place for the Project will also be in place on other projects reducing the risk of impacts occurring; and/or
 - Where the potential significance of the impact from the Project alone has been assessed as negligible.
- 10.8.6 The impacts that have been considered in the CIA are as follows:
 - Construction phase:
 - Cumulative mortality, injury and behavioural changes resulting from underwater noise; and
 - Cumulative increase in SSC and sediment deposition.
- 10.8.7 The cumulative MDS described in Table 10.20 have been selected as those having the potential to result in the greatest cumulative effect on an identified receptor group. The cumulative impacts presented and assessed in this section have been selected from the details provided in the project description for the Project, as well as the information available on other projects and plans in order to inform a cumulative MDS. Effects of greater adverse significance are not predicted to arise should any other development scenario, based on details within the project design envelope to that assessed here, be taken forward in the final design scheme.

Table 10.20:	Cumulative	MDS for f	fish and	shellfish	ecology
--------------	------------	-----------	----------	-----------	---------

Potential effect	Scenario		Justification
Cumulative mortality, injury and behavioural changes resulting from underwater noise	 Tier 1: Tier 2: No Tier 3: No 	Decommissioning of Scroby Sands OWF Construction of Norfolk Boreas OWF Construction of Hornsea Project Three OWF Construction of Hornsea Project Four OWF Construction of Sheringham Shoal Extension OWF Construction of Dudgeon Extension OWF Tier 2 projects identified Tier 3 projects identified	If these intermittent activities overlap temporally with either the construction or maintenance of the Project, there is potential for cumulative effects from underwater noise to occur which may impact fish and shellfish populations.

Potential effect	Scenario		Justification
Cumulative increase in SSC and sediment deposition	 Tier 1: . .	O&M of OWF (Dudgeon, Lincs, Race Bank, Inner Dowsing, Triton Knoll) Construction and O&M of Sheringham Shoal Extension Construction and O&M of Dudgeon Extension Operation of aggregate production areas including Westminster Gravels Ltd (515/1, 515/2), Hanson Aggregates Marine Ltd (106/1, 106/2, 106/3, 400), Tarmac Marine Ltd (197, 493), Inner Dowsing Tarmac Marine Ltd (481/1) and Inner Dowsing Tarmac Marine Ltd (481/2) Viking Link Interconnector cable Tier 2 projects identified Aggregate Area 1805 (Inner Dowsing Hanson Aggregates Marine Ltd). Aggregate Tender Area 2103.	If these intermittent activities overlap temporally with either the construction or maintenance of the Project, there is potential for cumulative SSC and sediment deposition to occur within the modelled plume footprints.

10.8.8 A description of the significance of cumulative effects upon fish and shellfish ecology arising from each identified impact is given below.

Impact 17: Cumulative mortality, injury and behavioural changes resulting from underwater noise

- 10.8.9 There is potential for cumulative mortality, injury and behavioural changes from noise and vibration as a result of construction and decommissioning activities associated with the Project and other projects. For the purposes of this assessment, this additive impact has been assessed within 100km of the Project, which is considered a precautionary buffer upon which to screen in/out projects within the area.
- 10.8.10 The greatest risk of cumulative impacts of underwater noise on fish and shellfish has been identified as being that produced by impact piling during the construction phase of other offshore wind farm sites within 100km of the Project, including the decommissioning of Scroby Sands and construction of Norfolk Boreas, Hornsea Projects Three and Four, and Sheringham Shoal and Dudgeon Extensions.

- 10.8.11 Injury or mortality of fish and shellfish from piling noise and decommissioning activities would not be expected to occur cumulatively due to the small range within which potential injury effects would be expected (i.e., predicted to occur within a few km of the piling activity from each of the offshore wind farm projects) and the large distances between the offshore energy projects. Cumulative effects of underwater noise are therefore discussed in the context of behavioural effects, particularly on spawning or nursery habitats.
- 10.8.12 Piling operations will represent intermittent occurrences at these offshore wind farm sites with each individual piling event likely to be similar in duration to those at the Project. For the Project, the temporal MDS for piling duration is for the sequential installation of 4 piled jacket foundations for up to 93 WTGs, for up to 6 hours per pile (Table 10.12).

Table 10.21: Cumulative piling durations for the Project and other offshore wind farms within a representative 100 km buffer of the Project (where construction or decommissioning occurs concurrently)

Project	Maximum total active piling time	Source
Tier 1 OWFs		
The Project	3,240 hours (135 days)	Volume 1, Chapter 3: Project Description
Scroby Sands	152 hours (6.3 days)	Total duration taken from ES (PowerGen
		Renewables Offshore Ltd, 2001) for the
		piling of all infrastructure assuming four
		hours per pile (construction duration used
		as proxy for decommissioning)
Norfolk Boreas	1,167 hours (48.6 days)	Total duration taken from ES (Vattenfall,
		2019) for the piling of all infrastructure
		assuming 1.5 hours per pile.
Hornsea Project	7,392 hours (308 days)	Total duration taken from ES (Ørsted, 2018)
Three		for the piling of all infrastructure assuming
		four hours per pile.
Hornsea Project	3,312 hours (138 days)	Total duration taken from ES (Ørsted, 2021)
Four		for the piling of all infrastructure assuming
		four hours per pile.
Sheringham Shoal	300 hours (12.5 days)	Total duration taken from ES (Equinor,
Extension		2022) for the piling of all infrastructure
		assuming three hours per pile.
Dudgeon Extension	384 hours (15 days)	Total duration taken from ES (Equinor,
		2022) for the piling of all infrastructure
		assuming three hours per pile.
Total duration	15,947 hours (664.5 days)	

10.8.13 The following paragraphs describe the spatial extent of potential behavioural effects on fish and shellfish species. Each of the impact assessments consider the MDS for hammer energy and/or the largest pile diameter and therefore result in the greatest propagation ranges. It should be noted, however, that the specific assessments used in the individual projects below may have used behavioural response criteria which differ from the approach used for the current Project and from the other projects in the cumulative assessment.

- 10.8.14 The project specific assessments were undertaken using the best scientific evidence available at the time that the assessments were drafted. However, more recent papers on the effects of underwater noise on fish and shellfish species have highlighted the lack of clear evidence to support setting thresholds for impacts on fish and shellfish receptors (Hawkins and Popper, 2016; Popper *et al.* 2014). These papers have highlighted some of the shortcomings of historic impact assessments, including the use of broad criteria for injury and behavioural effects based on limited studies. As such, it is not appropriate to make direct comparisons between the behavioural response ranges across projects. However, the following paragraphs do give an indication of the extents of behavioural responses from fish and shellfish to support this cumulative assessment.
- 10.8.15 The Scroby Sands OWF ES assessed the MDS for noise impacts from piling activities and concluded no detrimental effects on fish receptors from all phases of the project (PowerGen Renewables Offshore Ltd, 2001).
- 10.8.16 The Norfolk Boreas OWF ES (Vattenfall, 2019) assessed MDS for noise impacts from the installation of monopiles using the maximum hammer energy (5,000kJ). This assessment assumed a maximum of 90 WTGs on monopile foundations across the site and predicted behavioural effects up to 6.5km from the piling locations. The assessment predicted no significant effects on all fish and shellfish receptors.
- 10.8.17 The Hornsea Project Three OWF (Ørsted, 2018) assessed MDS for noise impacts from the installation of monopiles using the maximum hammer energy (5,000kJ). This assessment assumed a maximum of 319 monopiles across the site and predicted behavioural effects up to 10.8km from the piling locations. The assessment predicted no significant effects on all fish and shellfish receptors during the construction phase of the development.
- 10.8.18 The Hornsea Project Four OWF (Ørsted, 2021) assessed MDS for noise impacts from the installation of monopiles using the maximum hammer energy (5,000kJ). This assessment assumed a maximum of 180 monopile WTG foundations and predicted TTS up to 38km from the piling locations. A qualitative assessment using the Popper *et al.* (2014) behavioural criteria was undertaken to determine the potential for behavioural effects on fish and shellfish receptors from underwater noise. The assessment predicted no significant effects on all fish and shellfish receptors.
- 10.8.19 The Sheringham Shoal and Dudgeon OWF Extension projects (Equinor, 2022) assessed MDS for noise impacts from the installation of monopiles using the maximum hammer energy (5,500kJ). This assessment assumed a maximum of 30 and 23 monopiles for Sheringham Shoal and Dudgeon Extension, respectively, with predicted behavioural effects up to 34km and 39km from the piling locations. The assessment predicted no significant effects on all fish and shellfish receptors.
- 10.8.20 The cumulative impact of underwater noise on fish and shellfish is predicted to be of regional spatial extent, medium term duration (i.e., cumulatively over approximately seven years), intermittent and reversible. It is predicted that the impact will affect the receptor directly. The magnitude is therefore considered to be **low**.

- 10.8.21 Sensitivities of fish and shellfish receptors to underwater noise are fully detailed in Section 10.7, Impact 1. Fish injury as a result of piling noise would only be expected in the immediate vicinity of piling operations and the area within which effects of fish larvae would be expected is similarly small. It is unclear, however, whether effects on fish larvae would include injury or mortality. Effects on shellfish species are also predicted to be limited as these species are less sensitive to noise than fish species and would only be affected at ranges much less than those predicted for fish.
- 10.8.22 Behavioural effects on fish species as a result of piling noise are predicted to be dependent on the nature of the receptors, with larger impact ranges predicted for pelagic fish rather than for demersal fish species. The predicted behavioural response may be sufficient to result in temporary avoidance of these areas by these species, with some temporary redistribution of fish in the wider area between the affected areas. Between piling events, fish may resume normal behaviour and distribution, as evidenced by work of McCauley *et al.* (2000) which showed that fish returned to normal behavioural patterns within 14 to 30 minutes after the cessation of seismic airgun firing. However, there are some uncertainties over the response of fish to intermittent piling over a prolonged period and the extent that behavioural reactions will cause a negative effect in individuals.
- 10.8.23 The proportions of fish spawning and nursery habitats predicted to be affected by underwater noise from piling operations are expected to be small, particularly in the context of available spawning and nursery habitats within the southern North Sea (particularly for pelagic spawning species). The maximum sensitivity of fish receptors to underwater noise is considered to be **medium**.
- 10.8.24 Shellfish are considered to be less sensitive to noise than fish as they do not possess a swim bladder. However, they do show some sensitivity to increased particle motion (Roberts *et al.* 2016), with studies showing behavioural changes in shellfish in response to increased noise levels (Samson *et al.* 2016; Spiga *et al.* 2016). As a result of this, the sensitivity of shellfish is considered to be **low**.
- 10.8.25 The impact of cumulative mortality, injury and behavioural changes arising from noise and vibration is considered to be of low magnitude and the maximum sensitivity of receptors affected is considered to be medium for fish and shellfish species. The significance of the residual effect is therefore concluded to be **minor (adverse)**, which is significant in EIA terms.

Impact 18: Cumulative temporary increases in SSC and sediment deposition

10.8.26 Due to uncertainty associated with the exact timing of other projects and activities, there is insufficient data on which to undertake a quantitative or semi-quantitative assessment. As such, the discussion presented here is qualitative. It is considered highly unlikely that each of the identified projects would be undertaking major maintenance works, in particular asset reburial or repairs, as these are infrequent occurrences during the lifetime of developments.

Page **180** of **197**

- 10.8.27 Sediment plumes from operational and maintenance activities are generally short-lived, with major maintenance works infrequent. Any impacts from operational offshore wind farm export cables, pipelines, and oil and gas activities are therefore likely to be short-lived and of localised extent, with limited opportunity to overlap with Project-related activities. The Viking Link Interlink is currently in construction and is expected to be in service by the end of 2023, therefore maintenance-related impacts are similarly considered to be primarily short-lived and localised. Accordingly, the potential for cumulative interaction with these sites is limited and therefore has not been assessed further.
- 10.8.28 Aggregate Area 515/2 ('Outer Dowsing') is located approximately 1.1km from the Project array area, and 0km from the offshore ECC, as shown in Figure 10.35. In addition, Area 481/1 ('Inner Dowsing') is located 1.3km south of the offshore ECC, and Areas 5.15/1, 106/3, and 400 are located between 2.5km and 3km north of the offshore ECC. In addition, the Exploration and Option Area 1805 ('Inner Dowsing') overlaps with the offshore ECC, as shown in Figure 10.35, and an application is expected shortly for a production licence. Area 2103, also overlapping the offshore ECC (see Figure 10.35) has been selected by TCE within the 2021/22 marine aggregates tender round, and is subject to the outcome of a plan-level HRA. Due to uncertainty associated with the timing, possible extent, or license outcome of Tender Area 2103, this area has not been assessed further. Area 2103 may be incorporated into future assessments as more information becomes available.
- 10.8.29 On the basis of sediment plume modelling presented in Part 6, Volume 1, Chapter 7: Marine Processes, it can reasonably be assumed that sediment plumes may be advected this distance from the Project infrastructure. This means that in theory, should Project construction related activities be occurring at the same time as aggregate extraction, there could be the potential for cumulative changes in SSC and bed levels. According to figures provided by British Marine Aggregate Producers Association (BMAPA) for the last five years, dredging intensity within these Areas located within the Humber Region primarily ranges from low (<15 minutes) to medium (15 minutes to 75 minutes), with only a small proportion dredged at a high intensity (>75 minutes).
- 10.8.30 As detailed by the numerical modelling within Part 6, Volume 1, Chapter 7: Marine Processes the levels of sediment dispersion are high, however almost all sediment plumes are indistinguishable from background levels after 20 hours. Given the short-lived nature of the sediment plumes, and the location of other infrastructure (Figure 10.35), there is not anticipated to be a notable overlap with concentrated sediment plumes created from other industry activities. Any overlap expected with aggregate dredging activities is likely to be temporary and restricted to the near field, with the magnitude of this change being assessed as low.
- 10.8.31 Full discussion of the sensitivity of fish and shellfish ecology receptors to increased SSC and sediment deposition is discussed in 10.7.150 *et seq.*, which conclude that the habitats that have the potential to be indirectly affected by increased SSC and deposition within the benthic subtidal and intertidal ecology study area have a worst case medium sensitivity to the expected levels of SSC and deposition.
- 10.8.32 The impact of cumulative temporary increases in SSC and deposition is considered to be of low adverse magnitude, and the maximum sensitivity of receptors affected is considered to be medium for fish and shellfish species. The significance of the residual effect is therefore concluded to be **minor adverse**, which is not significant in EIA terms.

10.9 Inter-Relationships

- 10.9.1 Inter-related effects consider impacts from the construction, operation or decommissioning of the Project on the same receptor.
- 10.9.2 Such inter-related effects include both:
 - Project lifetime effects: Assessment of the scope for effects that occur throughout more than one phase of the project (construction, O&M and decommissioning); to interact to potentially create a more significant effect on a receptor than if just assessed in isolation in these three key project stages (e.g. subsea noise effects from piling, operational WTGs, vessels and decommissioning); and
 - Receptor-led effects: Assessment of the scope for all effects to interact, spatially and temporally, to create inter-related effects on a receptor. As an example, all effects on benthic ecology such as direct habitat loss or disturbance, sediment plumes, scour, jack up vessel use etc., may interact to produce a different, or greater effect on this receptor than when the effects are considered in isolation. Receptor-led effects might be short-term, temporary or transient effects, or incorporate longer term effects.
- 10.9.3 A description of the process to identify and assess these effects is presented in Volume 1, Chapter 5: EIA Methodology, with a summary of assessed inter-relationships provided below.
- 10.9.4 Potential inter-relationships exist between fish and shellfish ecology and:
 - Benthic Ecology impacts to benthic ecology receptors may affect prey resource for fish and shellfish ecology receptors.
- 10.9.5 An assessment on the potential for effects on benthic ecology receptors was undertaken in Volume 1, Chapter 9, Benthic and Intertidal Ecology. The assessment concluded no significant effects from the construction, operation and maintenance and decommissioning of the Project, and therefore no significant effects on prey resource for fish and shellfish receptors are anticipated.

10.10 Transboundary Effects

- 10.10.1 Transboundary effects are defined as those effects upon the receiving environment of other European Economic Area (EEA) states, whether occurring from the Project alone, or cumulatively with other projects in the wider area. A screening of potential transboundary effects was undertaken at Scoping which identified that there was the potential for transboundary effects to occur on Annex II migratory fish species listed as features of European sites in other EEA States.
- 10.10.2 Potential transboundary effects that could arise include direct impacts as a result of underwater noise from piling operations during the installation of subsea infrastructure. Indirect impacts may occur from increased SSC and deposition from the placement/removal of foundations and cables in or on the seabed.

- 10.10.3 Underwater noise levels expected to elicit behavioural responses in certain migratory fish receptors, are predicted to extend up to 1,000s of metres several 10s of kilometres beyond the Project (for Group 3 migratory species, European eel, twaite shad and allis shad) and therefore have the potential to affect migratory fish species of the Netherlands, an EEA state (94km from the Project) during the construction period. These impacts were predicted to be short term and intermittent, with recovery of fish populations to affected areas following completion of all piling activities. Overall, the sensitivity of migratory fish receptors to this impact were assessed as low and the magnitude predicted to be low. The low magnitude, and maximum sensitivity of low results in a **minor** significance of effect, which is not significant in EIA terms.
- 10.10.4 Effects of increases in SSC are predicted to occur up to 15km from the Project and are therefore not predicted to extend into the waters of other EEA states. Effects on migratory fish species from all impacts, including habitat loss and disturbance and increases in SSC, were predicted to be not significant in EIA terms.

10.11 Conclusions

- 10.11.1 This chapter has assessed the potential effects on fish and shellfish ecology receptors arising from the Project. The range of potential impacts and associated effects considered has been informed by scoping responses, as well as reference to existing policy and guidance. The impacts considered include those brought about directly (e.g., by the presence of infrastructure at the seabed), as well as indirectly (e.g., the release of sediment contaminants from seabed disturbances). Potential impacts considered in this chapter, alongside any mitigation and residual effects are listed below in Table 10.22.
- 10.11.2 The impacts on relevant receptors from all stages of the project were assessed, including impacts from habitat loss, underwater noise, increased SSC and deposition and release of sediment contaminants.
- 10.11.3 All impacts throughout the construction, operation, and decommissioning phases, were found to have minor effects on fish or shellfish receptors within the study area (i.e., not significant in terms of the EIA Regulations). Cumulative impacts from underwater noise and increased SSC and deposition were assessed as minor significance, which is not significant in terms of the EIA Regulations.

Page **183** of **197**

Table 10.22: Summary of effects for fish and shellfish

Description of impact		Effect	Additional mitigation measures	Residual significance of effect
Construction				
Impact 1: Mortality, injury, behavioural impacts and auditory masking from underwater noise and vibration	Mortality and potential mortal injury	Group 1: Minor significance of effect Group 2: Minor significance of effect Group 3: Minor significance of effect All other receptors: Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects
	Recoverable Injury	Group 1: Minor significance of effect Group 2: Minor significance of effect Group 3: Minor significance of effect All other receptors: Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects
	TTS	Group 1: Minor significance of effect Group 2: Minor significance of effect Group 3: Minor significance of effect All other receptors: Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects

Description of impact		Effect	Additional mitigation measures	Residual significance of effect	
	Behavioural effects	Group 1: Minor significance of effect Group 2: Minor significance of effect Group 3: Minor significance of effect All other receptors: Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects	
Impact 2: Temporary increase in SSC and sediment deposition		Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects	
Impact 3: Temporary seabed habitat loss/disturbance		Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects	
Impact 4: Direct and indirect seabed disturbances leading to the release of sediment contaminants.		Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects	
Impact 5: Direct damage (e.g. crushing) and disturbance to demersal and pelagic fish and shellfish species arising from shellfish activities		Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects	
Operation and Maintenance					
Impact 6: Underwater noise as a result of operational turbines.		Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects	
Impact 7: Long-term loss of habitat due to the presence of turbine foundations, scour protection and cable protection.		Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects	

Description of impact	Effect	Additional mitigation measures	Residual significance of effect
Impact 8: Increased hard substrate and structural complexity, as a result of the introduction of turbine foundations, scour protection and cable protection.	Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects
Impact 9: Direct disturbance resulting from O&M activities.	Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects
Impact 10: EMF arising from cables.	Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects
Decommissioning			
Impact 11: Mortality, injury and behavioural changes resulting from underwater noise arising from decommissioning activity.	Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects
Impact 12: Increase in SSC and sediment deposition.	Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects
Impact 13: Temporary seabed habitat loss/disturbance	Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects
Impact 14: Direct and indirect seabed disturbances leading to the release of sediment contaminants.	Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects
Impact 15: Direct damage (e.g., crushing) and disturbance to mobile demersal and pelagic fish and shellfish.	Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects
Impact 16: Loss of additional habitat arising from the removal of infrastructure that have been used by	Minor significance of effect	Not Applicable – no additional mitigation identified.	No significant adverse residual effects

Description of impact	Effect	Additional mitigation measures	Residual significance of effect	
fish and shellfish communities during the				
operational phase of the project.				
Cumulative effects				
Impact 17: Cumulative mortality, injury, behavioural	Minor significance of effect	Not Applicable – no	No significant adverse	
changes and auditory masking arising from noise		additional mitigation	residual effects	
and vibration		identified.		
Impact 18: Temporary increase in suspended	Minor significance of effect	Not Applicable – no	No significant adverse	
sediment and sediment deposition		additional mitigation	residual effects	
		identified.		

10.12 References

Alheit, J and Hagen E. (1997), 'Long-term climate forcing of European herring and sardine populations'. Fisheries Oceanography 6: 130-139.

Allen, J., 2003. The Humber Estuary: A comprehensive review of its nature conservation interest. English Nature.

Beggs, S.E. Cardinale, M. Gowen, R.J. & Bartolino, V. (2013), 'Linking cod (*Gadus morhua*) and climate: investigating variability in Irish Sea cod recruitment'. Fisheries Oceanography 23: 54-64.

DESNZ. (2016), 'UK Offshore Energy Strategic Environmental Assessment 3 (OESEA 3)' Appendix 1a.4 – Fish and Shellfish. March 2016.

Bochert R., and M. L. Zettler. "Long-term exposure of several marine benthic animals to static magnetic fields." Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association 25, no. 7 (2004): 498-502.

Boyle, G. and New, P. (2018), 'ORJIP Impacts from Piling on Fish at Offshore Wind Sites: Collating Population Information, Gap Analysis and Appraisal of Mitigation Options'. Final report. The Carbon Trust, 247.

Brown & May Marine Ltd. (2008a), 'Dudgeon Offshore Wind Farm Spring Pre-construction Adult and Juvenile Fish Survey'.

Brown & May Marine Ltd. (2008b), 'Dudgeon Offshore Wind Farm Autumn Pre-construction Adult and Juvenile Fish Survey'.

Brown and May Marine Ltd (2009), 'Sheringham Shoal Offshore Wind Farm Herring Spawning Survey'. Final Report.

Brown & May Marine Ltd. (2010) 'Sheringham Shoal Wind Farm Pre-cable Installation Elasmobranch Survey'. Interim Report.

Brown and May Marine Ltd (2015) Sheringham Shoal Wind Farm Post-cable Installation Elasmobranch Survey. Interim Report.

Bunn, N.A., Fox, C.J. and Webb, T. (2000). A Literature Review of Studies on Fish Egg Mortality: Implications for the Estimation of Spawning Stock Biomass by the Annual Egg Production Method. Cefas Science Series Technical Report No 111: 37.

Capuzzo, E., Lynam, C.P., Barry, J., Stephens, D., Forster, R.M., Greenwood, N., McQuatters-Gollop, A., Silva, T., van Leeuwen, S.M. and Engelhard, H.G. (2018). A Decline in Primary Production in the North Sea over 25 Years, Associated with Reductions in Zooplankton Abundance and Fish Stock Recruitment. Global Change Biology 24, 1:352–64.

Chartered Institute of Ecology and Environment Management (CIEEM) (2016), 'Guidelines for Ecological Impact Assessment in the UK and Ireland'. Terrestrial, Freshwater and Coastal. Chartered Institute of Ecology and Environmental Management. Second Edition. January 2016.

Chartered Institute of Ecology and Environment Management (CIEEM) (2018), 'Guidelines for Ecological Impact Assessment in the UK and Ireland'. Terrestrial, Freshwater and Coastal. Chartered Institute of Ecology and Environmental Management, Winchester.

Cheong, S-H., Wang, L., Lepper, P. and Robinson, S. (2020). Characterisation of Acoustic Fields Generated by UXO Removal. Phase 2. NPL REPORT AC 19.

Coull, K.A. Johnstone, R. and Rogers, S.I. (1998), 'Fisheries Sensitivity Maps in British Waters,' Published and distributed by UKOOA Ltd. Aberdeen, 63.

Dahl, P. H., Jenkins, A. K., Casper, B., Kotecki, S. E., Bowman, V., Boerger, C., Dall'Osto, D. R., Babina, M. A., and Popper, A. N. (2020). "Physical effects of sound exposure from underwater explosions on Pacific sardines (Sardinops sagax)," J. Acoust. Soc. Am. 147(4): 2383–2395.

Dare, P.J. and Edwards, D.B., 1976. Experiments on the survival, growth and yield of relaid seed mussels (Mytilus edulis L.) in the Menai Straits, North Wales. ICES Journal of Marine Science, 37(1): 16-28.

Defra(2014).EastOffshoreMarinePlans.Availableat:https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachmentdata/file/312496/east-plan.pdf[Accessed March 2023].

Defra(2021).SoutheastMarinePlan.Availableat:https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachmentdata/file/1004493/FINALSouthEastMarinePlan1 .pdf[AccessedMarch 2023].

Department of Energy and Climate Change (DECC) (2011a). Overarching National Policy Statement for Energy (EN-1).

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fil e/47854/1938-overarching-nps-for-energy-en1.pdf [Accessed March 2023].

Department of Energy and Climate Change (DECC) (2011b). National Policy Statement for Renewable Energy Infrastructure (EN-3).

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fil e/37048/1940-nps-renewable-energy-en3.pdf [Accessed March 2023].

Department of Energy and Climate Change (DECC) (2016). UK Offshore Energy Strategic Environmental Assessment 3 (OESEA3) Appendix 1a.4 Fish and Shellfish.

Department for Energy Security and Net Zero (DESNZ) (2023a). Draft Overarching National Policy Statement for Energy (EN-1).

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fil e/1147380/NPS_EN-1.pdf [Accessed April 2023].

Department for Energy Security and Net Zero (DESNZ) (2023b). Draft National Policy Statement for Renewable Energy Infrastructure (EN-3).

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fil e/1147382/NPS_EN-3.pdf [Accessed April 2023].

Edwards, B., Brooker, A., Workman, R., Parvin, S. J. and Nedwell, J. R. (2007) Subsea operational noise assessment at the Barrow Offshore Wind Farm site. Subacoustech Report No. 753R0109.

Ellis, J.R., Milligan, S.P., Readdy, L., South, A., Taylor, N. and Brown, M. (2010), 'MB5301 Mapping spawning and nursery areas of species to be considered in Marine Protected Areas (Marine Conservation Zones'). Report No. 1: Final Report on development of derived data layers for 40 mobile species considered to be of conservation importance.

Ellis, J.R.. Milligan, S.P. Readdy, L. Taylor, N. and Brown, M.J. (2012) Spawning and nursery grounds of selected fish species in UK waters. Cefas Scientific Series Technical Report 147.

EMODnet. (2021), 'EMODnet broad scale seabred habitat map for Europe (EUSeaMap) (2021) EUNIS 2019 habitat type'. [online]. Available at: <u>https://www.emodnet-seabedhabitats.eu/access-data/launch-map-viewer/</u> [Accessed March 2023].

Equinor (2022) Sheringham Shoal and Dudgeon OWF Extension Projects Environmental Statement. Chapter 9 - Fish and Shellfish Ecology. PINS Document Reference: 6.1.9. APFP Regulation: 5(2)(a)

EMU (2005) Lincs Offshore Wind Farm Benthic Baseline Survey Report.

EUSeaMap, (2021) Broadscale Marine Habitats Map.

Everitt, N. (2008). Behavioural responses of the shore crab, Carcinus maenas, to magnetic fields. MSc Thesis, University of Newcastle-upon-Tyne: 94pp.

Frederiksen, M. Edwards, M. Richardson, A.J. Halliday, N.C. and Wanless, S. (2006), 'From plankton to top predators: bottom-up control of a marine food web across four trophic levels'. Journal of Animal Ecology 75: 1259-1268.

GEOxyz (2022a), 'Benthic Ecology OWF Area Results Report (Vol. 1)'. UK4855H-824-RR-01.

GEOxyz (2022b), 'Benthic Ecology ECC Area Results Report (Vol. 2)'. UK4855H-824-RR-02.

GEOxyz (2022c), 'Benthic Ecology OWF & ECC Area eDNA Report (Vol. 7). UK4855H-824-RR-07.

Gill, A. B. & Taylor, H (2001). The potential effects of electromagnetic fields generated by cabling between offshore wind turbines upon elasmobranch fishes. 488. 2001b. Countryside Council for Wales Contract Science Report.

Gill, A. B. and A. A. Kimber. (2005). The potential for cooperative management of elasmobranchs and offshore renewable energy Page 250 of 256 development in UK waters. Journal of the Marine Biological Association of the United Kingdom 85:1075-1081.

Gill, A.B., and Bartlett, M. (2010). Literature Review on the Potential Effects of Electromagnetic Fields and Subsea Noise from Marine Renewable Energy Developments on Atlantic Salmon, Sea Trout and European Eel. Scottish Natural Heritage, Commissioned Report No. 401. (Sutton and Boyd, 2009).

Hassel, A., Knutsen, T., Dalen, J., Skaar, K., Løkkeborg, S., Misund, O.A., Østensen, Ø., Fonn, M. and Haugland, E.K., 2004. Influence of seismic shooting on the lesser sandeel (Ammodytes marinus). ICES Journal of Marine Science, 61(7): 1165-1173.

Hawkins, A., Roberts, L and Cheesman, S. (2014a). Responses of free-living coastal pelagic fish to impulsive sounds. Acoustical Society of America: 3101-3116.

Hawkins, A.D. and Popper, A.N. (2016), 'A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates'. ICES Journal of Marine Science, 74/3: 635–651.

Hawkins, A.D., Pembroke, A.E. and Popper A.N. (2014b), 'Information gaps in understanding the effects of noise on fishes and invertebrates'. Reviews in Fish Biology and Fisheries, 25: 39–64.

Hazelwood, R. and Macey, P. (2016). Modeling Water Motion near Seismic Waves Propagating across a Graded Seabed, as Generated by ManMade Impacts. Journal of Marine Science and Engineering. 4. 47. 10.3390/jmse4030047.

Heath, M.R. Neat F.C. Pinnegar J.K. Reid D.G. Sims D.W. and Wright P.J. (2012), 'Review of climate change impacts on marine fish and shellfish around the UK and Ireland'. Aquatic Conservation: Marine and Freshwater Ecosystems 22: 337-367.

Hemingway K.L., Cutts N.C. and Pérez-Dominguez R., 2008. Managed Realignment in the Humber estuary, UK. Institute of Estuarine and Coastal Studies (IECS), University of Hull, UK.

Hinz, S., Coston-Guarini, J., Marnane, M., Guarini, J.-M. (2022), 'Evaluating eDNA for Use within Marine Environmental Impact Assessments'. [online]. Available at: <u>https://mdpi-res.com/d_attachment/jmse/jmse-10-00375/article_deploy/jmse-10-00375-v2.pdf</u> [Accessed March 2023].

HM Government. (2011), 'UK Marine Policy Statement'. [online]. Available at: <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fil</u> <u>e/69322/pb3654-marine-policy-statement-110316.pdf</u> [Accessed March 2023].

Holland, G.J., Greenstreet, S.P., Gibb, I.M., Fraser, H.M. and Robertson, M.R., (2005). Identifying sandeel Ammodytes marinus sediment habitat preferences in the marine environment. Marine ecology progress series, 303: 269-282.

Hooper, T., & Austen, M. (2014). The co-location of offshore wind farms and decapod fisheries in the UK: Constraints and opportunities. Marine Policy, 43, 295.

Humber Aggregate Dredging Association (2012), 'Marine Aggregate Regional Environmental Assessment of the Humber and Outer Wash Region Volume I: Chapters 1 - 6'. <u>http://marine-aggregate-rea.info/sites/www.marine-aggregate-rea.info/files/private/volume-i-marea-final-hada-report-10-may-2012.pdf</u> [Accessed March 2023].

Huntsberger C.J., Kilada R., Ambrose Jr W.G. and Wahle R.A., 2020. Age-at-size relationships of the American lobster (Homarus americanus) from three contrasting thermal regimes using gastric mill band counts as a direct aging technique. Canadian Journal of Fisheries and Aquatic Sciences, 77(10): 1733-1740.

Hutchison, Z.L., Gill, A.B., Sigray, P., He, H. and King, J.W. (2020). Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom dwelling marine species. Scientific Reports 10:4219.

Hvidt, C. B., Bech, M., & Klaustrup, M. (2004). Monitoring programme-status report 2003. Fish at the cable trace. Nysted offshore wind farm at Rødsand. Bioconsult.

ICES. (2018), 'Greater North Sea Ecoregion – Ecosystem overview'. ICES Ecosystem Overviews.

International Council for the Exploration of the Sea (ICES), (2020b). The International Herring Larvae Surveys.

International Council for the Exploration of the Sea (ICES). (2019), 'Offshore beam trawl surveys (1987-2011)'. [online] Available at: <u>https://obis.org/dataset/c238cd9b-50c0-4185-9ed2-</u> <u>Obccb25e6386</u> [Accessed March 2023].

International Council for the Exploration of the Sea (ICES). (2020a), 'North Sea International Bottom Trawl Survey (1965-2011)'. [online] Available at: <u>https://obis.org/dataset/ad65221f-0539-44aa-</u> <u>925e-4acf62ad0c6a</u> [Accessed March 2023].

Joint Nature Conservation Committee (JNCC) (2010). Guidelines for minimising the risk of injury to marine mammals from using explosives. JNCC, Peterborough.

Joint Nature Conservation Committee (JNCC). (2007), 'UK BAP List of UK Priority Species'. [online]. Available at: <u>https://hub.jncc.gov.uk/assets/98fb6dab-13ae-470d-884b-7816afce42d4#UKBAP-priority-fish.pdf</u> [Accessed March 2023].

Jones, I.T., Stanley, J.A. and Mooney, T.A., 2020. Impulsive pile driving noise elicits alarm responses in squid (Doryteuthis pealeii). Marine pollution bulletin, 150: 110792.

Kalmijn, A. J. (1971). The Electric Sense of Sharks and Rays. Journal of Experimental Biology 55: 371–383.

Kimber, J. A., Sims, D. W., Bellamy, P. H. & Gill, A. B. (2011). The ability of a benthic elasmobranch to discriminate between biological and artificial electric fields. Marine Biology 158: 1–8.

Kosheleva, V. (1992). The impact of air guns used in marine seismic explorations on organisms living in the Barents Sea. Contr. Petro Piscis II `92 Conference F-5, Bergen, 6-8 April, 1992. 6 s.

Krone, R. Gutowa, L. Joschko, T.J. Schröder, A. (2013). Epifauna dynamics at an offshore foundation Implications of future wind power farming in the North Sea. Marine Environmental Research, 85: 1-12.

Latto, P. L. Reach, I.S. Alexander, D. Armstrong, S. Backstrom, J. Beagley E. Murphy, K. Piper, R. and Seiderer, L.J. (2013), 'Screening spatial interactions between marine aggregate application areas and sandeel habitat'. A Method Statement produced for BMAPA.

Lewandowski J., Luczkovich J., Cato D. and Dunlop R. (2016). Summary Report Panel 3: Gap Analysis from the Perspective of Animal Biology: Results of the Panel Discussion from the Third International Conference Page 252 of 256 on the Effects of Noise on Aquatic Life. In Popper A.N. and Hawkins A.D. The effects of noise on aquatic life. Springer Science+Business Media, New York, II:1277 – 1282.

Lindegren, M. Diekmann, R. and Möllmann, C. (2010), 'Regime shifts, resilience and recovery of a cod stock'. Marine Ecology Progress Series 402: 239-253

Linley, E.A.S. Wilding, T.A. Black, K. Hawkins, A.J.S. and Mangi S. (2007). Review of the Reef Effects of Offshore Wind Farm Structures and their Potential for Enhancement and Mitigation. Report from PML Applications Ltd and the Scottish Association for Marine Science to the Department for Business, Enterprise and Regulatory Reform (BERR), Contract No: RFCA/005/0029P.

Linnane, K., McGarry, T., Rowson, T. and Simpson N. (2011) 'Triton Knoll Offshore Wind Farm Limited, Demersal Fish Ecology Characterisation'.

Linnane, K. and Simpson, N. (2011), 'Triton Knoll Offshore Wind Farm Ltd, Herring Larvae Survey Report'.

Madsen, P. T. (2005) Marine Mammals and Noise: Problems with Root Mean Square Sound Pressure for Transients", J. Acoust. Soc. Am. 117: 3952-3956.

Mainwaring, K., Tillin, H. & Tyler-Walters, H. 2014. Assessing the sensitivity of blue mussel beds to pressures associated with human activities. Peterborough, Joint Nature Conservation Committee, JNCC Report No. 506.

Malme, C. I., Miles, P. R., Miller, G. W., Richardson, W. J., Reseneau, D. G., Thomson, D. H., Greene, C. R. (1989). Analysis and ranking of the acoustic disturbance potential of petroleum industry activities and other sources of noise in the environment of marine mammals in Alaska, BBN Report No. 6945 OCS Study MMS 89-0005. Reb. From BBN Labs Inc., Cambridge, MA, for U.S. Minerals Managements Service, Anchorage, AK. NTIS PB90-188673.

Marshall, C.E. & Wilson, E. (2008). *Pecten maximus* Great scallop. In TylerWalters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom.

McCauley, R. D. Fewtrell, J. Duncan, A. J. Jenner, C. Jenner, M-N. Penrose, J. D. Prince, R. I. T. Adhitya, A. Murdoch, J. and McCabe, K. (2000). Marine Seismic Surveys – A Study of Environmental Implications. Appea Journal: 692-707.

Mitson, R. B., ed. 1995. Underwater Noise of Research Vessels: Review and Recommendations. ICES Cooperative Research Report, 209: 61.

Mitson, R.B. (1993). Underwater noise radiated by research vessels. ICES Marine Science Symposium 196: 147 – 152.

MMO(2012).SeascapeCharacterAssessment.Availableat:https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachmentdata/file/312481/eastseascape.pdf[Accessed March, 2023].

MMO (2014). Review of post-consent offshore wind farm monitoring data associated with licence conditions. A report produced for the Marine Management Organisation. pp 194. MMO Project No: 1031. ISBN: 978- 1-909451-24-4.

Mueller-Blenkle, C., McGregor, P.K., Gill, A.B., Andersson, M.H., Metcalfe, J., Bendall, V., Sigray, P., Wood, D.T. & Thomsen, F. (2010). Effects of Piledriving Noise on the Behaviour of Marine Fish. COWRIE Ref: Fish 06-08, Technical Report 31st March 2010.

Neal, K.J. & Wilson, E. 2008. Cancer pagurus Edible crab. In Tyler-Walters H. and Hiscock K. Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: <u>https://www.marlin.ac.uk/species/detail/1179</u> [Accessed March 2023]

Nedwell, J. R. Parvin, S. J. Edwards, B. Workman, R. Brooker, A. G. and Kynoch, J. E. (2007) Measurement and Interpretation of Underwater Noise During Construction and Operation of Wind farms in UK waters, Subacoustech Report No. 544R0738 to COWRIE Ltd. ISBN: 978-0- 9554279-5-4

Ohman, M. C., Sigray, P. & Westerberg, H. (2007). Offshore windmills and the effects of electromagnetic fields on fish. Ambio 36: 630–633.

Orpwood, J. E., Fryer, R. J., Rycroft P. & J D Armstrong (2015). Effects of AC Magnetic Fields (MFs) on Swimming Activity in European Eels Anguilla, Scottish Marine and Freshwater Science Vol 6 No 8.

Ørsted. (2018), 'Fish and Shellfish Ecology Technical Report.' Hornsea Project Three Offshore Wind Farm Environmental Statement.

Ørsted (2021), Hornsea Four Offshore Wind Farm Environmental Statement. Annex 3.1: Fish and Shellfish Ecology Technical Report. PINS Document Reference: A5.3.1. APFP Regulation: 5(2)(a)

OSPAR. (2010), Quality Status Report 2010. OSPAR Commission, London, 176.

Outer Dowsing Offshore Wind (2022). Outer Dowsing Offshore Wind Scoping Report. Available at: https://infrastructure.planninginspectorate.gov.uk/wp-content/ipc/uploads/projects/EN010130/EN010130-000037-EN010130-Scoping-Report.pdf [Accessed March, 2023].

Payne, J.F. Andrews, C.A. Fancey, L.L. Cook, A.L. and Christian, J.R. (2007). Pilot Study on the Effect of Seismic Air Gun Noise on Lobster (Homarus Americanus) Canadian Technical Report of Fisheries and Aquatic Sciences No.2712:V + 46 (2007).

Perez-Dominguez, R. (2008), 'Fish pilot studies in the Humber Estuary, UK'. Institute of Estuarine & Coastal Studies (IECS), University of Hull, UK. Report produced as part of the European Interreg IIIB HARBASINS project.

Pérez-Domínguez, R. and Vogel, M. (2010). Baseline larval fish assemblages along the Dutch coast, Southern North Sea. Report to Port of Rotterdam. Project Organization Maasvlakte 2 (PMV2). Institute of Estuarine and Coastal Studies University of Hull, UK Report: ZBB727-F- 201.

Poloczanska, E.S., Brown, C.J., Sydeman W.J., Kiessling, W., Schoeman, D.S., Moore, P.J., Brander, K., Bruno, J.F., Buckley, L.B., Burrows, M.T., Duarte, C.M., Halpern, B.S., Holding, J., Kappel, C.V., O'Conner, M.I., Pandolfi, J.M., Parmesan, C., Schwing, F., Thompson, S. and Richardson, A.J. (2013). Global imprint of climate change on marine life. *Nature Climate Change* 3: 919-925.

Popper A.N., and Hawkins A.D. (2018). The importance of particle motion to fishes and invertebrates. The Journal of the Acoustical Society of America 143, 470 (2018); doi: 10.1121/1.5021594.

Popper, A. N. Hawkins, A. D. Fay, R. R. Mann, D. Bartol, S. Carlson, Th. Coombs, S. Ellison, W. T. Gentry, R. Hal vorsen, M. B. Lokkeborg, S. Rogers, P. Southall, B. L. Zeddies, D. G. and Tavolga, W. N. (2014) 'Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI'. Springer and ASA Press, Cham, Switzerland.

Popper, A.N., and Hawkins A.D. (2021). Fish hearing and how it is best determined. ICES Journal of Marine Science. 78. 10.1093/icesjms/fsab115.

PowerGen Renewables Offshore Ltd. (2001). Scroby Sands Offshore Wind farm Environmental Impact Assessment.

Prakash, S. and Srivastava, S. (2019). Impact of Climate Change on Biodiversity: An Overview. *International Journal of Biological Innovations*, 01: 60–65.

Proctor, N., Musk, W., 2001. Fish impingement assessment: Final report. Humber Power Ltd. Institute of Estuarine and Coastal Studies, University of Hull, report no. ZO109-F2001.

Proctor, R., Holt, J., Harris, J., Tappin, A. and Boorman, D., 2000. Modelling the Humber estuary catchment and coastal zone. In Estuarine and Coastal Modeling. ASCE. 1259-1274.

Reach I.S. Latto P. Alexander D. Armstrong S. Backstrom J. Beagley E. Murphy K. Piper R. And Seiderer L.J. (2013) Screening Spatial Interactions between Marine Aggregate Application Areas and Atlantic spawning herring Potential Spawning Areas. A Method Statement produced for the British Marine Aggregates Producers Association.

Regnier, T., Gibb, F. and Wright, P. (2019). Understanding Temperature Effects on Recruitment in the Context of Trophic Mismatch. *Scientific Reports*, 9.

Richardson WJ, Greene CR Jr, Malme CI, Thomson DH (1995) Marine mammals and noise. Academic Press, New York, 577 p.

Roach, M and Cohen, M. (2015). Westermost Rough Fish & Shellfish Monitoring Report 2015; Including Comparison to Baseline Data 2013.

Roberts L. (2015). Behavioural responses by marine fishes and macroinvertebrates to underwater noise (Doctoral dissertation, University of Hull).

Roberts, L. Cheesman, S. Elliott, M. and Breithaupt, T. (2016). Sensitivity of Pagurus bernhardus (L.) to substrate-borne vibration and anthropogenic noise. Journal of Experimental Marine Biology and Ecology, 474: 185–194.

RWE (2022) Awel y Môr Environmental Statement. Chapter 6: Fish and Shellfish Ecology. PINS Document Reference: 6.2.5. APFP Regulation 5(2)(a).

Sabatini, M. & Hill, J.M. 2008. Nephrops norvegicus Norway lobster. In Tyler-Walters H. and Hiscock K. Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: https://www.marlin.ac.uk/species/detail/1672 [Accessed March 2023].

Samson JE, Mooney TA, Gussekloo SWS and Hanlon RT (2016). A Brief Review of Cephalopod Behavioral Responses to Sound. In Popper A.N., and Hawkins A.D. Springer Science+Business Media, New York. The effects of noise on aquatic life, II: 969 – 976.

Sand, O. Enger P. S. Karlsen H. E. and Knudesen, F. R. (2001) Detection of Infrasound in Fish and Behavioural Responses to Intense Infrasound in Juvenile Salmonids and European Silver Eels: A Mini Review, Am. Fish Soc. Symp. 26: 183 - 193.

Sigray, P. and Andersson, M.H. (2011) Particle Motion Measured at an Operational Wind WTGs in Relation to Hearing Sensitivity in Fish. J. Acoustic Soc. Am. 130(1): 200-207.

Skaret, G. Axelsen, B. E. Nøttestad, L. Ferno, A. and Johannessen, A. (2005). The behaviour of spawning herring in relation to a survey vessel. ICES Journal of Marine Science, 62: 1061–1064.

Spiga I., Caldwell G.S. and Bruintjes R. (2016). Influence of Pile Driving on the Clearance Rate of the Blue Mussel, Mytilus edulis (L.). In: Fourth International Conference on the Effects of Noise on Aquatic Life. 2016, Dublin, Ireland: Acoustical Society of America.

Tougaard, J. and Henriksen, O. D. (2009) Underwater Noise Form Three Types of Offshore Wind WTGss: Estimation of Impact Zones for Harbour Porpoises and Harbour Seals. J. Acoust. Soc. Am. 125: 3766-3773.

Tricas, T., and Gill, A. (2011). Effects of EMFs from Undersea Power Cables on Elasmobranchs and Other Marine Species. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Regulation, and Page 255 of 256 Enforcement, Pacific OCS Region, Camarillo, CA. OCS Study BOEMRE 2011-09.

Tyler-Walters, H. & Sabatini, M. 2017. Arctica islandica Icelandic cyprine. In Tyler-Walters H. and Hiscock K. Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: https://www.marlin.ac.uk/species/detail/1519 [Accessed March 2023].

Tyler-Walters, H. 2007. Cerastoderma edule Common cockle. In Tyler-Walters H. and Hiscock K. Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. Available from: https://www.marlin.ac.uk/species/detail/1384 [Accessed March 2023].

Van der Kooij, J., Engelhard, G.H. and Righton, D.A., 2016. Climate change and squid range expansion in the North Sea. Journal of Biogeography, 43(11): 2285-2298.

Vattenfall (2019), Norfolk Boreas Offshore Wind Farm Environmental Statement. Chapter 11 Fish and Shellfish Ecology. PINS Document Reference: 6.1.11. APFP Regulation 5(2)(a)

Wahlberg, M. and Westerberg, H. (2005), 'Hearing in fish and their reactions to sounds from offshore wind farms'. Marine Ecology Progress Series, 288: 295-309.

Westerberg, H. (2000). Effect of HVDC cables on eel orientation. Pages 70-76 in Technische Eingriffe in marine Lebensraume. Bundesamtes für Naturschutz, Germany.

Westerhagen, H. V (1988). Sublethal Effects of Pollutants on Fish Eggs and Larvae. In: Fish Physiology. Academic Press, New York. Volume 11, Part A: 253-234.

Wilhelmsson D. and Malm T., 2008. Fouling assemblages on offshore wind power plants and adjacent substrata. Estuarine, Coastal and Shelf Science, 79(3): 459-466.

Winslade, P. (1971) Behavioural and embryological studies on the lesser sandeel Ammodytes marinus (Raitt). PhD thesis, Univ. East Anglia: 174.

Yano, K., H. Mori, K. Minamikawa, S. Ueno, S. Uchida, K. Nagai, M. Toda, and M. Masuda. (2000). Behavioral Response of Sharks to Electric Stimulation. Bulletin of Seikai National Fisheries Research Institute 78: 13- 30.

Zhang, Y, Shi F, Song J, Zhang X and Yu S (2015). Hearing characteristics of cephalopods: Modelling and environmental impact study. Integrative Zoology 10 (1): 141–151

Linnane A., McGarvey R., Feenstra J. and Hoare M., 2011. Northern Zone Rock Lobster (Jasus edwardsii) Fishery 2009/10. SARDI Research Report Series, 560: 000276-4.

International Herring Larvae Survey (IHLS), 2009/2010 to 2020/2021. ICES. Available online at <u>http://eggsandlarvae.ices.dk</u> [Accessed March 2023].

The Infrastructure Planning (Environmental Impact Assessment) Regulations (2017). Available online at: <u>https://www.legislation.gov.uk/uksi/2017/572/contents/made</u> [Accessed March 2023].

Page **197** of **197**