Outer Dowsing Offshore Wind Preliminary Environmental Information Report Volume 2, Appendix 9.1: Benthic Ecology Technical Report (Array)

Date: June 2023

Outer Dowsing Document No: 6.2.9.1

Internal Reference: PP1-ODOW-DEV-CS-REP-0046

Rev: V1.0

Benthic Ecology OWF Area Results Report (Vol. 1) UK4855H-824-RR-01

GEOxyz Document Number: UK4855H-824-RR-01

Revision: 1.2

This document is the property of GEOxyz. It must not be reproduced in whole or in part or otherwise disclosed without prior written consent. The official controlled copy of this document is the digitally signed version held within our network server and available to all authorised users.

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

DOCUMENT CONTROL

Signatures are only required from authorising personnel. All documents shall display the document originator, reviewer, authoriser and owner. The table below certifies that this revision of this document has been reviewed and accepted and demonstrates that the parties involved are aware of all the requirements contained herein and are committed to ensuring their provision.

Document	Name	Position	Date	Signature
Prepared by:	JG/RI/CC	Marine Field Scientist	04-11-2022	
Reviewed by:	LB	Report Manager	04-11-2022	
Approved by:	PC	Survey Manager	07-11-2022	
Owner:	Survey Departmen	Survey Department		

REVISION HISTORY

A record of revisions and amendments to this document is given below:

Rev.	Date	Reason for amendments	Section changes from previous version
1.0	08-08-2022	Issued for Client Review	N/A
1.1	07-11-2022	Comments Addressed	Various
1.2	02-05-2023	Comments Addressed	Various

COMPANY PROPRIETARY INFORMATION

The electronic version of this document is the latest revision. It is the responsibility of the individual to ensure that any paper material is the current revision. The printed version of this document is uncontrolled, except when the controlled copy box below is ticked and a date for its issue is included.

Document No.	UK4855H-824-RR-01			1.2
Uncontrolled Copy		Controlled Copy 🛛	Date	02-05-2023

TABLE OF CONTENTS

	Do	cument Control	2
	Rev	vision History	2
	List	s of Tables and Figures	5
	Def	finitions and Abbreviations	8
1	EXEC	UTIVE SUMMARY	10
2	INTRO	DDUCTION	12
	2.1	Project Overview	12
	2.2	Scope of Work	13
	2.3	Reporting Structure	
	2.4	Geodetic Parameters	14
	2.4.1	Horizontal Reference	
	2.4.2	Vertical Reference	15
	2.5	Background Information	15
	2.5.1	Background Information on the OWF Survey Area	15
	2.5.2	Existing Information Relating to the OWF Survey Area	17
	2.5.3	Reference Sources	17
	2.5.4	Legislative Background	19
	2.5.5	Habitat Investigation	21
3	FIELD	SURVEY AND ANALYTICAL METHODS	28
	3.1	Geophysical Data	28
	3.2	Environmental Ground-Truthing and Sampling	28
	3.3	Sediment Sample Analyses	36
	3.4	Drop Down Video Habitat Assessment	37
4	ENVI	RONMENTAL BASELINE SURVEY RESULTS AND DISCUSSION	48
	4.1	Bathymetry and Seabed Features	48
	4.2	Shallow Geology	50
	4.3	Particle Size Distributions	50
	4.3.1	General Description	50
	4.3.2	Multivariate Analyses	60
	4.4	Total Organic Carbon Content	65
	4.5	Sediment Hydrocarbons	69
	4.5.1	Non-normalised Polycyclic Aromatic Hydrocarbons	
	4.5.2	Normalised Polycyclic Aromatic Hydrocarbons	75
	4.5.3	Sediment Endocrine Disrupters	80
	4.6	Trace Metals	86
	4.6.1	Non-normalised Trace Metals	86
	4.6.2	Normalised Heavy Metals	93

4.7	Faunal Analysis	94
4.7	7.1 Grab Macrofaunal Analysis	94
4.7	7.2 Epibenthic Trawl Analysis	127
4.8	Environmental Habitats	139
4.8	3.1 Habitat Classification	144
4.8	Potential Sensitive Habitats and Species	175
5 CO	DNCLUSION	201
6 RE	FERENCES	204
7 AP	PENDIX	209
	Appendix A – GEO OCEAN III	210
	Appendix B – SAMPLING EQUIPMENT	212
	Appendix C – FIELD OPERATIONS AND SURVEY METHODS	214
	Appendix D – DATA PRESENTATION, LABORATORY AND STATISTICAL ANALYSES	216
	Appendix E – PARTICLE SIZE DISTRIBUTION	227
	Appendix F – SAMPLE LOG SHEETS	228
	Appendix G – CAMERA TRANSECT LOG SHEET	241
	Appendix H – EPIBENTHIC TRAWL LOGS	244
	Appendix I – MACROFAUNAL SPECIES LIST	260
	Appendix J – FISH MEASUREMENT DATA	261
	Appendix K – SPEARMAN'S CORRELATIONS	276
	Appendix L – CONVERSION OF EUNIS CLASSIFICATIONS	278
	Appendix M – SACFOR ABUNDANCE	280
	Appendix N – STONY REEF ASSESSMENT	281
	Appendix O – SABELLARIA REEF ASSESSMENT	289
	Appendix P – SAMPLE AND SEABED PHOTOGRAPHS	291
	Appendix Q – SERVICE WARRANTY	292

LISTS OF TABLES AND FIGURES

Table 1 Abbreviations Used in this Document	8
Table 2 Datum Parameters	14
Table 3 Projection Parameters	14
Table 4 Historical Well Information	15
Table 5 Sediment Quality Reference Values	17
Table 6 Key Aspects of Nearby Protected Areas	24
Table 7 Summary of Grab Station Sample Acquisition	30
Table 8 Summary of Environmental Camera Transect Acquisition	32
Table 9 Summary of Epibenthic Trawl Acquisition	34
Table 10 Summary of Analytical Methods	36
Table 11 SACFOR Abundance Scale	38
Table 12 SACFOR Scale Abundance and Frequency of Occurrence Based on Video Analysis	40
Table 13 SACFOR Scale Abundance and Frequency of Occurrence Based on Stills Analysis	44
Table 14 Summary of Surface Particle Characteristics	52
Table 15 Total Organic Carbon Content	66
Table 16 Summary of Non-normalised PAH Concentrations (μg.kg ⁻¹ or ppb)	71
Table 17 Normalised ANZECC and ARMCANZ Total Polycyclic Aromatic Hydrocarbons (µg.kg-1 or ppb)	77
Table 18 Normalised OSPAR Total Polycyclic Aromatic Hydrocarbons (μg.kg ⁻¹ or ppb)	
Table 19 Summary of Sediment Polychlorinated Biphenyls Analysis (ug.kg ¹ or ppb)	
Table 20 Summary of Sediment Organotin Analysis (μg.kg ⁻¹ or ppb)	83
Table 21 Summary of Sediment Organochlorine Analysis (μg.kg ⁻¹ or ppb)	85
Table 22 Total Trace Metal Concentrations (mg.kg ⁻¹ or ppm)	
Table 23 Univariate Faunal Parameters (0.1m²)	98
Table 24 Summary of SIMPROF Station Groupings	105
Table 25 Overview of Univariate Parameters per SIMPROF Cluster	113
Table 26 Overview of Faunal Assemblage Parameters per SIMPROF Cluster	117
Table 27 Top 10 Species Abundances for Clusters 'a', 'b', 'c', 'd', 'e', 'f' and 'g'	120
Table 28 Dissimilarity Percentages (SIMPER) for Macrofauna Dataset	121
Table 29 Blotted Wet Weight Biomass (0.0001g) of Major Groups Within the OWF Survey Area	124
Table 30 Univariate Faunal Parameters per Epibenthic Trawl (Standardised to 500m)	129
Table 31 Summary of SIMPROF Trawl Groupings (500m)	130
Table 32 Overview of Univariate Parameters per SIMPROF Cluster	132
Table 33 Top 10 Species Abundances for Trawl Clusters 'a', 'b' and 'c'	136
Table 34 Dissimilarity Percentages (SIMPER) for Epifaunal Trawl Dataset	136
Table 35 Blotted Wet Weight Biomass (g/500m) of Major Groups Within the OWF Survey Area	138
Table 36 Summarised Habitat Classification	140
Table 37 SACFOR Scale from Video Analysis of SS.SSa.IfiSa Habitat	146
Table 38 SACFOR Scale from Stills Analysis of SS.SSa.IFiSa Habitat	147
Table 39 SACFOR Scale from Video Analysis of SS.SSa.CFiSa Habitat	150
Table 40 SACFOR Scale From Stills Analysis of SS.SSa.CFiSa Habitat	151
Table 41 SACFOR Scale from Video Analysis of SS.SSa.Osa Habitat	154
Table 42 SACFOR Scale from Stills Analysis of SS.SSa.Osa Habitat	
Table 43 SACFOR Scale from Video Analysis of SS.SCS.CCS Habitat	
Table 44 SACFOR Scale from Stills Analysis of SS.SCS.CCS Habitat	159

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

Table 45 SACFOR Scale from Video Analysis of SS.SCS.OCS Habitat	162
Table 46 SACFOR Scale from Stills Analysis of SS.SCS.OCS Habitat	162
Table 47 SACFOR Scale from Video Analysis of SS.SCS.CCS Habitat with SS.SMx.CMx Patches	
Table 48 SACFOR Scale from Video Analysis of SS.SCS.CCS Habitat with SS.SMx.CMx Patches	
Table 49 Summary of Resemblance to a Stony Reef as Summarised in Irving (2009)	176
Table 50 Stony Reef Structure Matrix (after Irving, 2009)	176
Table 51 Overall Stony Reefiness Matrix (Structure vs Extent)	176
Table 52 Summary of Stony Reef Image Analysis	177
Table 53 Summary of Stony Reef Assessment (after Irving, 2009)	179
Table 54 Biota Criteria for Defining 'Low Resemblance' Stony Reef (Golding et al., 2020)	181
Table 55 Reef Structure Assessment (Golding et al., 2020)	
Table 56 Sabellaria Reefiness Criteria as Outlined by Gubbay (2007)	185
Table 57 Sabellaria Reef Structure Matrix (After Gubbay, 2007)	186
Table 58 Sabellaria Reef Structure vs Area Matrix (After Gubbay, 2007)	186
Table 59 Summary of Sabellaria Reefiness Image Analysis Results (After Gubbay, 2007)	186
Table 60 Conservative Summary of Sabellaria Reef Assessed from Video, Stills and SSS Data	
Table 61 Sandeel Ground Assessment Categories Specified by Latto et al. (2013)	189
Table 62 Sandeel Ground Assessment Results using Latto et al. (2013)	190
Table 63 Sandeel Ground Assessment Results using Greenstreet et al. (2010)	193
Table 64 Herring Spawning Ground Assessment Categories Specified by Reach et al. (2013)	196
Table 65 Herring Spawning Ground Assessment Results using Reach et al. (2013)	197
Figure 1 Project Location Overview	12
Figure 2 EMODnet Predicted Seabed Habitats Map in Relation to the Survey Area	
Figure 3 Location of Features of Conservation Interest in Relation to the Survey Area	
Figure 4 MBES Data and Environmental Sampling Strategy for the OWF Survey Area	
Figure 5 Seabed Features Supplied by Enviros Survey and Consultancy Limited	
Figure 6 Proportional sediment particle size	
Figure 7 Percentage of sand	
Figure 8 Percentage of gravel	
Figure 9 Percentage fines	
Figure 10 Particle Size Analysis Similarity Dendrogram	
Figure 11 Particle Size Analysis Principal Components Analysis	
Figure 12 Particle Size Distribution for the Different Clusters 'a', 'b', 'c', 'and 'd'	
Figure 13 Multivariate PSD Cluster Distribution over MBES	
Figure 14 Total Organic Carbon	
Figure 15 Total Polycyclic Aromatic Hydrocarbons (∑16PAH)	
Figure 16 Total Polycyclic Aromatic Hydrocarbons (∑22PAH)	
Figure 17 Polycyclic Aromatic Hydrocarbons Principal Component Analysis Source Assignment	
Figure 18 Concentration of Nickel	
Figure 19 Concentration of Zinc	
Figure 20 Concentration of Copper	
Figure 21 Concentration of Arsenic	
Figure 22 Species Accumulation Curve of OWF Survey Area	
Figure 23 Macrofauna Species Richness (0.1m²)	
<u> </u>	

Figure 24 Macrofauna Faunal Abundance (0.1m²)	102
Figure 25 Macrofauna Simpsons Diversity (1-Lambda') per 0.1m ²	103
Figure 26 Dendrogram of Macrofaunal Stations (0.1m²)	106
Figure 27 Dendrogram of MESH Sediment Macrofaunal Stations (0.1m ²)	107
Figure 28 nMDS Ordination Plot of Macrofaunal Stations (0.1m²)	109
Figure 29 nMDS Ordination Plot of MESH Sediment Macrofaunal Stations (0.1m ²)	109
Figure 30 Macrofauna SIMPROF Groupings	110
Figure 31 Principal Component Analysis of Phi PSA with Macrofaunal Clusters	112
Figure 32 Average Contribution of Each Phyla to Total Faunal Abundance for Each Cluster	114
Figure 33 Average Contribution of Each Phyla to Total Number of Species for Each Cluster	114
Figure 34 ITI Feeding Groups 1-4 Percentage Contribution per MF Cluster	118
Figure 35 Epifaunal Versus Infaunal Richness	123
Figure 36 Species Accumulation Curve of OWF Epibenthic Trawls	128
Figure 37 Dendrogram of epibenthic trawls (500m)	131
Figure 38 nMDS Ordination Plot of trawls (500m)	132
Figure 39 Average Contribution of Each Phyla to Total Epifaunal Abundance for Each Cluster	134
Figure 40 Average Contribution of Each Phyla to Total Number of Species for Each Cluster	134
Figure 41 Species Examples from Seabed Photographs	144
Figure 42 Example Images of Atlantic Infralittoral Sand Habitats	148
Figure 43 Example Images of Atlantic Circalittoral Sand Habitats	152
Figure 44 Example Images of Atlantic Offshore Circalittoral Sand Habitats	155
Figure 45 Example images of Atlantic infralittoral coarse sediment habitats	156
Figure 46 Example Images of Circalittoral Coarse Sediment Habitats	160
Figure 47 Example Images of Atlantic Offshore Circalittoral Coarse Sediment Habitats	163
Figure 48 Example Images of Circalittoral Mixed Sediment Habitats	170
Figure 49 Example Images of Anthropogenic Debris	171
Figure 50 Habitat Distribution (to JNCC Level 4) over MBES Data for the OWF Survey Area	173
Figure 51 Habitat Distribution (to JNCC Level 5) over MBES Data for the OWF Survey Area	174
Figure 52 Stony Reef Habitat Assessment for the OWF Survey Area	183
Figure 53 Interpolated Hard Substrate Density Across the OWF Survey Area	184
Figure 54 Sabellaria spinulosa reef habitat assessment for the OWF survey area	188
Figure 55 Sandeel Sediment Preference Categories as per Greenstreet et al. (2010) (Silt and Fine San	nd refer to
Particle Sizes >0.25mm, whilst Medium to Coarse Sand refer to Particle Sizes 0.25 to 2.0mm)	
Figure 56 Sandeel Spawning and Nursing Grounds	195
Figure 57 Herring Spawning and Nursing Grounds	199

DEFINITIONS AND ABBREVIATIONS

Where abbreviation used in this document are not included in this list, it may be assumed that they are either equipment brand names or company names.

Table 1 Abbreviations Used in this Document

Acronym	Description	Acronym	Description
ANZECC	Australian and New Zealand Environment and Conservative Council	MBT	Monobutyltin
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand	MCZ	Marine Conservation Zone
BAC	Background Assessment Concentration	MCZ	Marine Conservation Zones
ВС	Background Concentration	MESH	Mapping European Seabed Habitats
BDC	Biodiversity Committee	ММО	Marine Management Organisation
BGS	British Geological Survey	MNCR	Marine Nature Conservation Review
BSL	Benthic Solutions Limited	MP	Megapixel
cAL 1 and 2	CEFAS Action levels 1 and 2	MPA	Marine Protected Area
CBD	Conservation of Biological Diversity	N/S	No Sample
ССМЕ	Canadian Council of Ministers of the Environment	NMBAQC	National Marine Biological Analytical Quality Control
Cefas	Centre for Environment, Fisheries and Aquaculture.	NMCAQC	National Chemistry Analytical Quality Control
CEMP	Coordinated Environmental Monitoring Programme	NMEAQC	National Marine Ecotoxicological Analytical Quality Control Group
CLUSTER	hierarchical agglomerative clustering	NMMP	UK National Marine Monitoring Programme
CV	coefficient of variation	ОСР	Organochlorine pesticides
DBT	Dibutyltin	OGA	Oil and Gas Authority
DDT	Dichlorodiphenyltrichloroethane	OGUK	Oil and Gas United kingdom
EAC	environmental assessment criteria	OSPAR	Convention for the Protection of the Marine Environment of the North-East Atlantic
EBS	Environmental Baseline Survey	OWF	Outer Dowsing Offshore Windfarm
EC	European Commission	PAH	Polycyclic Aromatic Hydrocarbon
ECC	export Cable corridor	PC	Physio-chemistry
ED50	European Datum 1950	РСВ	Polychlorinated Biphenyls
EIA	Environmental Impact Assessment	PCBs	polychlorinated biphenyls
EMODnet	European Marine Observation and Data Network	PEL	probable effect Level
EOL	End of Line	PEP	Project Execution Plan
EPA	Environmental Protection Agency	PSD	Particle Size Distribution
ERL	Effects Range Low	SAC	Special Area of Conservation
ERM	Effects Range Median	SACFOR	MNCR cover/density scales
EU	European Union	SAP	Species Action Plan

Acronym	Description	Acronym	Description
EU	European Union	SAPs	Species Action Plans
EUBS	European Union Biodiversity Strategy	SBP	Sub-bottom Profiler
EUNIS	European University Information Systems organisation	SBP	sub-bottom profiler
F1	Fauna grab sample 1	SCI	Site of Community Importance
FOCI	Features of Conservation Interest	SCI	Sites of Community Importance
GC-MS	Gas Chromatography Mass Spectrometry	SD	Standard Deviation
GEOxyz	GEOxyz Offshore UK Limited	SIC	Single Ion Current
GIG	Macquarie's Green Investment Group	SNS	Southern North Sea
GIS	Geographic Information System	SOL	Start of Line
GIS	Geographic Information System	SPA	Special Protection Areas
GT R4 Limited	50/50 joint venture between TotalEnergies and Macquarie's Green Investment Group (GIG)	SQGV	Sediment Quality Guideline value
GW	Gigawatt	SS.SCS.CCS / A5.14 / MC32	Circalittoral Coarse Sediment
НАР	Habitat Action Plan	SS.SCS.ICS / A5.13 / MB3	Infralittoral Coarse Sediment
HAS	Habitat Assessment Survey	SS.SCS.OCS / A5.15 / MD3	Offshore Circalittoral Coarse Sediment
HAS	Habitat Assessment Spreadsheet	SS.SMx.CMx / A5.44 / MC42	Offshore Circalittoral Mixed Sediment
НС	Hydrocarbons	SS.SSa.CFiSa / A5.25 / MC5	Circalittoral Sand
HD	High Definition	SS.SSa.IFiSa / A5.23 / MB5	Infralittoral Sand
HF	High Frequency	SS.SSa.OSa / A5.27 / MD5	Offshore Circalittoral Sand
HG	Hamon Grab Sampler	SSS	Side Scan Sonar
HG	Hamon Grab	ТВТ	tributyltin
НМ	Heavy Metals	TEL	Threshold Effect level
HR	High Resolution (seismic)	TOC	Total Organic Carbon
HSG	Herring Spawning Ground	UHR	Ultra-High Resolution (seismic)
INNS	Invasive Non-native Species	UK	United Kingdom
JNCC	Joint Nature Conservation Committee	UK BAP	United Kingdom Biodiversity Action Plan
LAT	Lowest Astronomical Tide	UKCS	United Kingdom Continental Shelf
LED	Light-emitting Diode	UKOOA	United Kingdom Offshore Operators Association
LOD	Limit of Detection	UTC	Universal Time Coordinated
MAG	Magnetometer	UTM 31	Universal Transverse Mercator – Zone 31
MESH	Mapping European Seabed Habitats	WGS84	World geodetic system 1984
MBES	Multi Beam Echo Sounder		

UK4855H-824-RR-01

1 EXECUTIVE SUMMARY

A habitat assessment and environmental baseline survey was carried out by GEOxyz, in association with Benthic Solutions Limited (BSL), for GT R4 Limited within the Outer Dowsing Offshore Windfarm (OWF) site in the southern North Sea. Survey operations were carried out aboard the *Geo Ocean III* between the 3rd and 13th of April 2022. This report details the habitat and environmental survey operations conducted as part of the environmental phase 1 OWF scope.

Environmental sampling at the OWF site involved the acquisition of physico-chemical and macrofauna samples using a Hamon grab for particle size analysis (PSA) and total organic carbon (TOC) and a Shipek grab for contaminant analysis at 80 and 30 stations, respectively, along with underwater footage and still photographs from 30 stations using a MOD4 camera system. Eight >500m epibenthic trawls were also carried out across the OWF site. Sampling and camera locations were pre-selected by GoBe Consultants prior to mobilisation, with modifications to the scope based on infield observations from Benthic Solutions Limited.

The water depth across the OWF survey area was variable with depths ranging between 5m to 47m below LAT. The seabed across the entire OWF survey area undulated due to the presence of sand waves, megaripples, sandbanks and canyons. The seabed sediments were generally dominated by either sands or gravel with a low but variable proportion of fines. Higher proportions of sand were recorded at shallow depths associated with sandbank features. While the proportion of gravel in the form of pebbles and gravel matrixes interspersed with sand was observed in deeper area of the survey extent. Regional comparisons to the survey area indicates a natural distribution of sediments, unimpacted by seabed infrastructure is present within the OWF array. TOC levels were low across the survey area.

The total polycyclic aromatic hydrocarbons (PAHs) were generally low across the survey area with an elevated Σ 16PAH and Σ 22PAH recorded at one station sampled within a canyon feature. Polychlorinated biphenyls (PCBs), organotins and organochlorine pesticides were recorded at relatively low concentrations, which in conjunction with the low PAHs suggests a natural distribution of aromatic hydrocarbons across the site.

Trace metal concentrations showed no particular spatial pattern with most at background levels. Elevated concentrations above the United Kingdom offshore operators association (UKOOA) thresholds was observed for mercury, nickel, zinc, copper and arsenic; however, all with the exception of arsenic and nickel were below their respective sediment quality guideline value (SQGV) and were deemed to be 'low risk' within the OWF survey area. Arsenic and nickel exceeded their SQGVs at several stations but at levels which would be considered acceptable as the concentrations recorded were below the background levels determined from previous surveys conducted by BSL for different operators close to the OWF survey area.

Benthic macrofaunal species richness and faunal abundance was variable across the survey area and reflected the sand and gravel dominated sediments present, with a total of 4,429 individuals recorded. Review of the macrofauna dataset using multivariate statistics revealed seven significantly different macrofaunal cluster groupings within the survey area, with differences in macrofaunal assemblages attributed to the exclusion of certain taxa and the underlying mapping European seabed habitats (MESH) sediment classifications.

Epibenthic trawl species richness and faunal abundance also reflected the sand and gravel dominated sediments throughout the survey area, with 4,866 individuals recorded across 91 species. Review of the trawl macrofaunal dataset using multivariate statistics revealed the sediment composition and presence/absence of the polychaete, *Sabellaria spinulosa* was the reason for the significantly different epifaunal community present across the survey

UK4855H-824-RR-01

area. The grab macrofaunal and epifaunal trawl datasets were considered to represent natural background infaunal and epifaunal conditions for this region of the southern North Sea.

The seabed across the OWF survey area corresponded well to the reflectivity in side scan sonar data across the site and was therefore assigned seven level four JNCC/EUNIS habitat types: MB52 'Atlantic infralittoral fine sand' (SS.SSa.IFiSa), MC52 'Atlantic circalittoral fine sand' (SS.SSa.CFiSa), MD52 'Atlantic offshore circalittoral sand' (SS.SSa.OSa), MB32 'Atlantic infralittoral coarse sediment' (SS.SCS.ICS), MC32 'Atlantic circalittoral coarse sediment' (SS.SCS.CCS), MD32 'Atlantic offshore circalittoral coarse sediment' (SS.SCS.OCS) or MC32/MC42'Atlantic circalittoral coarse and mixed sediment'(SS.SCS.CCS/SS.SMx.CMx). A review of the infauna and epifaunal datasets indicated the presence of several level five habitat types but all were considered impoverished examples: MB5231 'Infralittoral mobile clean sand with sparse fauna' (SS.SSa.IfiSa.ImoSa), MB5233 'N. cirrose and Bathyporeia sp. in infralittoral sand' (SSa.IFiSa.NcirBat), MD5212 'Owenia fusiformis and Amphiura filiformis in offshore circalittoral sand or muddy sand' (SS.SSa.OSa.OfusAfil), MB3231 'Sparse fauna on a highly mobile sublittoral shingle (cobbles and pebbles)' (SS.SCS.ICS.SSh), MC3211 'Spirobranchus triqueter with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles' (SS.SCS.CCS.SpiB), MD3312 'Hesionura elongata and Protodorvillea kefersteini in offshore coarse sand' (SS.SCS.OCS.HeloPkef), MC4214 'Flustra foliacea and Hydrallmania falcata on tide-swept circalittoral mixed sediment' (SS.SBR.PoR.SspiMx).

The associated fauna evident from video footage and still photographs revealed the finer sand dominated sediments had an impoverished epifaunal community when compared to visual inspections of the coarse and mixed sediment habitats due to the greater abundance of hard substrate in the form of cobbles and pebbles present across the coarser sediment habitats, which enables the development of complex epifaunal communities. However, Chordata such as sandeels (*Ammodytes* sp.), plaice (*Pleuronectes platessa*), dragonets (*Callionymus lyra*), lesser weever fish (*Echiichthys vipera*) and pogges (*Agonus cataphractus*) were sighted more often in sand dominated habitats.

Camera transects over intermediate areas of circalittoral coarse and mixed sediments showed some evidence of Annex I stony reef. However, only a single transect (OWF_VID_57) was classified as 'Low Reef' due to the increased composition and elevation of cobbles present. Station OWF_57 had epifauna present at sufficient densities to be considered 'possible reef with sand veneer' or 'reef with sand veneer', but lacked the mean reef species count to be confidently assigned as an area of Annex I stony reef. Similarly, the presence of *Sabellaria spinulosa* aggregations could indicate the presence of *S. spinulosa* reef within areas of circalittoral coarse and mixed sediments; however, further review indicated the aggregations were too patchy to be classified as Annex I reef.

The OWF site is situated between five delineated sandbanks ('Additional Bank 93' and 'Additional Bank 97', Additional Bank 96', Additional Bank 94' and Additional Bank 92'); however, these sandbanks do not form part of any designated Special Areas of Conservation (SACs). Numerous sandeels were observed on the video footage across the sand dominated sediments and the majority of the stations were classified as Prime' and 'Suitable' sandeel grounds. Areas of Atlantic circalittoral coarse sediment, Atlantic offshore circalittoral coarse sediment and Atlantic infralittoral coarse sediment were the most optimal for herring spawning grounds, ranging from 'Subprime' to 'Prime', indicating a high likelihood of herring spawning.

No live specimens of ocean quahog (*Arctica islandica*) were observed on underwater video footage or retained with grab or epibenthic trawl datasets. Therefore, it is unlikely for the ocean quahog to occur within the OWF survey area. The slipper limpet (*Crepidula fornicata*) was the only non-native species identified within the survey area.

2 INTRODUCTION

2.1 PROJECT OVERVIEW

An environmental baseline survey (EBS) and habitat assessment survey (HAS) was carried out by GEOxyz in association with Benthic Solutions Limited (BSL) for GT R4 Limited within the Outer Dowsing Wind Farm (OWF) development area located in the southern North Sea (SNS) (Figure 1). Survey operations were carried out aboard the *Geo Ocean III* between 3rd and 13th April 2022.

A geophysical survey across the OWF survey area was performed by Enviros Survey and Consultancy using a vessel-mounted multibeam echosounder (MBES), side scan sonar (SSS), sub-bottom profiler (SBP), magnetometry (MAG) and ultra-high resolution (UHR) seismic prior to the commencement of the phase 1 environmental survey. Environmental seabed sampling and video assessments were carried out across the OWF survey area to provide a regional understanding of the different habitats encountered. Data was acquired through sampling of the seabed using a Hamon grab (HG) at 80 stations and a Shipek grab at 30 stations. Seabed video footage was acquired using the BSL MOD4.2 and MOD4.4 camera systems mounted within a BSL freshwater lens drop down frame equipped with a separate strobe, LED lamps and high definition (HD) camera (Appendix C).

This report is focused on the phase 1 habitat investigation and environmental survey operations conducted within the OWF survey area located across 11 UKCS Blocks: 48/11a, 48/11c, 48/12f, 48/12d, 48/12b, 48/12c, 48/17a, 48/12a, 48/13b, 48/13a and 48/8b. The phase 5 environmental survey operations conducted along the export cable corridor (ECC) and funnel area will be reported separately.

Figure 1 Project Location Overview

UK4855H-824-RR-01

2.2 SCOPE OF WORK

The survey included characterisation of the benthos and investigation of the sediment physico-chemistry (PC) to provide an understanding of the baseline conditions to support the environmental impact assessment process in support of the OWF consent application.

The main objectives of the environmental baseline survey and habitat investigation were to:

- Acquire sediment PC and biological characteristics across the survey area to establish a baseline against which will be used to support the EIA baseline characterisation process;
- Provide high-resolution still images and corresponding video at specific stations to ground truth and characterise benthic habitat;
- Identify the occurrence and distribution of any habitats or species of conservation interest, including Annex I habitats, Annex II species and Annex V species of the EC Habitats Directive, species listed under Schedule 5 of the Wildlife and Countryside Act, designated features of the MPA network, species and habitats listed in the OSPAR List of Threatened and/or Declining Species and Habitats, and the UK Post-2010 Biodiversity Framework (formerly the UK Biodiversity Action Plan Priority Habitat descriptions);
- Ground-truth the selected sites for the presence or absence of sensitive habitats, such as stony reefs and biogenic reefs using seabed imagery (stills and video);
- Determine the presence of any invasive non-native species (INNS) in the OWF footprint area;
- Characterise the benthic subtidal environment in the OWF footprint area and assign habitat types to biotope level according to the JNCC/EUNIS habitat classification system.

2.3 REPORTING STRUCTURE

The following reports will be provided by BSL, relating to the habitat assessment and environmental baseline surveys conducted during phase 1 environmental operations across the OWF survey area:

- UK4855H-824-FR-01: Phase 1 Benthic Ecology Survey Field Report
- UK4855H-824-FR-01: Benthic Ecology OWF Area Results Report (Vol. 1) (This Report)

The following reports have been provided by GT R4 Limited relating to the geophysical surveys conducted across the OWF survey area:

• ENV21-21042-GTR4-02_Rev.01: Outer Dowsing Offshore Wind Farm Geophysical UHRS And Light Geotechnical Survey, East Anglia, Offshore UK

2.4 GEODETIC PARAMETERS

2.4.1 Horizontal Reference

The horizontal datum will be referenced to the WGS84 Datum, UTM 31N projection. The datum and projection parameters used are provided below in Table 2 and Table 3.

Table 2 Datum Parameters

Coordinate Reference System: World Geodetic System 1984 / UTM Zone 31 North			
Datum	World Geodetic System 1984		
Prime Meridian	Greenwich		
Ellipsoid/Spheroid	World Geodetic System 1984		
Semi Major Axis (a)	6378137.000m		
Semi Minor Axis	6356911.946m		
Inverse flattening (1/f)	298.25		
Projection	UTM Zone 31 North (EPSG Code: 23031)		
Coordinate Operation Method	Universal Transverse Mercator		
Latitude at Origin	00° 00′ 00″ N		
Longitude at Origin/Central Meridian	003° 00′ 00″ E		
False Easting	500000		
False Northing	0m		
Scale Factor at Central Meridian	0.9996		

Table 3 Projection Parameters

Coordinate Transformation				
Coordinate Transformation	ED50 to WGS84 (18)			
Transformation Version	UKOOS-CO			
Transformation Variant	18			
EPSG Code	1311			
Source CRS	ED50			
Target CRS	WGS84			
X-axis translation (m)	+89.5m			
Y-axis translation (m)	+93.8m			
Z-axis translation (m)	+123.1m			
X-axis rotation (arc-second)	0.0"			
Y-axis rotation (arc-second)	0.0"			
Z-axis rotation (arc-second)	-0.156"			
Scale difference (ppm)	+1.2ppm			

2.4.2 Vertical Reference

The vertical datum for the project was Lowest Astronomical Tide (LAT). Height data was acquired in relation to the ellipsoid and translated to the project vertical datum (LAT) as defined by the United Kingdom Office Vertical Offshore Reference Frame geoid model at the project location. LAT is 2.45m below Mean Sea Level (MSL) within the survey area.

2.5 BACKGROUND INFORMATION

2.5.1 Background Information on the OWF Survey Area

The offshore wind leasing round 4 in England was launched in 2018 by the Crown Estate with the aim of identifying 7 GW of new offshore wind projects in UK waters. The round 4 tender process concluded in February 2021 with six new offshore wind projects selected in England and Wales. The Outer Dowsing Offshore Wind Farm (OWF) project, a 50/50 joint venture between TotalEnergies and Macquarie's Green Investment Group (GIG), is predicted to be commissioned in 2027 and is estimated to provide 1.5GW of energy annually (GT R4 Limited, 2022).

The OWF survey area, located approximately 60km East of the Humber Estuary, is situated across 11 UKCS Blocks (48/11a, 48/12f, 48/12f, 48/12d, 48/12b, 48/12c, 48/17a, 48/12a, 48/13b, 48/13a and 48/8b) and spans across seven gas fields (Pickerill, Malory, Excalibur, Mordred, Galahad, Barque S and Barque) and five existing gas installations (Pickerill A, Pickerill B, Malory, Galahad and Galahad Tee). Table 4 displays the historical wells found to be within the OWF survey area boundary. Wells located outside of the OWF survey boundary were considered to be outside the potential effect range for contamination from these sources.

Table 4 Historical Well Information

DECC Well Origin Wellbore Name	Well Origin Spud Date	Spud Completion Date	Original Well Intent	Current Status	Water Depth (m)
48/13a-B6	09/09/1991	16/11/1991	Development	Completed (Shut In)	24.4
48/13a-B10	24/05/1994	03/09/1994	Development	Completed (Shut In)	23.2
48/17b- 7Z	05/11/1988	23/01/1989	Exploration	Abandoned Phase 3	19.8
48/17b- 7	19/09/1988	05/11/1988	Exploration	Abandoned Phase 3	19.8
48/17a-8	08/01/1989	01/03/1989	Exploration	Abandoned Phase 3	21.3
48/13b-8	20/01/1985	15/04/1985	Appraisal	Abandoned Phase 3	30.2
48/13b-3	09/03/1982	12/05/1982	Exploration	Abandoned Phase 3	25.3
48/13a-B9	02/08/1992	03/10/1992	Development	Completed (Operating)	23.2
48/13a-B8Z	31/03/1992	23/04/1994	Appraisal	Abandoned Phase 1	23.2
48/13a-B8Y	27/04/1994	25/05/1994	Development	Completed (Operating)	23.2
48/13a-B8	31/01/1992	31/03/1992	Appraisal	Abandoned Phase 1	23.2
48/13a-B7	16/11/1991	11/01/1992	Development	Abandoned Phase 1	24.4
48/13a-B5	29/05/1991	15/08/1991	Development	Completed (Operating)	30.5
48/13a-B4	07/03/1991	27/05/1991	Development	Completed (Operating)	24.4
48/13a-B3	04/11/1990	01/02/1991	Development	Completed (Operating)	24.4
48/13a-B2	30/07/1990	26/10/1990	Development	Completed (Operating)	24.4
48/13a-B11	06/09/1994	01/01/1995	Development	Completed (Operating)	23.2
48/13a-B1	08/01/1990	30/08/1990	Development	Completed (Operating)	24.4
48/13a- 6	31/03/1984	19/09/1984	Appraisal	Abandoned Phase 3	28.0
48/13- 2A	18/04/1971	06/07/1971	Exploration	Abandoned Phase 3	24.4
48/13- 2	12/04/1971	16/04/1971	Exploration	Abandoned Phase 3	24.4
48/12e- SE	Planned	-	Appraisal	-	24.9
48/12e- 11	10/03/2010	09/05/2010	Exploration	Abandoned Phase 3	25.9
48/12d- 9	27/11/1996	01/01/1997	Exploration	Completed (Operating)	21.3

DECC Well Origin Wellbore Name	Well Origin Spud Date	Spud Completion Date	Original Well Intent	Current Status	Water Depth (m)
48/12c- 10Z	19/12/1997	31/01/1998	Appraisal	Abandoned Phase 3	21.3
48/12c- 10	15/11/1997	31/01/1998	Appraisal	Abandoned Phase 3	21.3
48/12b- 6	01/12/1988	20/02/1989	Exploration	Abandoned Phase 3	23.2
48/12b- 5	08/08/1988	01/10/1988	Exploration	Abandoned Phase 3	24.4
48/12b- 4	18/07/1987	21/11/1987	Exploration	Abandoned Phase 2	21.9
48/12b- 3	22/04/1985	17/09/1985	Exploration	Abandoned Phase 3	26.2
48/12a-G3	31/10/1995	06/03/1996	Appraisal	Completed (Shut In)	22.3
48/12a-G2	05/04/1995	31/05/1995	Development	Completed (Shut In)	22.3
48/12a- WC	Planned	-	Exploration	-	18.9
48/12a-8	29/11/1994	06/02/1995	Appraisal	Abandoned Phase 3	21.3
48/12a- 7Z	12/04/1994	01/07/1994	Appraisal	Completed (Shut In)	22.3
48/12a- 7Y	12/04/1994	23/05/1994	Appraisal	Completed (Shut In)	22.3
48/12a- 7	13/10/1991	16/12/1991	Appraisal	Abandoned Phase 2	22.3
48/12- 2	12/10/1975	12/11/1995	Exploration	Abandoned Phase 3	20.4
48/12- 1	20/05/1967	13/07/1967	Exploration	Abandoned Phase 3	24.7
48/11c- 13	11/07/2007	12/08/2007	Exploration	Abandoned Phase 3	21.3
48/11b-A9	06/02/1999	10/04/1999	Development	Abandoned Phase 3	23.2
48/11b-A8Z	01/06/1994	21/06/1994	Development	Abandoned Phase 3	23.2
48/11b-A8Y	15/08/1994	26/09/1994	Development	Abandoned Phase 3	23.2
48/11b-A8	07/04/1994	04/07/1994	Development	Abandoned Phase 3	23.2
48/11b-A7	10/02/1992	25/05/1992	Development	Abandoned Phase 3	23.2
48/11b-A6Z	27/05/1992	26/06/1992	Development	Abandoned Phase 3	23.2
48/11b-A6	30/12/1991	10/02/1992	Development	Abandoned Phase 3	23.2
48/11b-A5	27/11/1991	28/12/1991	Development	Abandoned Phase 3	23.2
48/11b-A4	11/10/1991	16/10/1991	Development	Abandoned Phase 3	24.4
48/11b-A3Z	25/05/1996	14/07/1996	Development	Abandoned Phase 3	23.2
48/11b-A3Y	14/06/1996	14/07/1996	Development	Abandoned Phase 3	23.2
48/11b-A3	21/08/1991	02/11/1991	Development	Abandoned Phase 3	23.2
48/11b-A2	26/07/1991	19/08/1991	Development	Abandoned Phase 3	23.2
48/11b-A1Z	04/07/1994	02/08/1994	Development	Abandoned Phase 3	23.2
48/11b-A1	28/05/1991	23/07/1991	Development	Abandoned Phase 3	23.2
48/11b- 3	20/04/1977	10/07/1977	Exploration	Abandoned Phase 3	21.6
48/11a-B8	25/02/1994	05/04/1994	Development	Abandoned Phase 3	23.2
48/11a-B7	06/01/1994	14/02/1994	Development	Abandoned Phase 3	23.2
48/11a-B6	11/07/1993	01/09/1993	Development	Abandoned Phase 3	23.2
48/11a-B5	07/04/1993	27/05/1993	Development	Abandoned Phase 3	23.2
48/11a-B4	02/02/1993	05/04/1993	Development	Abandoned Phase 3	23.2
48/11a-B3Z	29/05/1993	11/07/1993	Development	Abandoned Phase 3	23.2
48/11a-B3	26/11/1992	01/02/1993	Development	Abandoned Phase 3	23.2
48/11a-B2	19/09/1992	30/01/1993	Development	Abandoned Phase 3	23.2
48/11a-B1	07/03/1986	13/05/1986	Appraisal	Abandoned Phase 2	21.0
48/11a- 12	22/09/1994	11/11/1994	Exploration	Abandoned Phase 3	32.9
48/11b- 6	16/11/1985	28/12/1985	Appraisal	Abandoned Phase 3	24.1
48/11a- 9	13/05/1987	30/08/1993	Appraisal	Abandoned Phase 3	20.4
48/11b-8	17/09/1986	15/10/1986	Appraisal	Abandoned Phase 3	21.9
48/11a- 11	27/11/1987	27/01/1988	Appraisal	Abandoned Phase 3	20.4
48/11b- 10	01/09/1987	16/10/1987	Appraisal	Abandoned Phase 3	23.8
48/11b- 4	31/10/1984	28/12/1984	Exploration	Abandoned Phase 3	24.1
48/11- 2	16/07/1969	01/09/1969	Exploration	Abandoned Phase 3	19.5
48/11b-5	22/02/1985	10/03/1985	Exploration	Abandoned Phase 3	21.6
48/11- 1	25/04/1966	13/08/1966	Exploration	Abandoned Phase 3	27.1

2.5.2 Existing Information Relating to the OWF Survey Area

Existing information considered as part of this assessment includes a geophysical survey result report at the OWF site (Enviros Doc ref: ENV21-21042-GTR4-02_Rev.01). The report provides details of seabed elevation, seabed features, shallow geology and identifies potential hazards present within the survey area utilising MBES, SSS, SBP, MAG and UHR data.

To aid in regional comparisons between the chemical and macrofaunal parameters the current report utilises previous surveys carried out by BSL in 2019 and 2020:

southern North Sea survey, environmental habitat and baseline survey, (BSL SNS, 2019; BSL SNS 2020a;
 BSL SNS 2020b)

The three regional BSL surveys showed similar sediment characteristics and water depths along with similar sampling methodology (two macrofauna and one PC per station) to those used during the current OWF survey. The mean, standard deviation (SD) and coefficient of variance (CV) from the previous BSL surveys are provided within their respective tables.

2.5.3 Reference Sources

Sediment quality guidelines for the protection of benthic macrofauna estimate the thresholds of specific compound concentrations in sediments above which can result in adverse effects to sediment-dwelling organisms. The sediment quality guidelines cited in this report in regards to each parameter are tabulated in Table 5 and described in sections a to g below.

SQGVs/Parameters	PSA	тос	РАН	НМ	Organotin	РСВ	Organochlorine	Macrofauna
UKOOA 50 th 95 th Percentiles			Х	Х				Х
OSPAR BC and BAC			Х					
OSPAR ERL and ERM			Х	Х		Х	Х	
CEFAS Action Levels 1 and 2				Х	Х	Х	Х	
CCME TEL and PEL			Х	Х		Х	Х	
AZNECC/ARMCANZ SQGV			X	X				

Table 5 Sediment Quality Reference Values

a UKOAA 50th and 95th Percentiles for Background North Sea Sediments

In 2001, the United Kingdom Offshore Operators Association (herein known as UKOOA) published sediment quality guidelines for the UK North Sea (UKOOA, 2001). Using a database of survey data collected between 1975-95, the report sets out 'background' levels for a variety of parameters (e.g. organic carbon, hydrocarbon, and metals content) in sediments over 5km from an existing oil and gas platform. For the current EBS the 50th and 95th percentile levels for uncontaminated background sediments are presented where available, using a combination of levels for the entire North Sea, specific North Sea sectors or specific sediment types, as appropriate to best inform the interpretation.

b OSPAR Background Concentrations and Background Assessment Concentrations

To monitor progress towards 'background conditions' in the marine environment, OSPAR developed a range of background concentrations (BCs) and background assessment concentrations (BACs) for use as reference levels throughout the OSPAR marine area. BCs are concentrations of contaminants derived from analysis of core samples

UK4855H-824-RR-01

to reflect pre-industrial, pristine, background levels for the OSPAR area (Webster *et al.*, 2009). BACs have been statistically derived from BCs and represent the level above which concentrations can be considered to be significantly higher than the relevant BC, with concentrations said to be near background if they are below their corresponding BAC (OSPAR, 2008). In the current report, reference to BCs and BACs has been made after normalisation of metals and PAHs using the method described in detail in the corresponding results sections and Appendix F.

c OSPAR Effect Range Low and Effect Range Median Levels

In order to assign a level of context for toxicity, an approach used by Long *et al.*, (1995) to characterise contamination in sediments will be used in this report. 'Effect range low' (ERL) levels were defined as concentration of metals at which adverse effects were reported in 10% of the data reviewed, whilst 'effect range median' (ERM) levels were defined as the concentrations at which 50% of studies reported harmful effects. The ERLs and ERMs have been used to evaluate the ecological significance of heavy and trace metal concentrations within the survey area.

d CEFAS Action Levels 1 and 2

The UK is a signatory of both the London Protocol and OSPAR Convention for the protection of the marine environment of the Northeast Atlantic, which addresses the prevention of marine pollution from disposal at sea. The Marine and Coastal Access Act (2009) transposes the requirements of these conventions into English law. The Marine Management Organisation (MMO), in conjunction with the guidelines set out by OSPAR, established two action levels to enable consideration of potential adverse environmental effects from sea disposal activities (MMO, 2015). The two action levels are listed below:

- Below Action Level 1: Contaminants are generally considered to be of no concern and are unlikely to influence the licensing condition.
- Between Action Levels 1 and 2: Contaminants are generally further investigated against background concentrations.
- Above Action Level 2: Contaminants are generally considered unsuitable for disposal at sea.

e CCME Threshold Effect Level and Probable Effect Level

The Canadian sediment quality guidelines were developed by the Canadian Council of Ministers of the Environment as broadly protective tools to protect aquatic life for an indefinite period of exposure to chemicals associated with sediments. The CCME have derived two reference values for aquatic sediments: a threshold effect level (TEL) and a probable effect level (PEL). The TEL and PEL reference values are described below:

- Below TEL: the lowest range of concentrations, within which adverse effects are rarely observed.
- Between TEL and PEL: possible effects range, within which adverse effects are occasionally observed.
- Above PEL: probable effects range, within which adverse biological effects are frequently observed.

f AZNECC and ARMCANZ SQGV and SQGV High

In order to characterise contamination in sediments, when OSPAR normalisation was inappropriate, sediment quality guidelines (SQGs) adopted by the Australian and New Zealand Environment and Conservative Council (ANZECC) and the Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) will be used in this report (Simpson *et al.*, 2013). The application of SQGs involves a tiered, decision-tree approach. Following this framework, the total concentrations of contaminants are compared to SQG values. For metals, the

UK4855H-824-RR-01

sediment quality guideline values' (SQGVs) and SQG-High values are largely unchanged and remain based on the effects range low (ERL) and effects range median (ERM) values. For organics, threshold effects level (TEL) and probable effects level (PEL) values are now used. If the contaminant concentrations exceed the SQGVs, further investigations are initiated to determine whether there is indeed an environmental risk associated with the exceedance by assessing the contaminant bioavailability.

g EMODnet Predicted Habitat Distributions

To further aid interpretation, comparison has been made with the predicted seabed habitat distribution data produced by the European marine observation and data network (EMODnet). EMODnet is a long-term marine data initiative developed through a stepwise approach to collect data and build on existing databases to provide access to European marine data across seven discipline-based themes: bathymetry, geology, seabed habitats, chemistry, biology, physics, and human activities (EMODnet, 2022). The broad-scale seabed habitat map is a predictive delineation of habitats within all European seas to the EUNIS classification system (EMODnet, 2022). Formulated through international (OSPAR) and national monitoring programmes in collaboration with European projects such as MESH or Mesh Atlantic the predicted seabed habitat map can be a useful resource in confidently assigning biotopes within a given survey area (Figure 2).

2.5.4 Legislative Background

a UK Post 2010 Biodiversity Framework

The 'UK Post-2010 Biodiversity Framework' was published in July 2012 to succeed the UK BAP and 'Conserving Biodiversity – the UK Approach' and is the result of a change in strategic thinking following the publication of the CBDs 'Strategic Plan for Biodiversity 2011-2010' and the launch of the EU Biodiversity Strategy (EUBS) in May 2011. All of the 1,150 species, 391 Species Action Plans (SAPs) and 45 Habitat Action Plans (HAPs) included in the UKBAP were incorporated into the framework Key UK BAP Habitats that may occur in an open water marine environment are as follows:

- Carbonate Mounds,
- Deep-sea Sponge Communities,
- Cold-water Coral Reefs,
- Fragile Sponge and Anthozoan Communities on Subtidal Rocky Habitats,
- Blue and Horse Mussel Beds,
- Mud Habitats in Deep Water,
- Sabellaria spinulosa Reefs,
- Seamount Communities,
- Ammodytes marinus Spawning and Nesting grounds

UK4855H-824-RR-01

b OSPAR Commission

At its Biodiversity Committee (BDC) meeting in 2003, OSPAR agreed to proceed with a programme to collate existing data on the distribution of 14 key habitats, as part of a wider programme to develop measures for their protection and conservation. The UK agreed to compile the relevant data for its own marine waters and submit these for collation into composite maps on the distribution of each habitat type across the whole OSPAR area. The work is being coordinated by the Joint Nature Conservation Committee (JNCC).

Key OSPAR habitats that may occur in an open water marine environment are essentially the same as listed under the UK Post-2010 Biodiversity Framework, with the "Mud Habitats in Deep Water" listed as "Seapens & Burrowing Megafauna Communities".

c European Habitats Directive

The United Kingdom is a signatory of the Convention on the Conservation of European Wildlife and Natural Habitats (Bern Convention, 1979). To meet their obligations under the convention, the European Community Habitats Directive was adopted in 1992. The provisions of the Directive require Member States to introduce a range of measures including the protection of species listed in the Annexes; to undertake surveillance of habitats and species and produce a report every six years on the implementation of the Directive. The 189 habitats listed in Annex I of the Directive and the 788 species listed in Annex II, are to be protected by means of a network of sites. Each Member State is required to prepare and propose a national list of sites, which will be evaluated in order to form a European network of Sites of Community Importance (SCIs). These will eventually be designated by Member States as Special Areas of Conservation (SACs), and along with Special Protection Areas (SPAs) classified under the EC Birds Directive (2009), form a network of protected areas known as Natura 2000. The Directive was amended in 1997 by a technical adaptation Directive and latterly by the Environment Chapter of the Treaty of Accession 2003.

The implementation of the Habitats Directive (92/43/EEC) in offshore waters commenced in 2000 and highlighted a number of potential habitats for which SACs may be selected in UK offshore waters. The Annex I habitats of particular relevance to this region of UK waters are as follows:

- Sub-tidal reefs (e.g. biogenic reefs formed by *Sabellaria spinulosa*, *Modiolus* and rocky reefs formed from iceberg scour or moraine deposits);
- Sandbanks which are slightly covered by sea water all the time;
- Submarine structures made by leaking gases (including, inter alia, carbonates formed within pockmarks).

The Habitats Directive introduced the precautionary principle to protect sensitive areas whereby projects can only be permitted where no adverse effect on the integrity of the site can be shown.

Following the UKs exit from the European Union (EU), new regulations have been put into effect that have transposed the land and marine aspects of the Habitats Directive (Council Directive 92/43/EEC) and Wild Birds Directive (Directive 2009/147/EC). It is important to note that following the UKs exit from the EU, habitat and species protection and standards are implemented in the same or an equivalent way and there is no change in terms of policy. Amendments to parts of the 2017 regulations were applied by the 'Conservation of Habitats and Species (EU exit) Regulations 2019' which became operable from 1 January 2021 (GOV.UK, 2022).

UK4855H-824-RR-01

Main changes to the regulation include:

- The creation of a national site network within the UK territory comprising the protected sites already designated under the Nature Directives, and any further sites designated under these regulations;
- The establishment of management objectives for the national site network (the 'network objectives');
- A duty for appropriate authorities to manage and where necessary adapt the national site network as a whole to achieve the network objectives;
- An amended process for the designation of Special Areas of Conservation (SACs);
- Arrangements for reporting on the implementation of the regulations, given that the UK no longer provides reports to the European Commission;
- Arrangements replacing the European Commission's functions with regard to the imperative reasons of overriding public interest test where a plan or project affects a priority habitat or species, and;
- Arrangements for amending the schedules to the Regulations and the annexes to the Nature Directives that apply to the UK.

The amendments to the legislation were applied to ensure that the regulations continued to function after leaving the EU. Most of these changes involved transferring functions from the European Commission to the appropriate authorities in England and Wales. All other processes or terms in the 2017 regulations remain unchanged and existing guidance is still relevant (GOV.UK, 2022).

d The UK Marine Monitoring Programme

The UK National Marine Monitoring Programme (NMMP) was established in response to the 1986 House of Lords select committee on marine science and technology, who recommended that a common approach to marine monitoring should be established to comply with the international and national commitments (OSPAR Convention and EC Directives). The NMMP focuses on stable depositional sites and records data on sediment chemistry, biological communities, the bioaccumulation of heavy metals (cadmium, mercury and lead) and their ecological effects.

A National Marine Biology Analytical Quality Control Scheme (NMBAQC) was established in 1992 to establish quality assurance standards for the biological aspects of the NMMP. Similar schemes exist for chemical monitoring (NMCAQC) and ecotoxicological monitoring (NMEAQC) (Davies *et al.*, 2001).

2.5.5 Habitat Investigation

a Habitat Classification

A marine biotope classification system for British waters was developed by Connor *et al.* (2004) from data acquired during the JNCC Marine Nature Conservation Review (MNCR) and subsequently revised by Parry *et al.* (2015) to provide improved classification of deep-sea habitats. The resultant combined JNCC (2015) classification system is analogous with the European Nature Information Service Habitat Classification (EUNIS, 2019), which has compiled habitat information from across Europe into a single database. The two classification systems are both based around the same hierarchical analysis. Initially, abiotic habitats are defined at four levels. Biological communities are then linked to these (at two lower levels) to produce a biotope classification (Connor *et al.*, 2004; EUNIS, 2019).

UK4855H-824-RR-01

Habitat descriptions have been interpreted from the side scan sonar (SSS) and bathymetric data acquired during the current survey. Global Mapper V20 GIS software was used to review the SSS mosaic (Geotiff) and multibeam bathymetry data (Geotiff and xyz) and to delineate areas of different seabed habitats. In addition, information on seabed sediment types and faunal communities from seabed photography and grab sampling, and the predicted seabed habitat map produced by EMODnet was utilised in the habitat investigation across the OWF survey area. As illustrated in Figure 2, the predicted EUNIS habitats in close proximity to the survey area: 'Atlantic Circalittoral Coarse Sediment' (A5.14/MC32), Atlantic Circalittoral Sand' (A5.25/MC52) and 'Atlantic Infralittoral Sand' (A5.23/MB5).

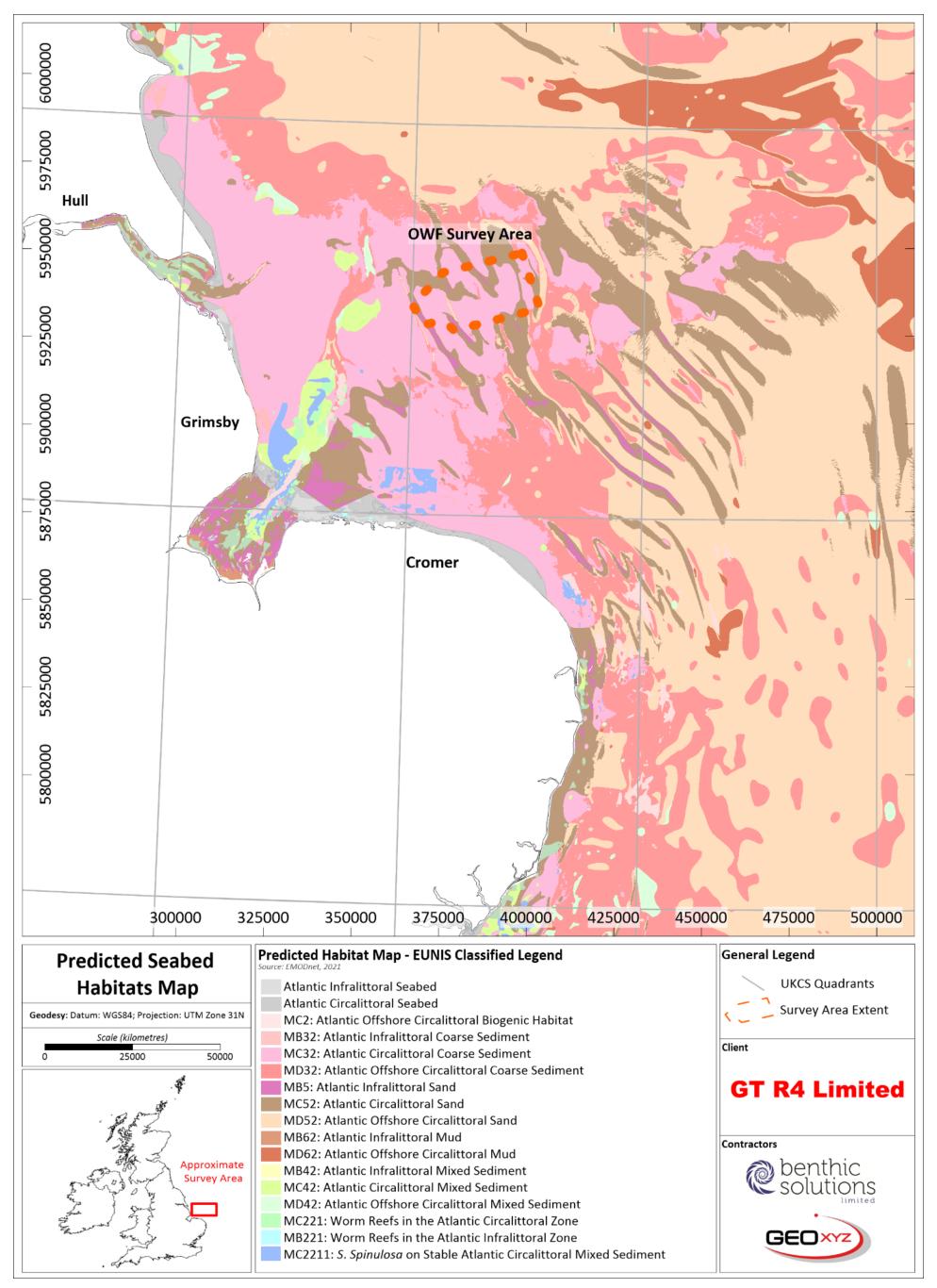


Figure 2 EMODnet Predicted Seabed Habitats Map in Relation to the Survey Area

Document No. UK4855H-824-RR-01 Page 23 of 292

b Expected Habitat Sensitivities

The OWF survey area is situated within the large Southern North Sea Special Area of Conservation (SAC), which stretches from the central North Sea (north of Dogger Bank) to the Straits of Dover in the south. A mix of habitats which are afforded Annex I protection, such as sandbanks and gravel beds, are present within the SAC but are designated as individual SACs and Marine Conservation Zones (MCZs), of which, the OWF survey area is located over 16km from the closest being Holderness Offshore Marine Conservation Zone (MCZ) (Figure 3). MCZs and SACs found near to the OWF survey area and the primary features for which they were designated are summarised below in Table 6.

Table 6 Key Aspects of Nearby Protected Areas

SAC/ MCZ	Designated Site	Site Area	Closest distance and bearing from the survey area	Key Aspects			
	Inner Dowsing, Race Bank and North Ridge	845km²	17km southeast	Sandbanks bordering channels, linear relict banks, sinusoidal banks with distinctive 'comb-like' subsidiary banks and areas of Sabellaria spinulosa biogenic reefs.			
	The Wash and North Norfolk Coast	1,072km²	49km southeast	Sublittoral sandbanks, <i>Sabellaria spinulosa</i> biogenic reefs, intertidal mudflats, large shallow inlets and bays, salt meadows, Mediterranean and thermo-Atlantic halophilous scrubs and <i>Salicornia</i> and other annuals colonising mud and sand.			
	Haisborough, Hammond and Winterton	1,468km²	57km south	Sandbanks formed via headland associated geological processes a occasional areas of <i>Sabellaria spinulosa</i> .			
SAC	North Norfolk Sandbanks and Saturn Reef	3,603km²	5.8km west	Offshore linear ridge and tidal sandbanks with extensive sand waves and areas of <i>Sabellaria spinulosa</i> biogenic reefs.			
	Dogger Bank	12,331km²	78km northwest	Sublittoral sandbanks formed by glacial and submergence through sea-level rise.			
	Southern North Sea	36,951km²	Passes through western extent of the survey area	Important area for Annex II harbour porpoise (<i>Phocoena phocoena</i>).			
	Runswick Bay	68km²	154km northwest	Protects subtidal coarse and mixed sediments which support the ocean quahog (Arctica islandica)			

UK4855H-824-RR-01

SAC/ MCZ	Designated Site	Site Area	Closest distance and bearing from the survey area	Key Aspects			
	Orford Inshore	72 km²	157km south	Orford Inshore MCZ is dominated by subtidal mixed sediments which act as an important nursery and spawning grounds for many fish species, including dover sole, lemon sole and sandeels.			
	Markham's Triangle	200km²	72km east	Protects subtidal mud, sand, coarse and mixed sediments which supports varied faunal assemblages of polychaetes, molluscs, echinoderms and commercially important flatfish such as sole and plaice.			
MCZ	Holderness Offshore	309km²	16km northwest	North Sea glacial tunnel valleys (inner Silver Pit), and the presence of <i>Arctica islandica</i> .			
	Holderness Inshore	309km²	50km northwest	Deep water circalittoral rocks supporting sponge aggregations and commercially significant crustaceans (<i>Cancer pagurus</i> and <i>Necora puber</i>).			
	Cromer Shoal Chalk Beds	321km²	50km southwest	Presence of peat and clay exposures and subtidal chalk providing nursery areas for crustaceans, fish and the small spotted catshark.			

Sensitive Habitat and Species Assessment

Based on the features that were granted protection in the above areas, the habitats and species of particular relevance to this region of UK waters are:

- Ross worm (S. spinulosa) reef (EC Habitats Directive Annex I, Habitat FOCI, OSPAR Threatened and/or declining Habitat, UKBAP Priority Habitat);
- Horse mussel (Modiolus modiolus) beds (EC Habitats Directive Annex I, Habitat FOCI, OSPAR Threatened and/or declining Habitat, UKBAP Priority Habitat);
- Stony reef (EC Habitats Directive Annex I, UKBAP Priority Habitat);
- Sandbanks which are slightly covered by sea water all the time (EC Habitats Directive Annex I, Habitat FOCI);
- The Ocean Quahog, Arctica islandica (Species FOCI, OSPAR Threatened and/or declining species), and;.
- Lesser sandeels (Ammodytes marinus) (Species FOCI, UKBAP Priority Species, SPI England and Wales, PMF species Scotland).

The east and west sides of the OWF survey area overlap two designated herring spawning ground (HSG) areas and the OWF survey area is also located within a major sandeel spawning and nursery ground. Four blocks, 48/11c, 48/12f, 48/13a and 48/8b, found within the OWF survey area require a mandatory HSG survey to be undertaken (UK GOV, 2019). As such, there was the potential for sediment suitable for herring and sandeel spawning to occur within the survey area.

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

d Legislative Species Protection Assessment

The epifauna taxa recorded from review of the underwater video footage and infauna taxa identified by taxonomic analysis were inputted into a database developed by BSL staff which identified any species that are afforded protection under several legislative conventions/directives implemented in the UK, including the UK Post-2010 Biodiversity Framework and the Species of Principal Importance England.

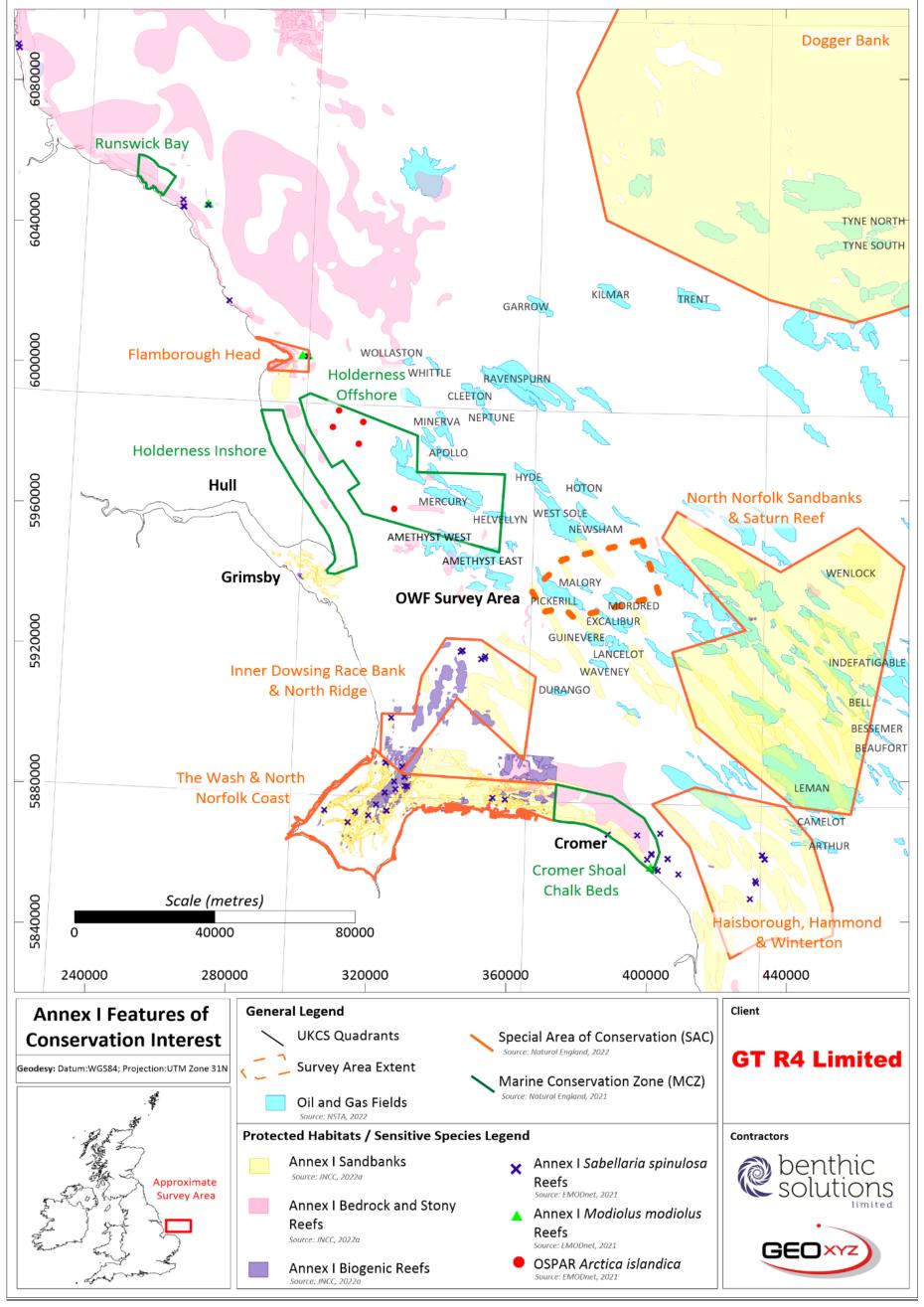


Figure 3 Location of Features of Conservation Interest in Relation to the Survey Area

Document No. UK4855H-824-RR-01 Page 27 of 292

3 FIELD SURVEY AND ANALYTICAL METHODS

3.1 GEOPHYSICAL DATA

Analogue geophysical data acquired by Enviros Survey and Consultancy Limited prior to survey operations were used for site selection by GoBe Consultants. Site selection using geophysical data can ensure specific locations are selected for the camera transects to investigate any habitats and boundaries across the survey area, with particular attention being paid to the investigation of potential Annex I habitats protected under the EC Habitats Directive.

Additional geophysical lines covering sections of infill to the southeast were completed post environmental survey to ensure comprehensive seabed features and habitat mapping could be acquired.

The following datasets were available for review during the preparation of this report:

- Bathymetry reduced and processed offshore to provide a digital terrain model (0.25m x 0.25m bin size) where major bathymetric features and minor bathymetric changes could be identified and highlighted. This included the identification of seabed morphology within the survey area (e.g., megaripples, sand waves, canyons and sandbanks), seabed infrastructure and debris (e.g. anthropogenic debris, existing cables and pipelines).
- SSS with data run at both high (600kHz) and low (300kHz) frequencies at a 75m range per channel both
 acquiring data perpendicular to the towfish. Data was processed using Chesapeake SonarWiz and were
 digitally rendered onto a seabed mosaic of 0.15m pixel size of the area using the HF 600kHz data for
 review. Changes in sediment type and hardness, along with features observed through low level relief and
 discrete objects could be delineated.

3.2 ENVIRONMENTAL GROUND-TRUTHING AND SAMPLING

The environmental sampling strategy was outlined by the client in the project execution plan (Doc Ref UK4855H-824-PEP-01-1.5) and GoBe Consultants selected stations based on the acquired geophysical data prior to the commencement of the survey. All amendments to the environmental data acquisition were agreed prior to sampling in accordance with the JNCC marine monitoring handbook, relevant procedural guidelines and SSS/MBES data review (Bullimore and Hiscock, 2001; Davies *et al.*, 2001; Hitchin *et al.*, 2015; Holt and Sanderson, 2001; Munro, 2001; OGUK, 2019).

Grab sampling was undertaken at a total of 80 stations with seabed video acquisition carried out at 30 stations based on GoBe Consultants intelligent sampling (Table 7, Table 8 and Figure 4). Intelligent sampling covered areas of interest highlighted by the geophysical data such as changes in SSS reflectivity or changes in bathymetry to provide an ecological baseline of the OWF survey area, as per the JNCC marine monitoring handbook (Davies *et al.*, 2001). Contaminant analysis was sampled using the Shipek grab sampler while benthic macrofauna and physico-chemical samples were acquired using the min-Hamon grab sampler. Grab stations with the suffix "_A" indicate the station was offset (>25m) from the proposed position due to hard underlying sediments. For example, the Shipek grab deployment at station OWF_62 was offset 25m northeast due to hard sediment and was subsequently given the "_A" suffix. Eight trawl transects were selected across the OWF survey area to characterise the epibenthic species that are commonly under-represented during grab surveys.

UK4855H-824-RR-01

All 80 benthic stations underwent the following sampling/sub-sampling:

- $80 \times 0.1 \text{m}^2$ macro-invertebrate samples processed over a $1000 \mu \text{m}$ aperture sieve in the field and $1000 \mu \text{m}$ in the lab;
- 80 x 0.1m² physico-chemical replicates, subsampled for particle size distribution (PSD) and total organic carbon (TOC) at a single surface depth of 0-2cm.

An additional 30 benthic stations underwent the following sampling/sub-sampling

- 30 x 0.05m² Contaminant replicates, subsampled for trace metals (HM), organotins, polyaromatic hydrocarbons (PAH), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs).
- 15 x 0.05m² 80ml eDNA replicates, subsampled from four corners of a surface depth of 0-2cm.

Eight collocated beam trawl transects underwent the following sampling/sub-sampling

• 8 x ~500m trawl replicate, subsampled for macroinvertebrate samples processed over a 5mm mesh in the field and 5mm in the lab.

A full suite of physico-chemical samples were retrieved from each Hamon grab and Shipek contaminant sampling stations across the OWF survey area. However, nine stations did not meet the minimum sample retention (40%) to be processed for macrofaunal analysis, as the hard underlying sediment at these stations restricted sample penetration (Table 7). The under penetration of the Shipek grab resulted in no eDNA samples collected from several of the designated stations. In light of this, it was decided to take eDNA samples from all the remaining Shipek grabs and the corresponding Hamon grabs if the Shipek failed to penetrate the sediment. In total, 24 stations were subsampled for eDNA analysis, which covered a wide spatial area and range of sediment types. The results of the eDNA analysis will be reported separately in the subsequent ECC survey report (UK4855H-824-RR-02).

All eight beam trawl samples were collected with any trawls offset by >50m recorded with a "_A" suffix due to an insufficient sample retention (<5L). The low sample retention and trawl re-deployment occurred at OWF_T2 and OWF_T6. OWF_T8 was dropped from the scope by the client due to the presence of *Sabellaria spinulosa* observed along camera transect OWF_VID_76 and was re-positioned over grab station OWF_79 and subsequently renamed OWF_T9 (Table 9).

Camera transects of approximately 50m in length were collocated with 30 grab locations to acquire video and stills data to facilitate a habitat assessment (Table 8). Survey operations were carried out using a MOD4.2 and 4.4 camera system mounted within a BSL freshwater lens adapted camera sled frame equipped with a separate strobe, LED lamps and HD video. Additional camera and trawl transects were added to the scope (OWF_VID_79A and T9) due to the presence of *Sabellaria spinulosa* at OWF_76 and OWF_T8. The survey field operations are detailed in Appendix C, with the grab sampling logs and deck observations provided in Appendix F, camera transect logs in Appendix G, and trawl sampling logs in Appendix H.

Table 7 Summary of Grab Station Sample Acquisition

	Geodetics: WGS84, UTM31N, CM 3°E											
Station	Easting (m)	Northing (m)	Rationale	Depth (m)	PC*	F1*	Contaminant (Primary**)	Contaminant (Spare)**	eDNA SG**	eDNA HG*		
OWF_01	368 325	5 933 910	Atop sandbank feature.	12.9	Υ	Υ	Υ	Υ	Υ	Υ		
OWF_02	370 677	5 931 587	Example of flat seabed.	21.0	Υ	NS	-	-	-	-		
OWF_03	370 789	5 928 857	Atop sandbank feature.	12.6	Υ	Υ	-	-	-	-		
OWF_04	371 114	5 934 756	Example of flat seabed.	19.9	Υ	Υ	-	-	-	-		
OWF_05	372 032	5 937 085	Example of flat seabed.	21.1	Υ	Υ	-	-	-	-		
OWF_06	373 189	5 929 297	Area of sand wave features.	20.4	Υ	Υ	Υ	NS	NS	-		
OWF_07	373 062	5 931 766	Area of sand wave features.	17.2	Υ	Υ	-	-	-	-		
OWF_08	399 171	5 942 280	Area of sand wave features.	20.7	Υ	Υ	-	-	-	-		
OWF_09	392 180	5 940 380	Area of sand wave features.	21.0	Υ	Υ	-	=	-	-		
OWF_10	374 491	5 934 097	Example of flat seabed.	19.0	Υ	Υ	Υ	Υ	Υ	Υ		
OWF_11	374 806	5 932 218	Area of sand wave features.	18.5	Υ	Υ	Υ	Υ	Υ	Υ		
OWF_12	375 073	5 939 863	Area of megaripple features.	18.4	Υ	Υ	Υ	Υ	Υ	Υ		
OWF_13	375 788	5 937 614	Area of sand wave features.	19.8	Υ	Υ	-	-	-	-		
OWF_14	375 564	5 930 201	Area of sand wave features.	16.0	Υ	Υ	-	-	-	_		
OWF_15	376 342	5 942 246	On the flank of a sandbank feature.	15.4	Y	Y	_	-	_	_		
OWF_16	376 475	5 934 626	Example of flat seabed.	20.0	Y	NS	-	_	_	_		
OWF_17	376 766	5 939 971	On the flank of a sandbank feature.	14.8	Y	Y	Υ	Υ	Υ	Υ		
OWF_18	377 425	5 936 529			Y	Y	-		<u> </u>			
OWF_19	377 956	5 933 911	At the base of a tunnel valley.	22.2 38.6	Y	Y	Υ	Υ	Υ	_		
OWF_20	377 330	5 938 542	On the flank of a sandbank feature.	19.1	Y	Y	-	· ·	<u> </u>	_		
OWF_21	378 588	5 928 938	Area of sand wave features.	10.2	Y	Y	Υ	Υ	Υ	Y		
OWF_22	378 963	5 940 391	Example of flat seabed.	23.2	Y	Y	-	-	<u> </u>	_		
OWF_23	379 012	5 943 303	An area of flat seabed, 5km NNW off the centre point of the cruciform arrangement.	21.5	Y	Y	Y	Υ	-	-		
OWF_24	379 489	5 932 718	Example of flat seabed.	21.2	Υ	Υ	-	-	-	-		
OWF_25	379 700	5 935 604	Area of megaripple features.	17.8	Υ	Υ	-	-	-	-		
OWF_26	392 596	5 937 978	Example of flat seabed.	19.7	Υ	Υ	-	-	-	-		
OWF_27	381 289	5 938 700	An area of sand waves, 2.5km NNW off the centre point of the cruciform arrangement.	19.8	Y	Υ	Υ	Υ	Υ	Y		
OWF_28	381 893	5 931 030	Example of flat seabed.	18.5	Υ	Υ*	-	-	-	-		
OWF_29	382 190	5 942 983	Example of flat seabed.	22.6	Υ	Υ	-	-	-	-		
OWF_30	382 215	5 936 874	An area of sand waves, approximately 1.5km NNW off the centre point of the cruciform arrangement.	20.4	Υ	Υ	Υ	Υ	Υ	Υ		
OWF_31	382 454	5 928 327	Example of flat seabed.	17.1	Υ	Υ	-	-	-	-		
OWF_32	382 669	5 933 674	An area of flat seabed, 0.5km WSW off the centre point of the cruciform arrangement.	20.5	Υ	Y	Y	NS	-	Y		
OWF_33	382 666	5 940 287	Example of flat seabed.	21.7	Υ	Υ	-	-	-	-		
OWF_34	383 061	5 931 425	Example of flat seabed.	20.2	Υ	Υ	Y	NS	Υ	Y		
OWF_35	383 118	5 935 025	An area of flat seabed, 0.5km NNW off the centre point of the cruciform arrangement.	20.8	Y	NS	Y	NS	-	Y		

Geodetics: WGS84, UTM31N, CM 3°E										
Station	Easting (m)	Northing (m)	Rationale	Depth (m)	PC*	F1*	Contaminant (Primary**)	Contaminant (Spare)**	eDNA SG**	eDNA HG*
OWF_36	384 016	5 933 223	An area of flat seabed, 0.5km SSE off the centre point of the cruciform arrangement.	20.1	Υ	Υ	Y	Υ	Υ	Y
OWF_37	384 463	5 936 267	Area of sand wave features.	19.4	Υ	Υ	-	-	-	-
OWF_38	384 543	5 934 491	An area of flat seabed, 0.5km ENE off the centre point of the cruciform arrangement.	20.3	Υ	γ*	Υ	NS	-	Υ
OWF_39	384 808	5 940 130	An example of a tunnel valley feature with a shallow base.	24.9	Υ	Υ	Y	Υ	-	Υ
OWF_40	384 835	5 928 514	Area of megaripple features.	15.7	Υ	Υ	-	-	-	-
OWF_41	384 915	5 931 423	An area of flat seabed, 1.5km SSE off the centre point of the cruciform arrangement.	19.6	Υ	Υ	Y	NS	NS	Υ
OWF_42	384 942	5 943 991	On the flank of a sandbank feature.	18.5	Υ	Υ	-	-	-	-
OWF_43	384 966	5 938 223	Example of flat seabed.	23.6	Υ	Υ	-	-	-	-
OWF_44	385 577	5 940 949	Example of flat seabed.	21.3	Υ	Υ	-	-	-	-
OWF_45	385 841	5 929 678	An area of flat seabed, 2.5km SSE off the centre point of the cruciform arrangement.	20.2	Υ	Υ	Υ	NS	-	Y
OWF_46	386 508	5 928 375	Example of flat seabed.	20.6	Υ	Υ	Υ	Υ	Υ	Υ
OWF_47	386 555	5 935 791	At the base of a tunnel valley.	37.3	Υ	Υ	Υ	Υ	Υ	Y
OWF_48	387 377	5 939 388	Example of flat seabed.	19.2	Υ	Υ	-	-	-	-
OWF_49	387 851	5 930 602	Example of flat seabed.	18.9	Υ	Υ	-	-	-	-
OWF_50	387 946	5 942 699	Example of flat seabed.	18.4	Υ	γ*	Υ	NS	NS	Υ
OWF_51	388 515	5 933 803	Example of flat seabed.	18.5	Υ	Υ	-	-	-	-
OWF_52	389 066	5 930 894	An example of a tunnel valley feature with a shallow base.	23.1	Υ	Υ	Y	NS	NS	Υ
OWF_53	389 147	5 944 654	Area of sand wave features.	22.7	Υ	Υ	-	-	-	-
OWF_54	389 704	5 935 683	Example of flat seabed.	19.3	Υ	Υ	-	-	-	-
OWF_55	390 497	5 939 123	On the flank of a sandbank feature.	14.8	Υ	Υ	Υ	Υ	Υ	-
OWF_56	390 747	5 941 518	Area of sand wave features.	19.6	Υ	Υ	-	-	-	-
OWF_57	390 624	5 932 907	Example of flat seabed.	18.6	Υ	Υ	-	-	-	-
OWF_58	392 721	5 945 816	Area of sand wave features.	23.9	Υ	Υ	-	-	-	-
OWF_59	393 190	5 942 430	Example of flat seabed.	23.9	Υ	γ*	-	-	-	-
OWF_60	393 246	5 931 743	Area of megaripple features.	17.9	Υ	Υ	-	-	-	-
OWF_61	393 411	5 935 264	Example of flat seabed.	18.4	Υ	γ*	-	-	-	-
OWF_62	394 095	5 933 198	Example of flat seabed.	18.7	Υ	γ*	Υ	NS	-	-
OWF_63	394 360	5 930 657	Area of megaripple features.	17.5	Υ	Υ	-	-	-	-
OWF_64	394 729	5 945 871	Area of sand wave features.	23.7	Υ	Υ	-	-	-	-
OWF_65	394 835	5 939 254	Example of flat seabed.	22.0	Υ	Υ	Υ	NS	-	-
OWF_66	395 949	5 947 273	Area of megaripple features.	21.5	Υ	Υ	-	-	-	
OWF_67	396 320	5 931 265	Area of megaripple features.	25.5	Υ	Υ	-	-	-	
OWF_68	397 374	5 944 018	Area of megaripple features.	21.7	Υ	Υ	Υ	Υ	Υ	-
OWF_69	397 270	5 941 079	Area of megaripple features.	21.6	Υ	Υ	-	-	-	-
OWF_70	397 298	5 935 576	Example of flat seabed.	22.1	Υ	Υ	-	-	_	-
OWF_71	398 094	5 937 269	Area of megaripple features.	21.7	Ү	Y	-	-	-	-

	Geodetics: WGS84, UTM31N, CM 3°E											
Station	Easting (m)	Northing (m)	Rationale	Depth (m)	PC*	F1*	Contaminant (Primary**)	Contaminant (Spare)**	eDNA SG**	eDNA HG*		
OWF_72	398 434	5 947 803	Example of flat seabed.	25.8	Υ	Υ	Υ	Υ	-	-		
OWF_73	398 488	5 931 847	Area of megaripple features.	17.9	Υ	Υ	Υ	Υ	Υ	-		
OWF_74	399 147	5 945 631	Example of flat seabed.	24.9	Υ	Υ	-	-	-	-		
OWF_75	399 546	5 940 261	Example of flat seabed.	22.8	Υ	Υ	-	-	-	-		
OWF_76	399 997	5 935 262	Example of flat seabed.	22.5	Υ	Υ	-	-		-		
OWF_77	400 472	5 933 647	Example of flat seabed.	17.4	Υ	Υ	-	-	-	-		
OWF_78	400 605	5 940 261	Example of flat seabed.	21.4	Υ	Υ	-	-		-		
OWF_79	401 370	5 936 295	Example of flat seabed.	21.8	Υ	Υ	Υ	Υ	-	-		
OWF_80	402 907	5 933 513	Area of megaripple features.	22.8	Υ	Υ	-	-	-	-		

^{*}HG = Hamon grab utilised

Table 8 Summary of Environmental Camera Transect Acquisition

		Geodetics: V	VGS84, UTM31N, CM 3	3°E		
Transect	Туре	Easting (m)	Northing (m)	HD Video footage (mm:ss)	No. Stills	
OWE VID 01	SOL	368 335	5 933 885	00.06.25	22	
OWF_VID_01	EOL	368 315	5 933 938	00:06:35	23	
OWF VID 03	SOL	370 795	5 928 832	00:06:15	25	
OWF_VID_03	EOL	370 776	5 928 884	00.06.15	25	
OWE VID 11	SOL	374 799	5 932 243	00:05:55	21	
OWF_VID_11	EOL	374 816	5 932 190	00:05:55	21	
OWE VID 14	SOL	375 554	5 930 228	00:06:49	21	
OWF_VID_14	EOL	375 574	5 930 168	00:06:49	21	
OWE VID 15	SOL	376 355	5 942 221	00:06:22	1.4	
OWF_VID_15	EOL	376 332	5 942 272	00:06:22	14	
OWF_VID_17	SOL	376 763	5 939 941	00:06:28	15	
OWF_VID_17	EOL	376 764	5 939 998	00:06:28		
OWE VID 10	SOL	377 961	5 933 884	00.11.11	30	
OWF_VID_19	EOL	377 948	5 933 938	00:11:11	30	
OWE VID 22	SOL	379 022	5 943 291	00.06.22		
OWF_VID_23	EOL	379 003	5 943 343	00:06:33	28	
OWE VID 25	SOL	379 694	5 935 630	00:10:43	20	
OWF_VID_25	EOL	379 713	5 935 578	00:10:43	20	
OME VID 26	SOL	392 626	5 937 985	00.06.27	17	
OWF_VID_26	EOL	392 570	5 937 965	00:06:27	17	
OWE VID 20	SOL	382 206	5 936 900	00.06.17	36	
OWF_VID_30	EOL	382 225	5 936 846	00:06:17	26	
OWE VID 21	SOL	382 463	5 928 303	00:06:27	30	
OWF_VID_31	EOL	382 445	5 928 357	00:06:27	20	
OWE VID 22	SOL	382 678	5 933 648	00.06.22	10	
OWF_VID_32	EOL	382 657	5 933 701	00:06:23	10	

^{**}SG = Shipek grab utilised

NS = No sampled retained

Y*= F1 sample lower than 40%

Geodetics: WGS84, UTM31N, CM 3°E										
Transect	Type	Easting (m)	Northing (m)	HD Video footage (mm:ss)	No. Stills					
OWF_VID_33	SOL	382 671	5 940 262	00:05:27	21					
OWF_VID_33	EOL	382 657	5 940 316	00.03.27	21					
OWF_VID_37	SOL	384 454	5 936 293	00:11:19	20					
OWF_VID_37	EOL	384 472	5 936 240	00.11.19	20					
OWE VID 45	SOL	385 833	5 929 703	00:06:25	21					
OWF_VID_45	EOL	385 851	5 929 650	00.06.23	21					
OWE VID 47	SOL	386 567	5 935 764	00:12:55	33					
OWF_VID_47	EOL	386 546	5 935 816	00:13:55	33					
OWE VID TO	SOL	387 947	5 942 678	00.00.53	20					
OWF_VID_50	EOL	387 943	5 942 737	00:09:52	38					
OWE VID SE	SOL	390 757	5 941 495	00:06:18	16					
OWF_VID_56	EOL	390 736	5 941 547	00:06:18	16					
OWE VID 57	SOL	390 615	5 932 931	00.07.00	22					
OWF_VID_57	EOL	390 635	5 932 878	00:07:00	23					
OVA/E 1/ID E0	SOL	392 730	5 945 791	00.00:42	10					
OWF_VID_58	EOL	392 710	5 945 845	00:06:13	10					
OWF_VID_60	SOL	393 238	5 931 766	00.00.24	18					
	EOL	393 258	5 931 715	00:06:24	18					
OME MID 64	SOL	394 723	5 945 896	00.00.21	19					
OWF_VID_64	EOL	394 740	5 945 843	00:06:21	19					
OVA/E VIID CE	SOL	394 857	5 939 298	00.00.20						
OWF_VID_65	EOL	394 830	5 939 243	00:06:20	29					
014/5 1/10 60	SOL	397 273	5 941 055	00.07.00	10					
OWF_VID_69	EOL	397 272	5 941 115	00:07:20	19					
014/5 1/10 70	SOL	397 305	5 935 552	00.05.25	1.6					
OWF_VID_70	EOL	397 288	5 935 604	00:06:26	16					
OME MD 72	SOL	398 498	5 931 822	00.00.22	42					
OWF_VID_73	EOL	398 480	5 931 874	00:06:32	12					
014/5 1/10 75	SOL	399 555	5 940 235	00.05.10	24					
OWF_VID_75	EOL	399 537	5 940 288	00:06:18	24					
OME MD 76	SOL	399 987	5 935 225	00.07.54	40					
OWF_VID_76	EOL	400 006	5 935 295	00:07:54	18					
OWE 1/10 70 4	SOL	401 360	5 936 261	00.00.43	20					
OWF_VID_79_A	EOL	401 340	5 936 313	00:06:12	30					
OME ME CO	SOL	402 895	5 933 540	00.07.00	4.4					
OWF_VID_80	EOL	402 917	5 933 486	00:07:00	14					

UK4855H-824-RR-01

Table 9 Summary of Epibenthic Trawl Acquisition

		G	eodetics: WGS84	, UTM31N, CM	3°E		
Station	Depth Range (m)	S	OL	E	OL	Longth (m)	Duration
Station		Easting (m)	Northing (m)	Easting (m)	Northing (m)	Length (m)	(hh:mm)
OWF_T1	10 - 11	368 460	5 933 585	368 150	5 934 336	812.59	00:27
OWF_T2_A	16 - 17	376 725	5 940 395	376 705	5 939 724	671.45	00:28
OWF_T3	40 - 43	377 917	5 934 077	378 073	5 933 371	723.33	00:24
OWF_T4	18 - 20	384 544	5 936 017	384 349	5 936 607	621.57	00:27
OWF_T5	20 - 21	387 954	5 942 500	387 930	5 943 008	508.85	00:18
OWF_T6_A	20 - 21	390 589	5 933 290	390 800	5 932 619	702.59	00:26
OWF_T7	21 -22	397 296	5 940 732	397 189	5 941 402	677.67	00:21
OWF_T9	22 - 23	401 256	5 936 524	401 451	5 936 045	517.64	00:20
SOL = Start of	line; EOL = End o	f line					

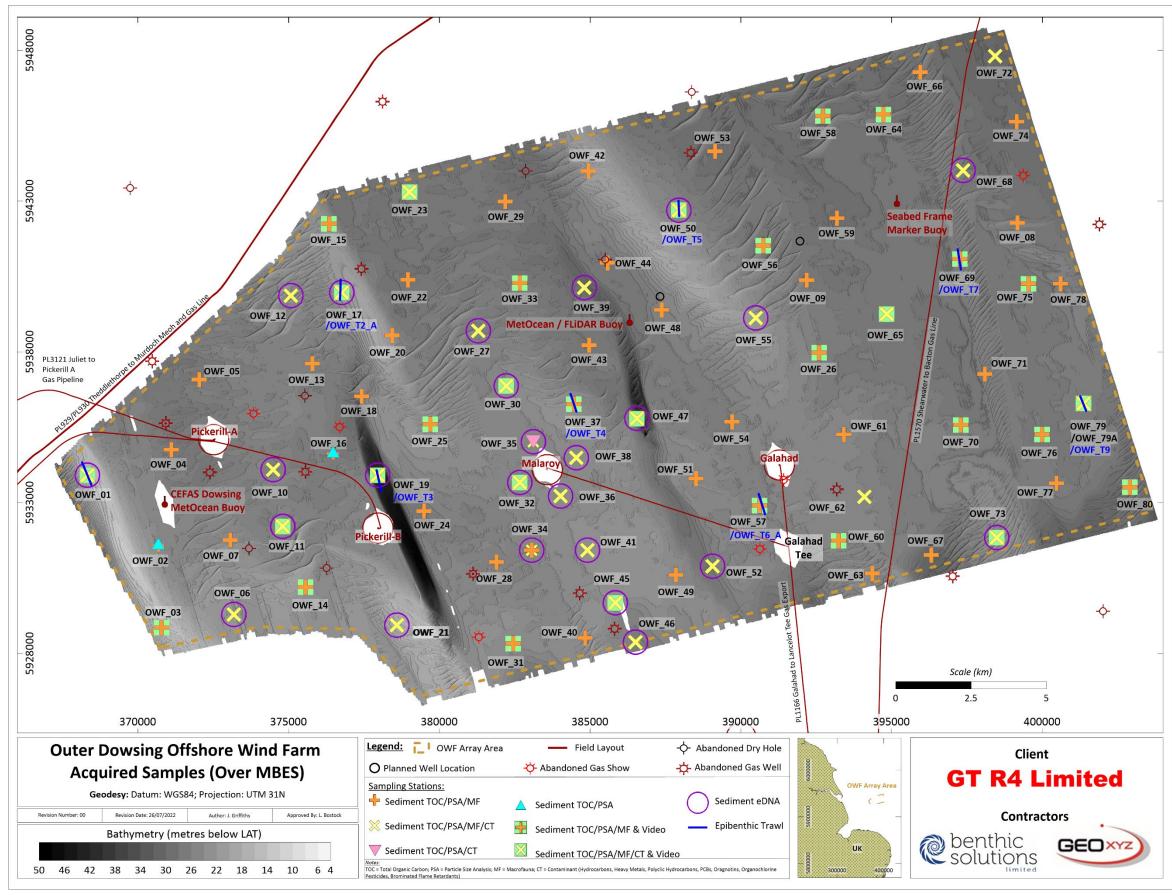


Figure 4 MBES Data and Environmental Sampling Strategy for the OWF Survey Area

Document No. UK4855H-824-RR-01 Page 35 of 292

3.3 SEDIMENT SAMPLE ANALYSES

The recovered benthic samples were correctly stored prior to demobilisation and transportation of the material to the analytical laboratories. Correct storage involved the freezing of all physico chemical samples on recovery and transportation back to the BSL warehouse to be forwarded to a laboratory, remaining frozen at all times. The material acquired during the survey was analysed at the following laboratories:

BSL: Particle size Analysis

BSL: Macro-invertebrate Analysis

• Socotec: Sediment Chemistry

The analytical methods used for the current survey are summarised below in Table 10 with further detail provided in Appendix D.

Table 10 Summary of Analytical Methods

Determinant*	Detection Limits*	Accreditation	Laboratory Technique
Particle Size Distribution	N/A	NMBAQ**	Dry sieving and laser diffraction (Malvern Mastersizer) to whole and half phi intervals, respectively.
Total Organic Carbon	0.02%	ISO 17025 & UKAS/MMO	Documented in-house method with carbonate removal and sulphurous acid/combustion at 1600°C/NDIR, WSLM59.
Trace Metals	Various	ISO 17025, UKAS/MMO	Hydrofluoric/Boric acid extraction followed by ICPMS or ICPOES.
Organotins	0.001mg.kg ⁻¹	ISO 17025, UKAS/MMO	Documented in-house method using solvent extraction and derivatisation followed by GC-MS analysis.
Polychlorinated Biphenyls (PCBs)	0.00008μg.kg ⁻¹	ISO 17025, UKAS/MMO	Documented in-house method using solvent extraction and clean up followed by GC-MS-MS analysis.
Organochlorine Pesticides (OCP)	0.001mg.kg ⁻¹	ISO 17025, UKAS/MMO	Documented in-house method using solvent extraction and clean up followed by GC-MS-MS analysis.
Polycyclic Aromatic Hydrocarbons (PAH)***	1μg.kg ⁻¹	ISO 17025 & UKAS/MMO for EPA 16 and DTI Parent PAHs	Documented in-house method using DTI specification involving solvent extraction and clean up followed by GC-MS.
Benthic Macrofauna	n/a	NMBAQC**	Biological identification of 1000µm fractions with univariate and multivariate analyses. 1 of 1 replicate processed.

Socotec, the laboratory, who undertook the contaminant, trace metal, PAH and TOC analysis are MMO accredited (https://www.gov.uk/guidance/marine-licensing-sediment-analysis-and-sample-plans)

^{*}Detection limit is the lowest quantity of a substance that can be distinguished from the absence of that substance (a blank value) with a stated confidence level.

^{**}NMBAQC is not strictly an accreditation but provides external quality assurance for particle size and macrofaunal analysis

^{***}EPA list of 16 potentially hazardous compounds and six DTI parent and alkylated PAHs

3.4 DROP DOWN VIDEO HABITAT ASSESSMENT

The habitat assessment was based on the review of high-resolution still images and video data collected across 31 transects. Review of video footage and still photographs was undertaken multiple times, as per JNCC/NMBAQC/MESH guidelines (Coggan *et al.*, 2007;Turner *et al.*, 2016).

An initial review of the video footage was undertaken at high speed (max 3x speed) to assess video quality based on the Centre for Environment, Fisheries and Aquaculture's (CEFAS) processing protocol (Hitchin *et al.*, 2015). The CEFAS processing protocol subdivided video and stills quality into four groups (good, satisfactory, poor and not visible) based on:

- Good = No reduced visibility. Broadscale habitat can be assessed. Classification to JNCC/EUNIS level three and four can be confidently undertaken and level five, based on corresponding epifauna, is possible.
- Satisfactory = Some reduced visibility but seabed area can be assessed and identification of the majority
 of fauna is unaffected. Classification to JNCC/EUNIS level three and four habitats can be confidently
 undertaken.
- Poor = Broadscale habitat may be assessed but identification of epifauna may be restricted. Classification to JNCC/EUNIS level three habitats can be confidently undertaken.
- Not visible = broadscale habitat cannot be assessed, preventing assessment of seabed character and identification of epifauna.

BSL used the above guidance and assessed 10-second intervals of video footage to calculate the percentage occurrence of each quality category per habitat section and each individual underwater still (Appendix G). Based on the quality review, the majority of stills and video footage acquired were classified as 'good' quality and enabled the classification of each transect to level four and five JNCC/EUNIS habitats.

The second review of the video was undertaken to identify and log the start and end positions of varying sediment types/characteristics. Sediment types were to be classified using the MESH modified Folk triangle sediment classification (Long, 2006), as this is most appropriate to habitat/biotope mapping. Additional details were added where necessary to capture ecologically relevant variation within a single Folk sediment type for example, descriptions of seabed bedforms, coarse substratum (e.g. pebble, cobble, boulder) and shell/shingle content. Furthermore, as noted in the JNCC Marine Monitoring Handbook (Davies *et al.*, 2001), the lower size limit for a biotope is typically considered to be 5m², below which data is not normally distinguished from the surrounding larger biotope. Therefore, sparse or scattered features, such as boulders on sediment plains, were only counted as separate biotopes if their total cumulative area exceeded 5m², although their presence was noted. The presence and positioning of any anthropogenic debris was also noted.

The third review of the video was undertaken to identify and assess the presence/absence and abundance of organisms visible on the video footage. The current study assessed the presence/absence, SACFOR scale and counts/percentage cover of visible organisms in accordance with the JNCC/NMBAQC guidelines (Turner *et al.*, 2016). The physical and biological characteristics of each transect were then used to assign level four JNCC and EUNIS habitat classifications, which were mapped via the differences/similarities in SSS/MBES signatures across the video tracks and wider survey area.

The semi-quantitative SACFOR scale can be used to transform abundance data, determined by size class and percentage cover, into seven categories: super-abundant (S), abundant (A), common (C), frequent (F), occasional (O), rare (R) and less than rare (L) (Table 11). The application of the SACFOR scale involved counting the number

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

of individual species within 15 seconds of video footage based on either 5-minute intervals, or sediment changes, depending on which occurred first. The number of individuals per 15-second interval were converted to abundance (m²) data using a laser scale of 10cm to assess the field of view (Coggan *et al.*, 2007). SACFOR scale abundances were also calculated per individual image, with both stills and video SACFOR scales averaged per transect to calculate the typical abundance and percentage frequency of occurrence in line with the JNCC methodology to habitat assessment (JNCC, 2020).

Video assessment of potential habitats is limited to characterising the epifaunal species present; however, level JNCC/ENUIS five biotopes and a majority of level four JNCC/EUNIS habitats require an infauna assessment. The infaunal assessment, obtained from Hamon Grab samples, was performed (see Section4.7.1) in accordance with the methodology described by Parry (2019) and Jenkins *et al.* (2015). Therefore, the holistic approach of epifauna and infauna assessment grab enabled the assignment of corresponding level five JNCC/EUNIS biotope classifications.

Table 11 SACFOR Abundance Scale

Cover (%)	Crust/ Meadow	Massive/T urf	<1cm	1-3cm	3-15cm	>15cm	Den	sity
>80%	S		S				>1/0.001m ² (1x1 cm)	>10,000/m²
40-79%	А	S	А	S			1-9/0.001m ²	1000-9999/m²
20-39%	С	А	С	А	S		1-9 / 0.01m ² (10 x 10 cm)	100-999/m²
10-19%	F	С	F	С	А	S	1-9 / 0.1m ²	10-99/m²
5-9%	0	F	0	F	С	А	1-9/m²	
1-5% or density	R	0	R	0	F	С	1-9 / 10m ² (3.16 x 3.16m)	
<1% or density	L	R	L	R	0	F	1-9 / 100m ² (10 x 10m)	
		L		L	R	0	1-9 / 1000m ² (31.6 x 31.6m)	
					L	R	<1/1000m ²	
						L	<1/10,000m²	
Key								
S	А		С	F		0	R	L
Super- abundant	Abun	dant	Common	Freque	ent	Occasional	Rare	Less than Rare

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

The SACFOR typical abundance and the percentage frequency of occurrence for each transect based on the video and stills review is provided below in tables Table 12 and Table 13 and indicates that the predominantly coarse sediment stations had a greater abundance of epifaunal species when compared to the stations dominated by sand. The SACFOR analysis also revealed that the stills SACFOR review observed a greater overall occurrence of species when compared to the video review, with 149 and 114 instances of epifauna observed, respectively. This was unsurprising given more stills were taken and analysed than 15 second intervals of video footage. Therefore, stills SACFOR review was more likely to capture the variability in conspicuous epifauna across the OWF survey area due to the increased sampling effort.

										Table 1	2 SACFO	R Scale	Abunda	ance an	d Frequ	ency of	Occurre	nce Bas	ed on V	ideo An	alysis											
Taxa	Number of 15 second intervals	(m²)	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus		<i>Нуа</i> s sp.	Liocarcinus sp.	Cirripedia		Aicyoniaium aiapnanum	:	Flustra ĵoliacea		Vesicularia spinosa	Actinopterygii	Pleuronectiformes	-	Ammodytidae sp.	Alconomina diaitatum	חובאסווומווו מופונמנמווו	- : -	Sertularlidae	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nalecildae	Actinaria sp.	Urticina felina		Asterias rubens	Porifera
	Number of :	Search area (m²)	(%)	(%)	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	(%)
Abundance (ind/	m² ± SD))																														
OWF_VID_01	2	2.36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_03	2	3.22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.15 ± 0.71 (F)	0	0	0.93 ± 4.24 (C)	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_11	2	1.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_14	2	2.84	0	0	0	0.18 ± 0.71 (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_15	2	2.93	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_17	2	1.95	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.26 ± 0.71 (C)	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_19	3	1.62	0	0	0	0	0	0	0.21 ± 0.58 (C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_23	2	2.76	0	0	0	0	0	0	0	0	0.09 ± 0.35 (L)	0	0	0	0	0	0.18 ± 0.71 (C)	0	0	0	0	0	0.36 ± 1.41 (C)	0	0	0	0	0	0	0	0	0
OWF_VID_25	3	1.55	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_26	2	2.47	0	0	0	0	0	0	0	0	0	0	0.2 ± 0.71 (C)	0	0	0.81 ± 1.41 (F)	0.61 ± 2.12 (C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_30	2	2.32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.21 ± 0.71 (C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Document No. UK4855H-824-RR-01

Taxa	Number of 15 second intervals	ı (m²)	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus		луаз sp.	Liocarcinus sp.	Cirripedia	:	Alcyonidium diaphanum		רומצנים לסוומכפט		Vesicularia spinosa	Actinopterygii	Pleuronectiformes	So of hit has been	Allinodytidae sp.	Alononium dinitatium	אוכאסווומוזו מופונמנמנזו	0 cp ::« - 1 - + 0 0	Sertularindae	-	пагеспоае	Actinaria sp.	Urticina felina		Asterias rubens	Porifera
	Number of	Search area (m²)	(%)	(%)	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	(%)
OWF_VID_31	2	2.27	0	0.22 ± 0 (L)	0	0	0	0	0.22 ± 0.71 (C)	0	0.22 ± 0 (L)	0.44 ± 1.41 (F)	5.95 ± 4.95 (A)	0	0	0.22 ± 0.71 (F)	0	0	0	0	0	0	0	0	0	0	0	0	0.22 ± 0.71 (F)	0	0	0
OWF_VID_32	2	2.94	0	0	0	0	0	0	0	0	0	0	2.72 ± 5.65 (A)	0	0	0	0.51 ± 2.12 (C)	0	0	0	0	0	0	0	0	0	0	0	0.17 ± 0.71 (F)	0	0	0
OWF_VID_33	2	2.61	0	0.19 ± 0 (L)	0	0	0	0	0	0	0.19 ± 0 (L)	1.53 ± 5.65 (C)	11.7 ± 7.77 (S)	0	0	0.19 ± 0.71 (F)	0	0	0	0	0	0	0	2.3 ± 2.82 (C)	0	0	0.19 ± 0.71 (C)	0	0	0	0	0
OWF_VID_37	3	2.97	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.11 ± 0.58 (C)	0
OWF_VID_45	2	2.35	0	0.21 ± 0 (L)	0	0	0	0	0	0	0.21 ± 0 (L)	3.62 ± 0.7 (C)	7.24 ± 4.24 (A)	0	0	0	0	0	0	0	0	0	0	0	0.21 ± 0.71 (C)	0	0	0	0	0	0.64 ± 0.71 (C)	0
OWF_VID_47	3	2.35	0	0	0	0	0	0	0	0	0	0	0.42 ± 1.73 (C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.14 ± 0.58 (F)	0	0
OWF_VID_50	7	2.01	0	0	0	0	0	0	0	0	1.6 ± 4.63 (R)	3.05 ± 6.03 (C)	4.69 ± 2.63 (A)	0	0.28 ± 0.79 (C)	0	0	0	0	0	0	0.21 ± 0.79 (F)	0.78 ± 2.81 (C)	0.28 ± 0.79 (F)	0	0	0	0	0.28 ± 1.13 (F)	0.07 ± 0.37 (O)	0.07 ± 0.37 (F)	0
OWF_VID_56	2	2.43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_57	2	1.7	0.15 ± 0.35 (L)	0	0	0	0.29 ± 0.71 (C)	0	0	0	1.32 ± 2.47 (R)	9.39 ± 17 (C)	7.63 ± 5.65 (A)	1.46 ± 3.53 (C)	0	0	0	0	0	0	0	2.93 ± 7.07 (C)	5.57 ± 13.4 (A)	0.59 ± 1.41 (F)	0	0.59 ± 1.41 (F)	0	0	4.98 ± 9.19 (C)	0	0	0
OWF_VID_58	2	2.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.19 ± 0.71 (F)	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_60	3	1.98	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_64	2	2.75	0	0	0	0	0	0	0	0	0	0.36 ± 1.41 (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Document No. UK4855H-824-RR-01 Page 41 of 292

Taxa	Number of 15 second intervals	a (m²)	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus	Hvocon	יאני מאני	Liocarcinus sp.	Cirripedia	Alanda in manifestation	Alcyonatan arabitanam		רוטאנים לטוומנפט		Vesicularia spinosa	Actinopterygii	Pleuronectiformes	() () () () () () () () () ()	Ammouyudae sp.	A long to the second se	Alcyonium aigitatum	(Prince 1 + 2 + 2	Sertularildae	() () () () () () () () () ()	naleciidae	Actinaria sp.	Urticina felina		Asterias rubens	Porifera
	Number of	Search area (m²)	(%)	(%)	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	(%)
OWF_VID_65	4	2.66	0	0	0	0	0	0	0	0	0.19 ± 0 (L)	3.47 ± 10.4 (C)	1.13 ± 3.83 (A)	0	0.19 ± 1 (C)	0.94 ± 3.78 (F)	2.53 ± 9.21 (A)	0	0	0	0	0	0.56 ± 3 (C)	0.09 ± 0.5 (O)	0	0	0	0	0.56 ± 1.29 (F)	0.47 ± 1.05 (F)	0.09 ± 0.5 (F)	0.09 ± 0.5 (L)
OWF_VID_69	2	2.14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_70	2	2.41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_73	2	2.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.43 ± 1.41 (F)	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_75	2	1.97	0	0.13 ± 0.35 (L)	0	0	0	0	0	0	0	0	0.25 ± 0.7 (C)	0	0	0	0	0	0	0	0	0	0	0.76 ± 2.12 (F)	0	0	0	0	0	0	0	0
OWF_VID_76	4	3.1	0.32 ± 1.15 (L)	0.16 ± 0 (L)	0	0.08 ± 0.5 (O)	0	0.08 ± 0.50 (O)	0	0.32 ± 2 (F)	0	1.05 ± 3.4 (C)	0.16 ± 0.57 (C)	0.08 ± 0.5 (O)	0.08 ± 0.5 (F)	0.89 ± 4.19 (F)	0.56 ± 2.36 (C)	0	0	0	0	0.8 ± 2.64 (F)	0.64 ± 2.31 (C)	0.48 ± 2.38 (F)	0.72 ± 4.5 (C)	0	0	0.16 ± 0.57 (F)	0.8 ± 1.29 (F)	0.4 ± 0.96 (F)	0	0
OWF_VID_79A	2	2.3	0	0.11 ± 0.35 (L)	0	0	0	0	0	0	0.11 ± 0.35 (L)	1.3 ± 4.24 (C)	3.69 ± 12 (A)	0	0	2.17 ± 7.07 (C)	0.43 ± 1.41 (C)	0	0	0	0	0.43 ± 0 (F)	0.21 ± 0.71 (C)	0.21 ± 0.71 (F)	0	0	0	0	0.65 ± 0.71 (F)	0.22 ± 0.71 (F)	0	0
OWF_VID_80	2	1.87	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percentage Freque	ncy of Oc	currence	e (%)*																								I	1	I	I	I	
OWF_VID_01 OWF_VID_03																		50			50											
OWF_VID_03																					30											
OWF_VID_14						50																										
OWF_VID_15																																
OWF_VID_17																					50											
OWF_VID_19									33																							
OWF_VID_23											50						50						50									
OWF_VID_25																																
OWF_VID_26													50			100	50															

Document No. UK4855H-824-RR-01 Page 42 of 292

Taxa	Number of 15 second intervals	(m²)	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus		луаз sp.	Liocarcinus sp.	Cirripedia	7	Аісуопіаіит аіарпапит	والمنافع وعالمه	רומטנומ ן טוומנכט	Wesicularia eninosa	א בארמומו ומ אלוווסאמ	Actinopterygii	Pleuronectiformes		Ammodyndde sp.	Alexenium dicitatum	אוכאסווומוזו מופונמנוזו	0 P ::: * 1	oei tulai liuae	C (P :: 0 C P :: 0 C	палеслиае	Actinaria sp.	Urticina felina	Suchiry Swings V	Asterius Luberis	Porifera
	Number of	Search area (m²)	(%)	(%)	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	(%)
OWF_VID_30																	50															
OWF_VID_31				100					50		100	50	100			50													50			
OWF_VID_32													100				50												50			
OWF_VID_33				100							100	50	100			50								100			50					
Percentage Freque	ency of Oc	currence	: (%)*																													
OWF_VID_37																															33	
OWF_VID_45				100							100	100	100												50						100	
OWF_VID_47													33																	33		
OWF_VID_50											100	100	100		43							29	29	43					29	14	14	
OWF_VID_56																																
OWF_VID_57			50				50				100	100	100	50								50	50	50		50			100			
OWF_VID_58																			50													
OWF_VID_60																																
OWF_VID_64												50																				
OWF_VID_65											100	75	50		25	50	75						25	25					75	50	25	25
OWF_VID_69																																
OWF_VID_70																																
OWF_VID_73																				50												
OWF_VID_75				50									50											50								
OWF_VID_76			50	100		25		25		25		75	50	25	25	75	50					75	50	50	25			50	100	75		
OWF_VID_79A				50							50	50	50			50	50					100	50	50					100	50		
OWF_VID_80																																

*To aid clarity 0% frequency of occurrence values have been excluded from the table

Document No. UK4855H-824-RR-01 Page 43 of 292

Table 13 SACFOR Scale Abundance and Frequency of Occurrence Based on Stills Analysis

													I i	able 1	3 SACE	OR Sca	ale Abi	undan	ce and	Frequ	ency	of Occi	ırrenc	e Base	ed on :	Stills A	nalysi	5														
Taxa	stills	a (m²)	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp.	Cancer pagurus	Нуаѕ sp.	Liocarcinus sp.	Necora puber	Cirripedia		Alcyonidium diaphanum		רוטגנוע לסוומניפט	pooring windingson	vesicalaria spiriosa	Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes		Ammodytidae sp.		Alcyonium aigitatum	Nemertesia sp.	Tubularia sp.	ocpija ci i saco	Sertuarilade	Haleciidae	Actinaria sp.	Urticina felina	o de Oriente de la Oriente de Ori	Asterius ruberis	Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
	Number of stills	Search area (m²)	(%)	(%)	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	>15cm	3 - 15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	(%)	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	(%)
Abundance (inc	d/m² ±	SD)																																								
OWF_VID_01	23	0.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_03	25	0.77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.05 ± 0.2 (O)	0	0	0	0	0.05 ± 0.2 (O)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_11	21	0.6	0	0	0	0	0	0	0	0	0	0	0.16 ± 0.43 (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.08 ± 0.21 (O)	0.08 ± 0.22 (F)	0	0	0	0	0	0	0	0	0	0
OWF_VID_14	25	0.63	0	0	0	0	0	0	0	0	0	0	0.06 ± 0.2 (O)	0	0	0	0	0	0	0	0	0	0	0	0	0.06 ± 0.2 (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_15	14	0.59	0	0	0	0.12 ± 0.26 (F)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_17	14	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_19	29	0.67	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_23	28	0.58	0	0	0	0	0	0	0	0	0	0	0.61 ± 1.19 (F)	0.31 ± 0.94 (C)	0	0	0.61 ± 1.89 (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_25	20	0.62	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_26	17	1.11	0	0	0	0	0	0	0	0	0	0	0.11 ± 0.33 (F)	0	0		0.16 ± 0.52 (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0.21 ± 0.56 (F)	0	0	0	0	0	0	0	0	0
OWF_VID_30	26	0.63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Document No. UK4855H-824-RR-01

Taxa	fstills	.a (m²)	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp.	Cancer pagurus	Hyas sp.	Liocarcinus sp.	Necora puber	Cirripedia	Alcvonidium diaphanum		Eluctra foliacea	רושטנות לטוותכבת		vesicularia spinosa	Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes	:	Ammodytidae sp.	Section of the sectio	Alcyonium algitatum	Nemertesia sp.	Tubularia sp.	Sertulariidae		Haleciidae	Actinaria sp.	Urticina felina	Actoriae rubone	Asterius ruberis	Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
	Number of stills	Search area (m²)	(%)	(%)	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	>15cm	3 - 15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	(%)	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	(%)
OWF_VID_31	20	0.65	0	0.84 ± 0.15 (R)	0	0	0	0	0	0	0	0.84 ± 0.15 (R)	±	0.38 ± 0.44 (C)	0	0	0	0	0.15 ± 0.31 (R)	0	0	0	0	0	0	0	0	0	0	0	1.84 ± 1.67 (C)	0	0	0	0.08 ± 0.22 (O)	0	0	0	0.08 ± 0.22 (O)	0	0.08 ± 0.22 (O)	0
OWF_VID_32	10	0.69	0	0	0	0	0	0	0	0	0	0	1.31 ± 2.51 (C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.15 ± 0.31 (F)	0	0	0	0.14 ± 0.32 (F)	0	0	0	0	0	0	0.29 ± 0.63 (R)
OWF_VID_33	21	0.64	0	0.78 ± 0 (R)	0	0	0	0	0	0	0	0.78 ± 0 (R)	11.3 ±	0.22 ± 0.35 (C)	0.07 ± 0.22 (O)	0	0	0	0	0	0	0	0	0	0	0	0	0	0.07 ± 0.22 (O)	0	1.78 ± 1.19 (C)	ا ہ	0.37 ± 0.54 (F)	0	0.22 ± 0.48 (F)	0.52 ± 0.73 (F)	0	0	0	0	0	0
OWF_VID_37	20	0.67	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.07 ± 0.22 (O)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_45	21	0.66	0	0.76 ± 0 (R)	0	0	0	0	0	0	0		8.08 ± 2.08 (C)	0	0.07 ± 0.21 (O)	0	0.07 ± 0.22 (O)	0	0.04 ± 0.11 (L)	0	0	0	0	0	0	0	0	0	0	0	1.08 ± 1.05 (C)	0	0	0	0.14 ± 0.3 (F)	0.14 ± 0.3 (F)	0	0	0	0	0.14 ± 0.3 (F)	0
OWF_VID_47	33	0.6	0	0	0.05 ± 0.17 (O)	0.05 ± 0.17 (O)	0	0	0	0	0	0	0.3 ± 0.58 (F)	0	0	0	0.05 ± 0.17 (O)	0	0	0	0.05 ± 0.17 (O)	0	0	0	0	0	0	0	0	0	0.05 ± 0.17 (O)	0	0	0	0		0.05 ± 0.17 (F)		0	0	0	0
OWF_VID_50	36	0.71	0	0	0	0	0	0	0	0	0		±	0.23 ± 0.45 (C)	±	0.04 ± 0.17 (F)	0.08 ± 0.23 (O)	0	0	0	0	0	0	0	0	0	0.74 ± 2.33 (F)	0.35 ± 1.02 (C)	±	±	0.74 ± 1.52 (F)	0	0	0	0.31 ± 0.42 (F)	0.04 ± 0.17 (O)	0	0	0	0	0	0
OWF_VID_56	19	0.63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_57	23	0.63	+	0.03 ± 0.1 (L)	0	0	0	0.07 ± 0.21 (F)	0	0	0.07 ± 0.21 (O)	0.45 ± 0.47 (R)	± 8.58	0.28 ± 0.83 (C)	0.62 ± 0.99 (F)	0	0.35 ± 0.73 (F)	0	0.03 ± 0.1 (L)	0	0	0.07 ± 0.21 (O)	0.07 ± 0.21 (O)	0	0	0	1.11 ± 1.52 (C)	0.69 ± 1.19 (C)	0.07 ± 0.21 (O)	0	5.82 ± 3.18 (C)	ا ہ	0.48 ± 1.02 (F)	0	3.6 ± 2.49 (C)	0.21 ± 0.34 (F)	0	0	0	0	0	0.52 ± 0.86 (R)
OWF_VID_58	11	0.95	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_60	18	0.63	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_64	19	0.64	0	0	0	0	0	0	0	0	0	0	0	0	0.08 ± 0.23 (O)	0	0	0	0	0	0	0	0	0.16 ± 0.31 (F)	0	0	0	0	0	0	0	0	0	0	0	0.16 ± 0.45 (F)	0	0	0	0	0	0

Document No. UK4855H-824-RR-01

Taxa	f stills	.a (m²)	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp.	Cancer pagurus	Hyas sp.	Liocarcinus sp.	Necora puber	Cirripedia	Alexanidium dianhanum	איניצטווימימון מוסטומיומיון	Elicetra foliacea	רושאנות לטוומנפט		vesicularia spinosa	Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes	S. S	Ammodytidae sp.	2, 17	Alcyonium digitatum	Nemertesia sp.	Tubularia sp.	Sertulariidae		Haleciidae	Actinaria sp.	Urticina felina		Asterias rubens	Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
	Number of stills	Search area (m²)	(%)	(%)	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	>15cm	3 - 15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	(%)	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	(%)
OWF_VID_65	29	0.71	0	0	0	0	0	0	0	0	0	0.17 ± 0.25 (R)	1.03 ± 2.23 (C)	0	0.19 ± 0.44 (F)	0	2.34 ± 2.07 (C)	0.34 ± 0.57 (C)	0	0	0	0	0	0	0	0	0.98 ± 2.05 (F)	0	0		0.19 ± 0.58 (F)	0	0	0.05 ± 0.19 (O)	0.1 ± 0.25 (O)	0.24 ± 0.47 (F)	0	0	0	0	0	0.05 ± 0.19 (L)
OWF_VID_69	19	0.64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_70	16	0.65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_73	11	0.59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.15 ± 0.3 (F)	0	0	0.15 ± 0.3 (F)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_75	23	0.73	0	0.18 ± 0.22 (R)	0	0	0	0	0	0	0	0.03 ± 0.1 (L)	0.06 ± 0.21 (O)	0	0	0	0.24 ± 0.65 (F)	0	0	0	0	0	0	0	0	0	0.06 ± 0.21 (O)	0	0	0	0	0	0	0	0.12 ± 0.29 (F)	0	0	0	0	0	0	0
OWF_VID_76	18	0.63	12.6 ± 11.4 (F)	0.31 ± 0.25 (R)	0	±	0.09 ± 0.23 (O)	0	0.09 ± 0.23 (F)	0.26 ± 0.51 (F)	0	0.04 ± 0.12 (L)	0.53 ± 0.84 (F)	0.09 ± 0.24 (F)	±	0.09 ± 0.24 (F)	0.71 ± 0.92 (F)	0	0	0	0	0	0	0	0	0	0.71 ± 0.62 (F)	0.17 ± 0.32 (C)	0	±	2.83 ± 1.98 (C)	0		0.71 ± 0.98 (F)		0.71 ± 0.61 (F)	0	0.18 ± 0.32 (F)	0	0.09 ± 0.24 (O)	0.18 ± 0.32 (F)	0
OWF_VID_79A	37	0.64	0.08 ± 0.19 (L)	0.06 ± 0.14 (L)	0.04 ± 0.16 (O)	0	0	0	0	0	0	0.02 ± 0.08 (L)	0.63 ± 1.21 (F)	0	0.13 ± 0.28 (F)	0	1.72 ± 1.31 (C)	0	0	0	0	0.04 ± 0.16 (O)	0	0	0	0	0.46 ± 0.52 (F)	0.34 ± 0.63 (C)	0		0.59 ± 0.83 (F)	0	0	0	0.38 ± 0.59 (F)	0.13 ± 0.28 (F)	0	0	0	0	0	0
OWF_VID_80	14	0.60																																								
Percentage Fre	quency	of Occ	urrenc	e (%)*																																ı						
OWF_VID_01 OWF_VID_03																				4												+										\vdash
OWF_VID_11													5							-											5	5										
OWF_VID_14													4													4					-											
OWF_VID_15						7																																				
OWF_VID_17																																										
OWF_VID_19																																										
OWF_VID_23													14	4			4																									
OWF_VID_25	_						_																																			
OWF_VID_26													12				12																18									
OWF_VID_30																																										
OWF_VID_31				100								100	75	25					10												55				5				5		5	

Document No. UK4855H-824-RR-01 Page 46 of 292

Taxa	f stills	sa (m²)	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp.	Cancer pagurus	Hyas sp.	Liocarcinus sp.	Necora puber	Cirripedia		- Alcyoniaium alapnanum	:	- Flustra Joliacea		vesicularia spinosa	Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes	:	Ammodytidae sp.	:	Alcyonium aigitatum	Nemertesia sp.	Tubularia sp.	Sertulariidae		Haleciidae	Actinaria sp.	Urticina felina	- Asterias rubens		Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
	Number of stills	Search area (m²)	(%)	(%)	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	>15cm	3 - 15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	(%)	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	(%)
OWF_VID_32													20																		10				10							10
OWF_VID_33				100								100	90	14	5														5		62		19		10	19						
OWF_VID_37																									5																	
OWF_VID_45				100								100	100		5		5		5												43				10	10					10	
OWF_VID_47					3	3							9				3				3										3					3	3	3				
OWF_VID_50												17	72	14	8	3	6										17	11	3	3	14				22	3						
OWF_VID_56																																										
Percentage Fr	equenc	y of Occ	urrenc	e (%)*																																						
OWF_VID_57			9	4				4			4	39	83	4	17		9		4			4	4				35	17	4		74		9		78	13						22
OWF_VID_58																																										
OWF_VID_60																																										
OWF_VID_64															5									11												5						
OWF_VID_65						3		3				21	17		10		52	17									14				7			3	7	14						3
OWF_VID_69																																										
OWF_VID_70																																										
OWF_VID_73																						9			9																	
OWF_VID_75				26								4	4				9										4								9							
OWF_VID_76			72	39		17	6		6	11		6	17	6	33	6	22										39	11		6	61			28	22	39		11		6	11	
OWF_VID_79A	4		8	8	3							3	14		8		59					3					27	14			22				19	8						
OWF_VID_80																																										
(S) = Super-above *To aid clarity											(R) = R	<mark>lare</mark> and	d <mark>(L) = L</mark>	ess the	an rare																											

Document No. UK4855H-824-RR-01 Page 47 of 292

4 ENVIRONMENTAL BASELINE SURVEY RESULTS AND DISCUSSION

4.1 BATHYMETRY AND SEABED FEATURES

The following text was adapted from the environmental fieldwork report for the OWF survey area (UK4855H-824-FR-01) and Geophysical Survey Report (ENV21-21042-GTR4-02_Rev.01) to describe the bathymetry across the OWF survey area. Bathymetric data was acquired using a 1x dual head Reson T20R multibeam echo sounder and have been reduced to LAT.

The variable water depth range of 5m to 47m LAT was attributed to the undulating seabed due to the presence of megaripples, sand waves, sandbanks and canyons (Figure 5). The seabed morphology resulted in a maximum seabed slope of 23° which was attributed to the presence of two canyons. Whereas the exclusion of the seabed morphologies resulted in an average seabed slope of 1°. The two present within the survey area aligned south-southeast with a maximum depth of 47m (Figure 5). Megaripples and sand waves were observed ubiquitously across the survey area and were orientated east-northeast to west-southwest with typical amplitudes of 1m and 1m to 8m, respectively and wavelengths of 10m to 25m and 100m to 1,250m, respectively. Sandbanks were present along the northern and southern extents of the survey area and had heights equal or greater than 5m.

Side scan sonar (SSS) data was acquired using a 2x Edgetech 4200 simultaneous, dual frequency (300/600kHz) at a 75m range per channel. The SSS mosaic data was rendered at a 0.15m pixel size and supplemented by swathe bathymetry data gridded to a 0.25m cell size. Based on SSS reflectivity and background reference material, seabed sediments were interpreted to vary between mixed sediment, coarse sediment and sand across the OWF survey area, which were defined as 'GRAVEL', 'Gravelly SAND', 'Sand' and' Sandy CLAY' by Enviros Survey and Consultancy Limited (Figure 5). Megaripples and sand waves present on the bathymetry data were also present on the SSS data due to the steep slopes.

Numerous seabed contacts interpreted as cobbles and boulders were present within the survey area, with approximately 205,000 hard contacts relating to pebbles, cobbles and boulders identified from the SSS. The majority of the survey area was characterised by high and moderate reflectivity areas, indicating areas of variable shell fragments, pebbles, cobbles and boulders across the OWF survey area. These areas were characterised by the geophysical report as 'GRAVEL', 'Gravelly sand' and 'Sandy CLAY' (Figure 5). Whereas the lighter reflective sediments to the east, in between the areas of darker reflective sediments, indicate finer sand dominated sediments, which were characterised as 'Sand' by the geophysical report (Figure 5). The areas of darker striated reflective sediment characterised by the geophysical report as 'sandy CLAY' were less mobile than the surrounding sediments as they were less influenced by sand waves and megaripples (Figure 5). Three shipwrecks, two linear debris (potentially wire), rock dump and 333 magnetometer anomalies were also detected by the analogue data within the OWF survey area. The wire ranged between 124m and 1,144m in length and of the 333 magnetometer anomalies only seven were likely to be attributed to buried metal objects not related to oil and gas infrastructure.

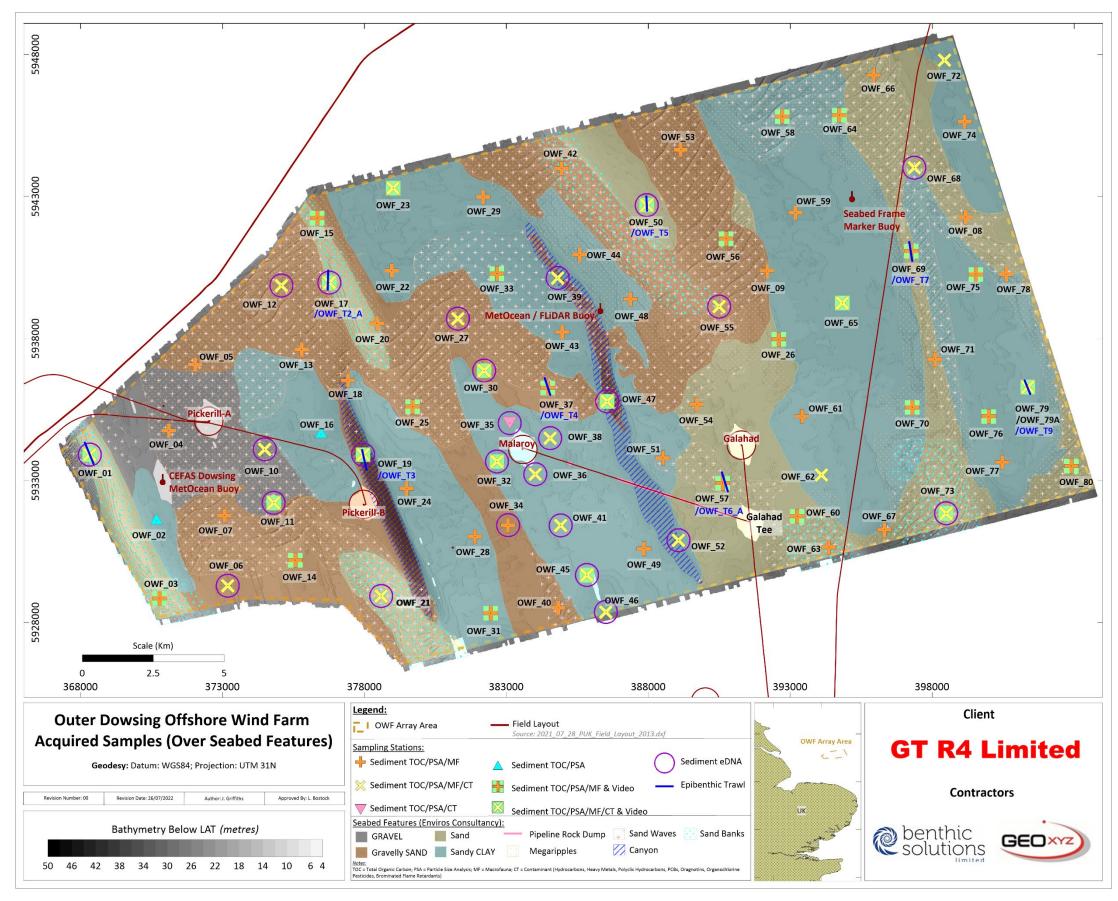


Figure 5 Seabed Features Supplied by Enviros Survey and Consultancy Limited

Document No. UK4855H-824-RR-01 Page 49 of 292

4.2 SHALLOW GEOLOGY

The following text was adapted from the geophysical survey report (ENV21-21042-GTR4-02_Rev.01) for the OWF survey area, focussing on those layers lying close to the seabed surface which may have influenced surface sediment composition. Interpretation of the shallow geology is based upon sub-bottom profiler (SBP). Lithological descriptions are based on seismic character and regional background information.

The shallow geology across the OWF survey area comprises of mobile bottom current influenced Holocene Sands overlaying the Bolders Bank and Swarte Formations, with an underlying Mesozoic Formation. The Bolders Bank Formation pinches to the surface to the west of the survey area, while the Holocene Sands were thicker and more prominent to the east of the survey area. Bolders Bank Formation is broadly characterised as glacial till comprising gravelly, sandy, silty clay (Wallingford *et al.*, 2002), which is consistent with the observed seabed composition to the west of the survey area. Camera ground truthing also indicated a greater prevalence of sand dominated sediments to the east of the survey area, which was consistent with the thicker layer of Holocene Sands recorded in these areas. The Mesozoic Formation pinches out to the top of the Swarte Formation across the centre and to the west of the survey area. The arcuate sub-linear canyon features that are thought to be a product of subglacial processes penetrated below the Holocene Sands and Bolders Bank Formation and extended into the surface of the Swarte Formation. A more detailed analysis of shallow geology is available in the Geophysical Survey Report (ENV21-21042-GTR4-02_Rev.01).

4.3 PARTICLE SIZE DISTRIBUTIONS

The particle size interpretation of sediments from the environmental baseline survey conducted across the OWF survey area was based on observations made from the acoustic data and seabed photography, and from the analytical results acquired from the surface sediments at 80 stations (Table 14). Material for particle size analysis was recovered from the surface 5cm of the grab samples and was analysed by BSL upon return of the samples to Norfolk, UK. Please refer to Appendix D for the laboratory methods employed. Individual particle size distribution plots are presented in Appendix E.

4.3.1 General Description

The results of particle size analyses indicated a variable sediment type across the OWF survey area where the seabed sediments showed a general sand dominance (mean 70.34%±25.96SD) with a lower proportion of gravel (mean 28.35%±25.23SD) and minimal proportion of fines (mean 1.32%±2.34SD; Table 14 and Figure 6). The variable distribution of fines, sand and gravel across the survey area was represented by the relatively high coefficients of variation (177.5%, 37.0% and 89.0%, respectively), which was expected given the large extent of the survey area but is considered to reflect the ambient seabed sediments of the southern North Sea (Table 14).

Proportions of sand were variable across the OWF survey area ranging between 18.58% at OWF_77 to 99.99% at OWF_01, OWF_03, OWF_15 and OWF_17 (Figure 7). Sand content showed a general spatial pattern with an increased proportion recorded at shallow depths associated with sandbank features, and the geophysical reports 'Sand' areas, which was corroborated by a significant negative Spearman's correlation to water depth (9(80)=-0.222, p<0.05). However, station OWF_47 sampled within a seabed canyon had a high sand content of 95.50%, demonstrating the general dominance of sand across the survey area.

Similarly to sand, gravel was fairly variable across the survey area ranging from 0.01% at OWF_01, OWF_03, OWF_15 and OWF_17 to 81.08% at OWF_77 (Figure 8). The spatial distribution of gravel demonstrated the inverse relationship to the proportion of sand due to the relatively minimal proportion of fines, and was corroborated by a significant Spearman's correlation between the proportion of gravel and sand (9(80)=-0.998, p<0.001).

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

Although, unlike the proportion of sand, no significant correlation was found between the proportion of gravel and the depth (p>0.05). A significant Spearman's correlation between the sorting coefficient and depth (g(80)=0.312, p<0.01) indicated the sediments within the deeper areas of the survey, i.e. within the canyons and troughs between the sand waves, were generally more variable than the sediments sampled from sandbank crests. Furthermore, a significant negative Spearman's correlation between the nearest well location and gravel proportion (g(80)=-0.225, p<0.05) indicated that the gravel distribution was likely attributed to natural variability across the OWF survey area.

The proportion of fines within the survey area was generally low with the seabed sediment at most stations containing <4% fines while the survey maximum of 14.53% was recorded at station OWF_43 (Figure 9). Slightly higher fines content was observed at deeper stations with the relationship supported by a positive Spearman's correlation between the water depth and fines proportion (9(80)=0.295, p<0.01).

The Folk (1954) and Wentworth (1922) classifications for each station are listed in Table 14. The Wentworth classification assigns a single sediment class based on the mean particle size and is appropriate for well-sorted modal sediments, dominated by a narrow range of sediment particle sizes. The Folk classification provides a more representative description for poorly sorted sediments, encompassing a range of particle sizes as it takes into account the relative proportions of mud ($<63\mu$ m), sand (63μ m-2mm) and gravel (>2mm) fractions (Figure 7 to Figure 9). For the purposes of this study, we have used the modified Folk classification produced by the British Geological Survey (Long, 2006).

The samples collected in the survey area represented seven Folk classifications with most (58.8% of the total) assigned to sand dominant classifications such as "Sand", "Slightly Gravelly Sand", "Gravelly Sand" or 'Gravelly Muddy Sand", while the remaining stations (41.3% of the total) were assigned gravel dominant classifications such as "Gravel", "Sandy Gravel" or "Muddy Sandy Gravel" (Table 14). The folk classifications overlapped between the geophysical sediment assigned categories of 'Sand', 'Gravelly SAND', 'GRAVEL' and 'Sandy CLAY', which indicates the variability in surface sediment composition between the different SSS/MBES signatures (Figure 5). The Wentworth classification scale identified six different sediment classifications ranging from "'Fine Sand" to "Pebble". The variable sediment within the samples was reflected in the sorting coefficient (Table 14), with the majority of stations (66.3%) classified as "Very poorly sorted" or "Poorly sorted" and the minority of stations (33.7%) classified as "Moderately sorted", "Moderately well sorted" or "Well sorted" (mean 1.66%±0.86SD).

Previous BSL SNS surveys, close to the OWF survey area, showed slightly different sediment compositions to the current survey (Table 14). The previous SNS surveys had a mean particle size range of 0.68mm to 1.62mm when compared to 1.31mm recorded during the current survey. Similarly to the current OWF survey, differences in mean particle sizes were due to the variable gravel and sand proportions, with the previous SNS surveys recording an overall sand dominance (ranging between 57.51% to 84.07%), with lower gravel proportions of 15.79% to 38.35% in comparison to 70.34% sand and 28.35% gravel recorded during the current survey (Table 14). Similarly, the proportion of fines recorded from the previous studies were minimal and ranged between 0.15% to 4.15% when compared to 1.32% for the current OWF survey (Table 14). Therefore, based on the overlaps in sediment composition between the regional comparisons, the sediment of the OWF survey area likely reflects typical background conditions for this region of the SNS.

Table 14 Summary of Surface Particle Characteristics

		Distance to	Mean Sed	iment Size	Wentworth	Sorting		Fines	Sands	Gravel	
Station	Depth (m)	Nearest Well (km)	(mm)	(Phi)	Classification	Coefficient	Sorting Classification	(%)	(%)	(%)	Modified Folk Scale
OWF_01	11	3.12	0.31	0.12	Medium Sand	0.45	Well Sorted	0.00	99.99	0.01	Sand
OWF_02	19	2.95	1.56	7.90	Very Coarse Sand	2.68	Very Poorly Sorted	3.21	49.60	47.19	Sandy Gravel
OWF_03	10	3.90	0.30	0.13	Medium Sand	0.49	Well Sorted	0.00	99.99	0.01	Sand
OWF_04	22	0.89	6.37	11.02	Pebble	2.07	Very Poorly Sorted	0.45	23.83	75.72	Sandy Gravel
OWF_05	23	1.67	0.59	3.01	Coarse Sand	1.97	Poorly Sorted	0.00	74.68	25.32	Gravelly Sand
OWF_06	19	2.24	0.58	3.06	Coarse Sand	2.10	Very Poorly Sorted	0.00	73.36	26.64	Gravelly Sand
OWF_07	19	0.68	1.46	3.01	Very Coarse Sand	1.89	Poorly Sorted	0.60	50.95	48.46	Sandy Gravel
OWF_08	21	1.57	0.47	0.27	Medium Sand	0.64	Moderately Well Sorted	0.32	99.27	0.42	Sand
OWF_09	23	5.71	0.97	5.43	Coarse Sand	2.38	Very Poorly Sorted	2.18	56.38	41.44	Sandy Gravel
OWF_10	21	1.07	0.28	0.72	Medium Sand	0.99	Moderately Sorted	0.00	94.74	5.26	Gravelly Sand
OWF_11	20	1.34	0.24	0.10	Fine Sand	0.50	Well Sorted	0.00	99.91	0.09	Sand
OWF_12	20	2.50	0.30	0.79	Medium Sand	0.90	Moderately Sorted	0.00	94.18	5.82	Gravelly Sand
OWF_13	21	1.10	0.76	1.35	Coarse Sand	1.31	Poorly Sorted	0.00	82.67	17.33	Gravelly Sand
OWF_14	18	0.94	1.19	1.91	Very Coarse Sand	1.65	Poorly Sorted	0.00	58.71	41.29	Sandy Gravel
OWF_15	18	1.83	0.25	0.10	Medium Sand	0.45	Well Sorted	0.00	99.99	0.01	Sand
OWF_16	21	0.91	2.13	17.17	Granule	3.08	Very Poorly Sorted	2.42	49.25	48.34	Sandy Gravel
OWF_17	17	1.01	0.27	0.11	Medium Sand	0.44	Well Sorted	0.00	99.99	0.01	Sand
OWF_18	21	1.26	0.80	1.38	Coarse Sand	1.50	Poorly Sorted	0.98	80.09	18.93	Gravelly Sand
OWF_19	40	1.74	1.72	2.87	Very Coarse Sand	1.62	Poorly Sorted	1.06	51.69	47.25	Sandy Gravel
OWF_20	18	2.43	0.24	0.09	Fine Sand	0.45	Well Sorted	0.00	99.95	0.06	Sand
OWF_21	12	2.75	0.98	1.23	Coarse Sand	1.29	Poorly Sorted	0.00	81.85	18.15	Gravelly Sand
OWF_22	23	1.59	0.28	0.41	Medium Sand	0.78	Moderately Sorted	0.00	96.62	3.38	Slightly Gravelly Sand
OWF_23	23	3.01	1.52	4.21	Very Coarse Sand	2.16	Very Poorly Sorted	0.00	51.65	48.35	Sandy Gravel
OWF_24	23	1.61	2.81	8.84	Granule	2.53	Very Poorly Sorted	0.87	34.41	64.72	Sandy Gravel
OWF_25	18	3.01	0.31	0.15	Medium Sand	0.57	Moderately Well Sorted	0.00	99.90	0.10	Sand
OWF_26	21	3.94	1.33	5.09	Very Coarse Sand	2.34	Very Poorly Sorted	0.00	53.59	46.41	Sandy Gravel

Document No. UK4855H-824-RR-01 Page 52 of 292

		Distance to	Mean Sed	iment Size	Wentworth	Sorting		Fines	Sands	Gravel	
Station	Depth (m)	Nearest Well (km)	(mm)	(Phi)	Classification	Coefficient	Sorting Classification	(%)	(%)	(%)	Modified Folk Scale
OWF_27	19	4.82	0.86	1.53	Coarse Sand	1.44	Poorly Sorted	1.04	77.39	21.57	Gravelly Sand
OWF_28	21	0.87	0.70	4.43	Coarse Sand	2.81	Very Poorly Sorted	7.14	63.65	29.20	Gravelly Muddy Sand
OWF_29	24	1.21	0.70	5.55	Coarse Sand	2.97	Very Poorly Sorted	8.00	62.78	29.22	Gravelly Muddy Sand
OWF_30	20	5.31	0.93	2.63	Coarse Sand	1.64	Poorly Sorted	0.42	73.25	26.34	Gravelly Sand
OWF_31	19	1.16	1.84	6.39	Very Coarse Sand	2.35	Very Poorly Sorted	0.43	49.95	49.62	Sandy Gravel
OWF_32	20	0.99	2.52	5.95	Granule	2.25	Very Poorly Sorted	0.00	37.35	62.65	Sandy Gravel
OWF_33	23	2.93	0.60	3.75	Coarse Sand	2.60	Very Poorly Sorted	6.16	66.32	27.52	Gravelly Sand
OWF_34	20	2.10	0.65	4.48	Coarse Sand	1.91	Poorly Sorted	0.00	82.32	17.68	Gravelly Sand
OWF_35	20	1.06	0.42	1.46	Medium Sand	1.57	Poorly Sorted	0.96	87.60	11.44	Gravelly Sand
OWF_36	19	0.95	3.58	5.58	Granule	1.96	Poorly Sorted	0.56	22.40	77.03	Sandy Gravel
OWF_37	19	2.37	1.34	1.43	Very Coarse Sand	1.18	Poorly Sorted	0.61	65.62	33.77	Sandy Gravel
OWF_38	19	1.05	1.84	3.94	Very Coarse Sand	2.05	Very Poorly Sorted	1.04	40.32	58.64	Sandy Gravel
OWF_39	27	1.15	0.63	3.21	Coarse Sand	2.00	Poorly Sorted	2.36	73.27	24.37	Gravelly Sand
OWF_40	17	1.49	0.34	0.17	Medium Sand	0.54	Moderately Well Sorted	0.00	99.97	0.03	Sand
OWF_41	18	1.44	3.27	8.58	Granule	2.50	Very Poorly Sorted	2.76	30.55	66.70	Sandy Gravel
OWF_42	16	2.07	0.34	0.19	Medium Sand	0.62	Moderately Well Sorted	0.00	99.45	0.55	Sand
OWF_43	23	2.79	0.64	6.71	Coarse Sand	3.36	Very Poorly Sorted	14.53	58.30	27.17	Gravelly Muddy Sand
OWF_44	23	0.13	2.50	6.88	Granule	2.15	Very Poorly Sorted	0.93	43.01	56.06	Sandy Gravel
OWF_45	19	0.85	1.05	5.61	Very Coarse Sand	2.45	Very Poorly Sorted	2.37	57.09	40.55	Sandy Gravel
OWF_46	22	0.82	3.08	8.91	Granule	2.46	Very Poorly Sorted	0.98	36.50	62.53	Sandy Gravel
OWF_47	37	3.44	0.68	0.63	Coarse Sand	0.88	Moderately Sorted	0.26	95.50	4.24	Slightly Gravelly Sand
OWF_48	21	2.51	0.50	0.59	Coarse Sand	0.91	Moderately Sorted	0.66	95.09	4.26	Slightly Gravelly Sand
OWF_49	18	2.09	3.60	11.75	Granule	2.67	Very Poorly Sorted	3.66	33.58	62.77	Sandy Gravel
OWF_50	21	1.93	3.59	11.14	Granule	2.63	Very Poorly Sorted	0.69	35.95	63.36	Sandy Gravel
OWF_51	20	2.80	3.02	8.31	Granule	2.50	Very Poorly Sorted	1.93	33.89	64.18	Sandy Gravel
OWF_52	22	1.66	2.29	6.85	Granule	2.34	Very Poorly Sorted	1.32	43.94	54.75	Sandy Gravel
OWF_53	25	0.81	0.51	1.59	Coarse Sand	1.45	Poorly Sorted	0.00	85.43	14.57	Gravelly Sand

Document No. UK4855H-824-RR-01 Page 53 of 292

Station OWF 54		Distance to	Mean Sed	iment Size	Wentworth	Sorting		Fines	Sands	Gravel				
	Depth (m)	Nearest Well (km)	(mm)	(Phi)	Classification	Coefficient	Sorting Classification	(%)	(%)	(%)	Modified Folk Scale			
OWF_54	22	2.12	0.52	0.44	Coarse Sand	0.74	Moderately Sorted	0.00	97.66	2.34	Slightly Gravelly Sand			
OWF_55	17	4.92	0.56	0.51	Coarse Sand	0.78	Moderately Sorted	0.25	96.95	2.80	Slightly Gravelly Sand			
OWF_56	19	3.91	0.45	0.24	Medium Sand	0.59	Moderately Well Sorted	0.00	99.92	0.08	Sand			
OWF_57	21	1.16	1.98	8.73	Very Coarse Sand	2.64	Very Poorly Sorted	3.88	45.89	50.24	Sandy Gravel			
OWF_58	25	4.42	0.58	1.13	Coarse Sand	1.39	Poorly Sorted	1.40	87.63	10.98	Gravelly Sand			
OWF_59	25	5.31	3.21	9.77	Granule	2.48	Very Poorly Sorted	0.94	39.89	59.17	Sandy Gravel			
OWF_60	20	1.69	0.39	0.20	Medium Sand	0.59	Moderately Well Sorted	0.00	99.97	0.04	Sand			
OWF_61	20	1.84	3.99	11.63	Granule	2.67	Very Poorly Sorted	3.22	28.79	68.00	Muddy Sandy Gravel			
OWF_62	21	0.94	1.66	7.39	Very Coarse Sand	2.53	Very Poorly Sorted	2.42	52.34	45.24	Sandy Gravel			
OWF_63	19	2.67	0.38	0.25	Medium Sand	0.69	Moderately Well Sorted	0.00	97.96	2.04	Slightly Gravelly Sand			
OWF_64	24	3.72	0.35	0.28	Medium Sand	0.71	Moderately Well Sorted	0.00	98.52	1.48	Slightly Gravelly Sand			
OWF_65	23	6.10	0.68	6.90	Coarse Sand	2.25	Very Poorly Sorted	1.16	79.70	19.15	Gravelly Sand			
OWF_66	22	2.38	0.33	0.16	Medium Sand	0.54	Moderately Well Sorted	0.00	99.86	0.14	Sand			
OWF_67	27	1.00	0.99	5.60	Coarse Sand	2.18	Very Poorly Sorted	0.57	74.94	24.49	Gravelly Sand			
OWF_68	23	2.00	0.32	0.19	Medium Sand	0.63	Moderately Well Sorted	1.38	98.24	0.38	Sand			
OWF_69	22	3.47	0.31	0.14	Medium Sand	0.52	Moderately Well Sorted	0.00	99.08	0.92	Sand			
OWF_70	23	4.64	0.42	2.26	Medium Sand	1.61	Poorly Sorted	0.00	87.19	12.82	Gravelly Sand			
OWF_71	22	6.23	0.27	0.12	Medium Sand	0.49	Well Sorted	0.00	99.84	0.16	Sand			
OWF_72	26	3.62	1.01	6.11	Very Coarse Sand	2.53	Very Poorly Sorted	4.53	51.34	44.13	Sandy Gravel			
OWF_73	19	1.93	0.32	0.13	Medium Sand	0.48	Well Sorted	0.00	99.96	0.05	Sand			
OWF_74	25	1.80	1.91	5.52	Very Coarse Sand	2.30	Very Poorly Sorted	1.00	45.28	53.72	Sandy Gravel			
OWF_75	23	3.05	1.96	4.90	Very Coarse Sand	2.32	Very Poorly Sorted	1.10	36.73	62.17	Sandy Gravel			
OWF_76	23	5.56	0.83	5.81	Coarse Sand	2.98	Very Poorly Sorted	7.20	53.61	39.20	Muddy Sandy Gravel			
OWF_77	22	4.52	7.17	11.37	Pebble	2.07	Very Poorly Sorted	0.35	18.58	81.08	Gravel			
OWF_78	22	2.17	0.57	0.70	Coarse Sand	1.08	Poorly Sorted	0.00	94.90	5.10	Gravelly Sand			
OWF_79	22	4.90	3.28	13.06	Granule	3.09	Very Poorly Sorted	5.14	34.69	60.17	Muddy Sandy Gravel			
OWF_80	23	5.99	0.33	0.18	Medium Sand	0.60	Moderately Well Sorted	0.00	99.63	0.37	Sand			

Document No. UK4855H-824-RR-01 Page 54 of 292

Station		Distance to	Mean Sed	iment Size	Wentworth	Sorting		Fines	Sands	Gravel			
	Depth (m)	Nearest Well (km)	(mm)	(Phi)	Classification	Coefficient	Sorting Classification	(%)	(%)	(%)	Modified Folk Scale		
Mean	-		1.31	3.90	Coarse Sand	1.66	Very Poorly Sorted	1.32	70.34	28.35	Gravelly Sand		
SD			1.34	3.93	-	0.86	-	2.34	25.96	25.23	-		
CV (%)			102.7	100.0	-	52.0	-	177.5	37.0	89.0	-		
Minimum			0.24	0.09	-	0.44	-	0.00	18.58	0.01	-		
Maximum			7.17	17.2	-	3.36	-	14.53	99.99	81.08	-		
Regional Exar	mples												
	Mea	an	1.02	0.08	Very Coarse Sand	2.64	Very Poorly Sorted	4.15	57.51	38.35	Sandy Gravel		
BSL SNS, 201	9 SD		0.49	0.61	-	0.15	-	2.51	7.49 9.18		-		
	cv (%)	47.9	695.2	- 5.6 -			60.6	13.0	23.9	-		
	Mea	an	1.62	-0.31	Very Coarse Sand	2.20	Very Poorly Sorted	3.40	61.25	35.35	Sandy Gravel		
BSL SNS, 202	.0a SD	SD		1.14	-	0.86	-	2.65	22.67	21.68			
	cv (CV (%)		-367.1	-	39.3	-	78.2	37.0	61.3			
	Mea	Mean 0.6		0.63	Coarse Sand	1.35	Poorly Sorted	0.15	84.07	15.79	Gravelly Sand		
BSL SNS, 2020	.0b SD		0.23	0.55	-	0.41	-	0.20	10.86	10.72	-		
	cv (%)	34.0	87.2	-	30.4	-	135.9	12.9	67.9	-		

Document No. UK4855H-824-RR-01 Page 55 of 292

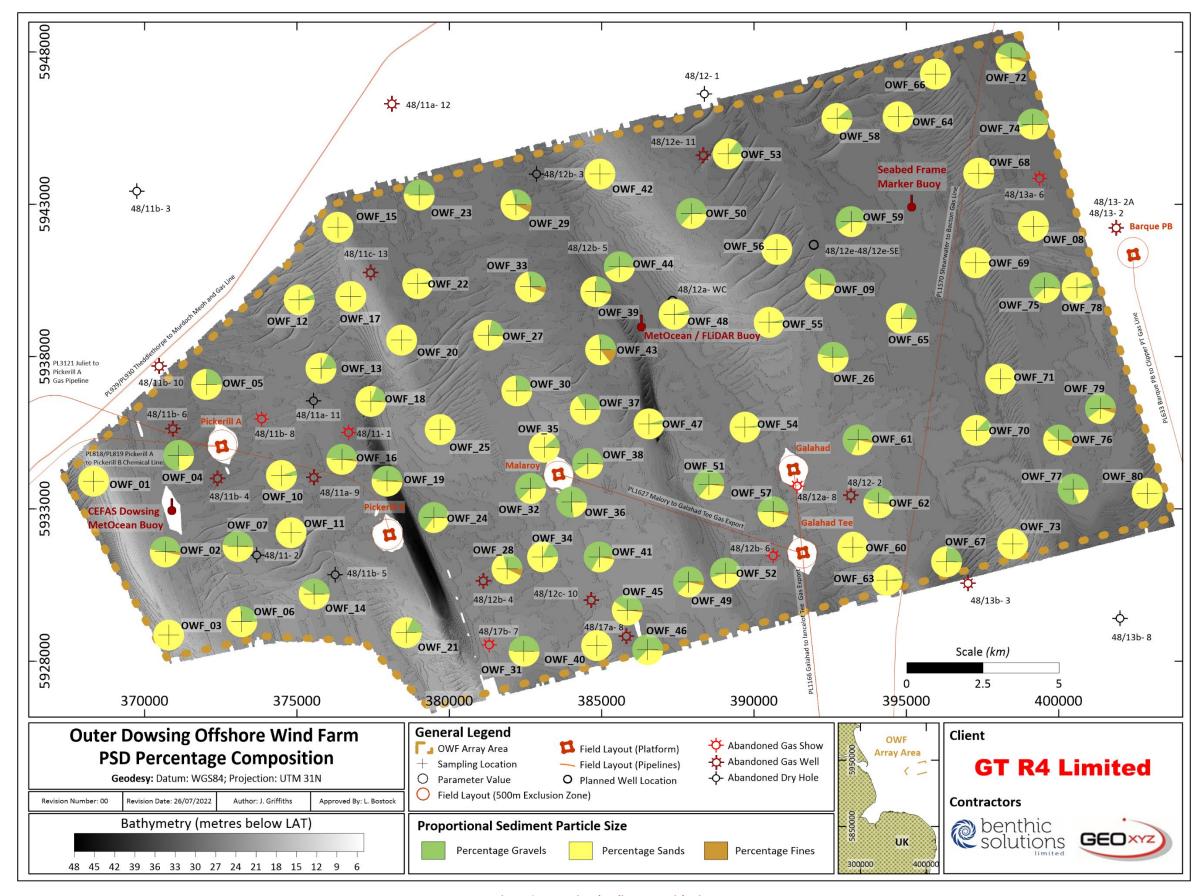


Figure 6 Proportional sediment particle size

Document No. UK4855H-824-RR-01 Page 56 of 292

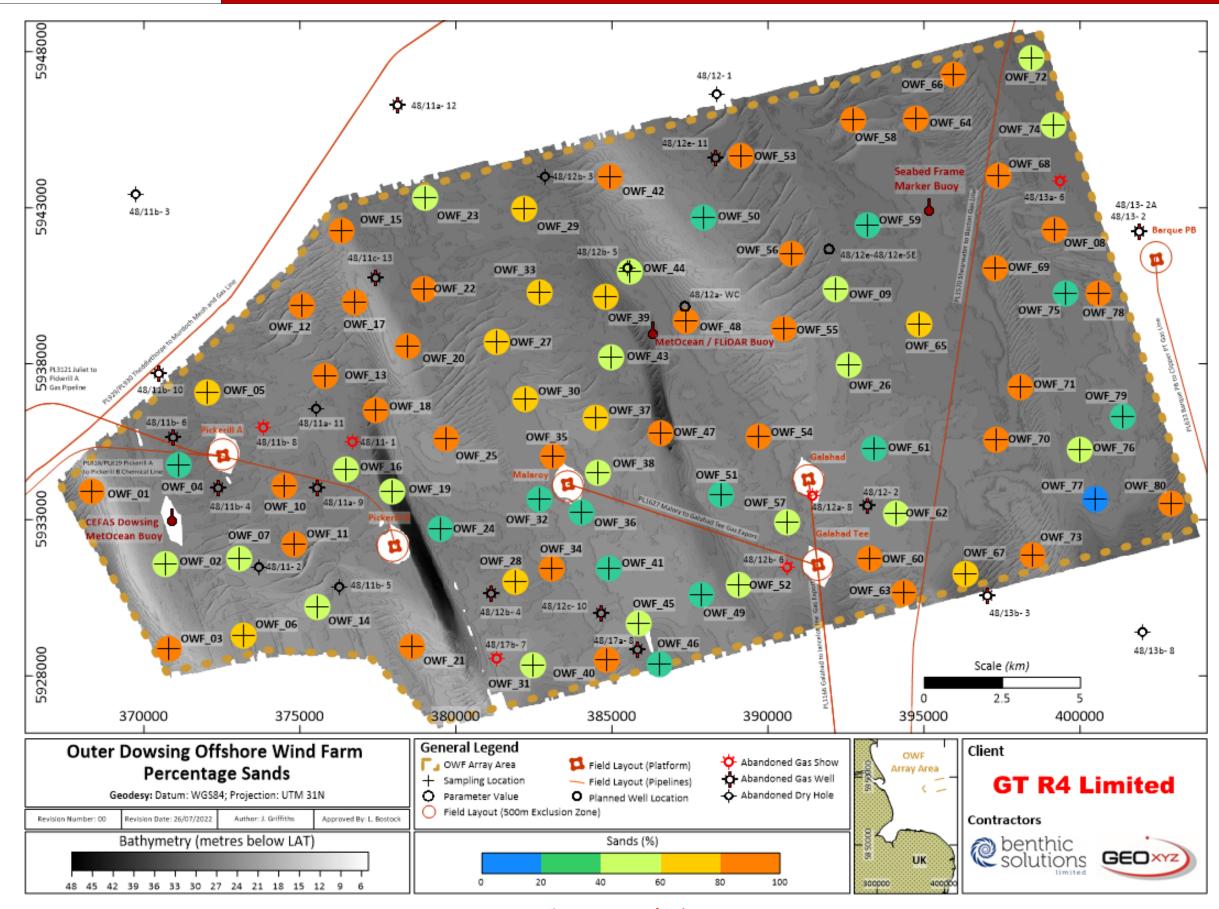


Figure 7 Percentage of sand

Document No. UK4855H-824-RR-01 Page 57 of 292

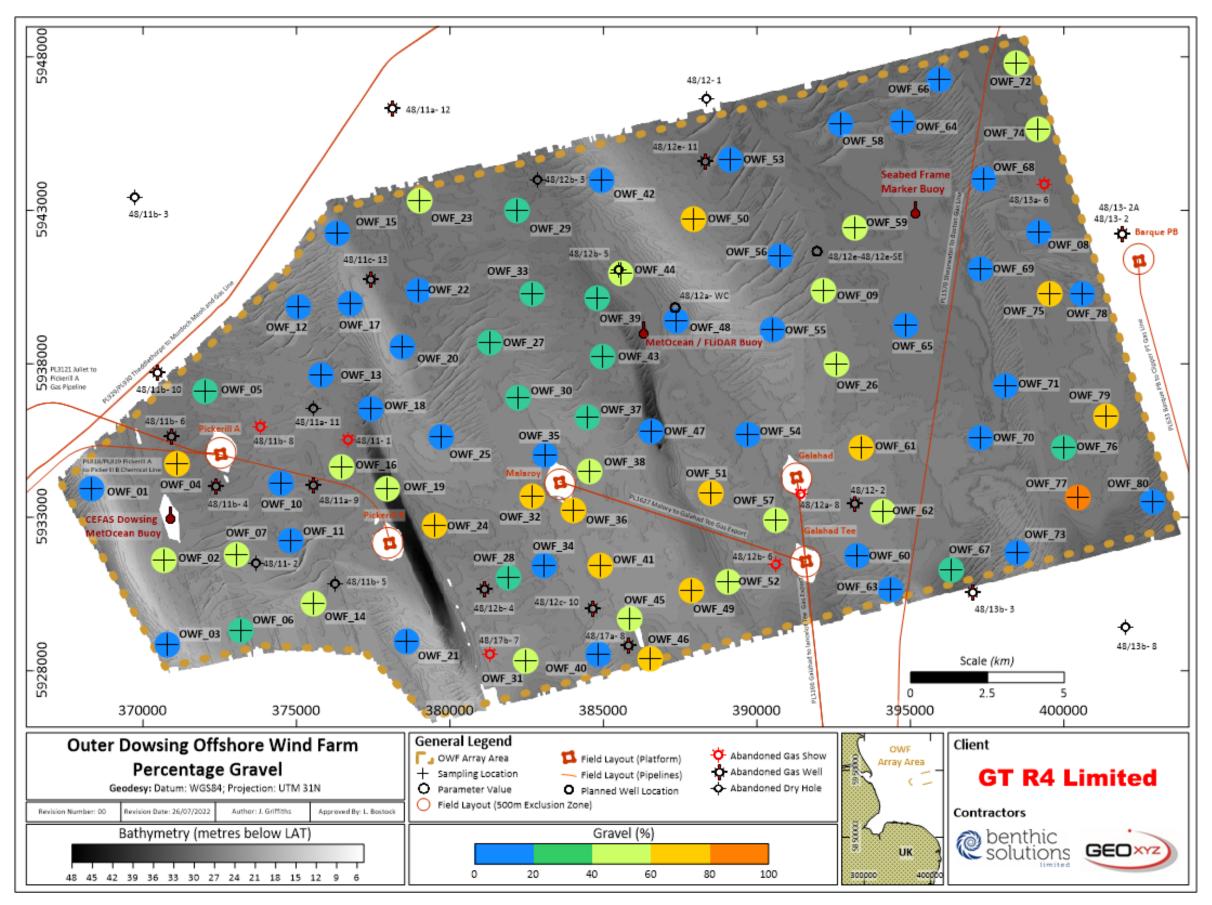


Figure 8 Percentage of gravel

Document No. UK4855H-824-RR-01 Page 58 of 292

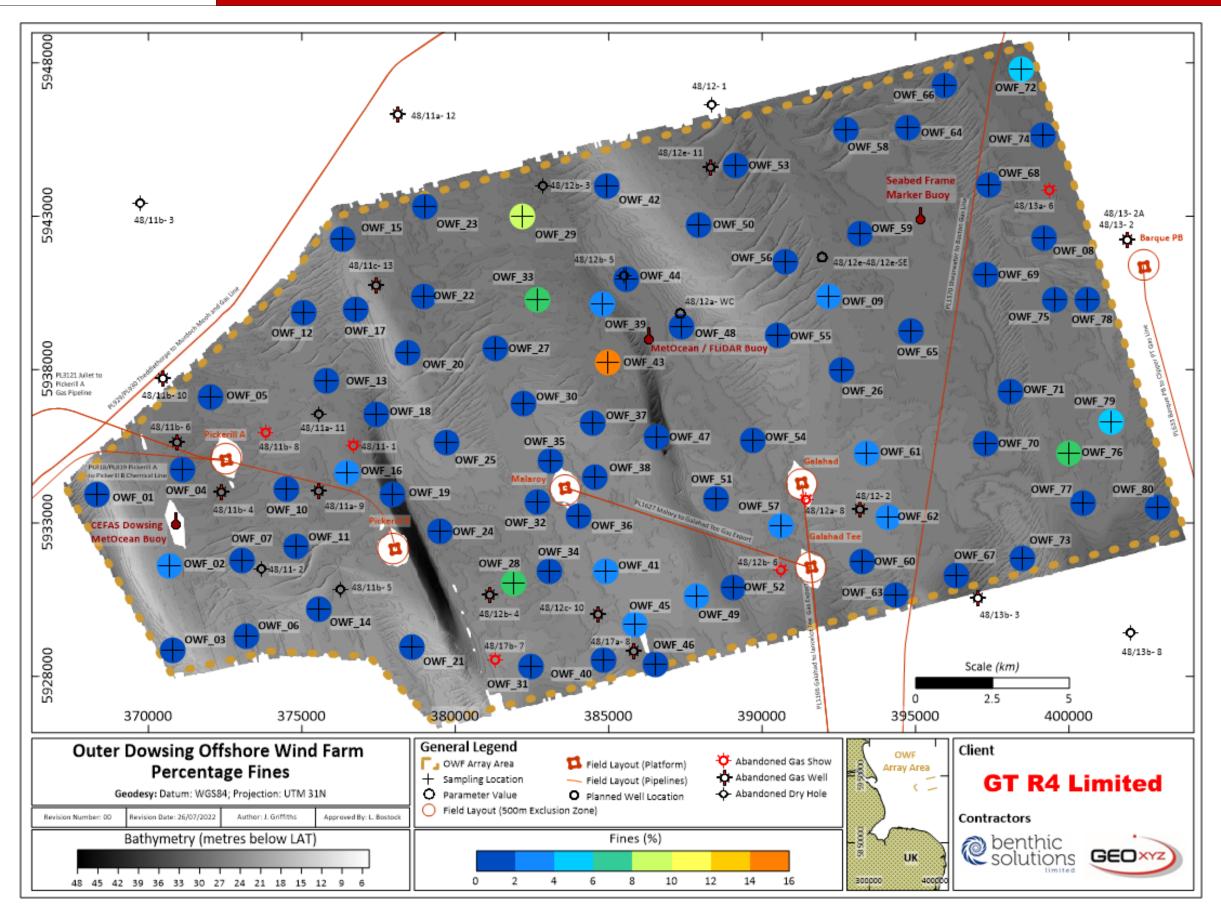


Figure 9 Percentage fines

Document No. UK4855H-824-RR-01 Page 59 of 292

4.3.2 Multivariate Analyses

The particle size distribution of sediments across the survey area were subjected to further detailed investigation by multivariate analysis using the Plymouth Routines in Multivariate Ecological Research software (PRIMER 7.0.17; Clarke *et al.*, 2014) to elucidate any spatial trends within the data.

A similarity dendrogram was generated by hierarchical agglomerative clustering (CLUSTER) using particle size data (phi) to illustrate similarities/differences between stations using the Euclidean distance dissimilarity measure. The dendrogram produced by cluster analysis is shown in Figure 10, with red lines denoting statistically similar stations and black lines revealing significant differences. Similarity profiling analysis (SIMPROF); indicates the presence of 21 significantly different (p<0.05) clusters; however this was thought to have over-differentiated the dataset. In order to provide a more relevant interpretation to the current survey dataset, a slice was overlain of the SIMPROF clusters at a Euclidean Distance of 34 in order to group the stations at a higher level (Figure 10). The slice splits the dataset into four significantly different (p<0.05) cluster groups, as follows:

- Cluster 'a': The differentiation of the first cluster, represented by 33 stations, was not immediately apparent from review of the descriptive statistics as the stations within cluster 'a' showed comparable sediment characteristics to those stations within the clusters 'b', 'c' and 'd' (Table 14). However, review of the PSD plots for each station revealed cluster 'a' had a higher proportion of pebbles (phi -3) and fine silt (phi 7) when compared to the other clusters. The stations within this clusters were predominantly sampled within the 'Sandy CLAY' area.
- Cluster 'b': Similarly to cluster 'a', the differentiation of the second cluster, represented by 30 stations, was not immediately apparent from review of the descriptive statistics (Table 14). Review of the particle size distribution plots for each station revealed cluster 'b' had a higher proportion of medium sand (phi 2) when compared to the other clusters. The stations within this cluster were typically sampled within the 'Gravel', 'Gravelly SAND', 'Sand' and 'Sandy CLAY' areas.
- Cluster 'c:' Similarly to cluster 'b', the differentiation of the third cluster, represented by 11 stations, was not immediately apparent from review of the descriptive statistics (Table 14). Review of the PSD plots for each station revealed cluster 'c' had a higher and more variable proportions of very coarse sand and granules (phi -2 to -1) when compared to the other clusters. The stations within this cluster were predominately sampled within the 'Gravelly SAND' area.
- Cluster 'd': Similarly to cluster 'c', the differentiation of the fourth cluster, represented by six stations, was not immediately apparent from review of the descriptive statistics (Table 14). Review of the particle size distribution plots for each station revealed cluster 'd' had a higher proportion of coarse sand (phi 1) when compared to the other clusters. The clusters, similarly, to cluster 'b', were sampled within the 'Sand', 'Gravelly SAND' and 'Sandy CLAY' areas.

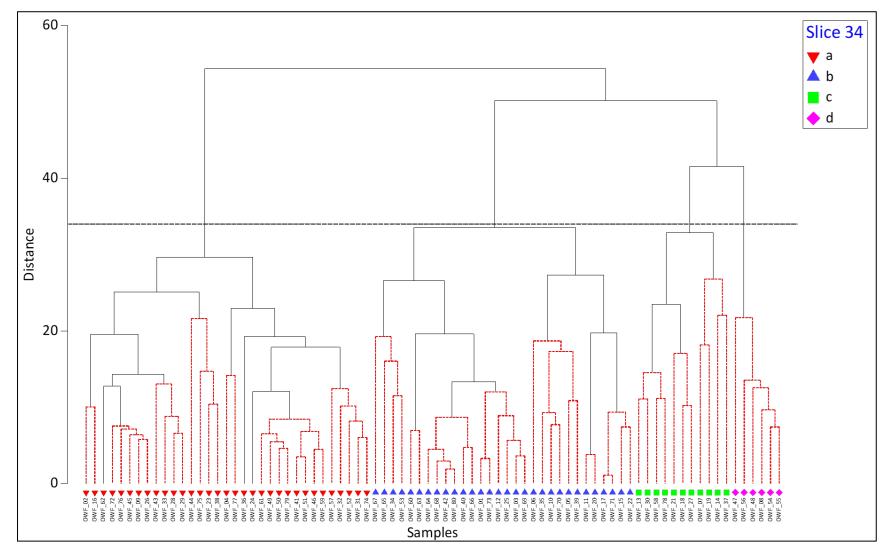


Figure 10 Particle Size Analysis Similarity Dendrogram

Document No. UK4855H-824-RR-01 Page 61 of 292

A principal component analysis (PCA) was carried out on the proportional whole phi sieve fraction data for each survey station (Figure 11). The resultant PCA plot shows the distribution of each station along axes formed by the two principal components (PC1 and PC2) which together describe the largest proportion of overall variability in the particle size fraction dataset. The direction of change for each sediment phi fraction is shown by eigenvectors which are oriented in three main directions, loosely grouping fractions comprising the three sediment fractions (i.e. fines, sand and gravel). Overall, the plot illustrated the subtle variability in sediment composition driving the differentiation of the clusters. The differentiation was attributed to the variable proportions of the large pebble, coarse sand, medium sand and fine sand fractions within the samples as evidenced by the length of the eigenvectors labelled with phi fraction -3, 1, 2 and 3 (Figure 11). Cluster 'a' separated from the other three clusters due to the greater influence of the large pebble fraction (phi -3) at these stations. Cluster 'b' had a higher proportion of medium to fine sand fractions (phi 2 to 3) when compared to cluster 'a'; however, the spread of cluster 'b' across the eigenvectors labelled phi -3, 2 and 3 reflected the intra-cluster variation in sediment composition at these stations. Whereas, Clusters 'c' and 'd' were principally influenced by the coarse sand to granule fractions, with cluster 'd' separating due to a higher proportion of the coarse sand fraction (phi 1).

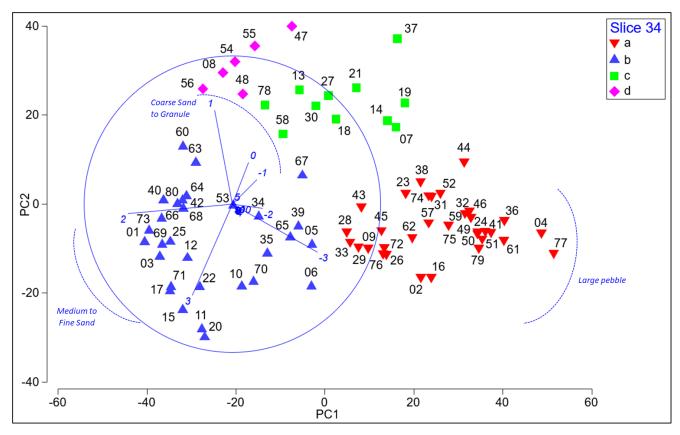


Figure 11 Particle Size Analysis Principal Components Analysis

A comparison of the full particle size distribution dataset using Wentworth (1922) size categories split into the four clusters described above is shown in Figure 12 along with example seabed and grab sample photographs. The plot illustrates the heterogeneity of the seabed sampled, with all four clusters showing variable peaks across the range of phi fractions. Cluster 'a' had a bimodal distribution with peaks in the pebble (phi -3) and medium to fine sand fractions (phi 2 and 3). Whereas clusters 'b' and 'd' showed a general unimodal distribution, peaking in the coarse sand fraction (phi 1) for cluster 'd' and medium sand fraction (phi 2) for cluster 'b'. In contrast, the peaks in sediment classes at the stations within cluster 'c' were more variable across the gravel fractions (phi -2 to 0). The geographical distribution of clusters is displayed over MBES in Figure 13. The areas delineated as 'GRAVEL', Sand', 'Gravelly SAND' and 'Sandy CLAY' generally matched the phi distributions recorded for each cluster grouping but further refinements will be made in Section 4.8, based on the acquired macrofauna, epibenthic trawl and underwater camera data.

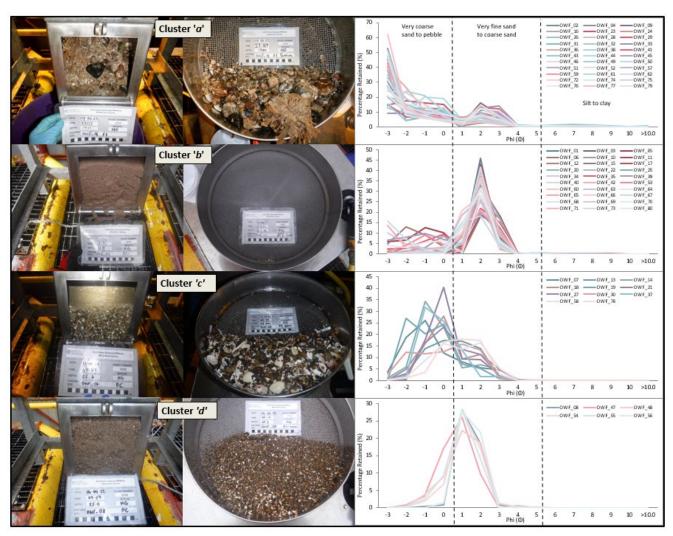


Figure 12 Particle Size Distribution for the Different Clusters 'a', 'b', 'c', 'and 'd'

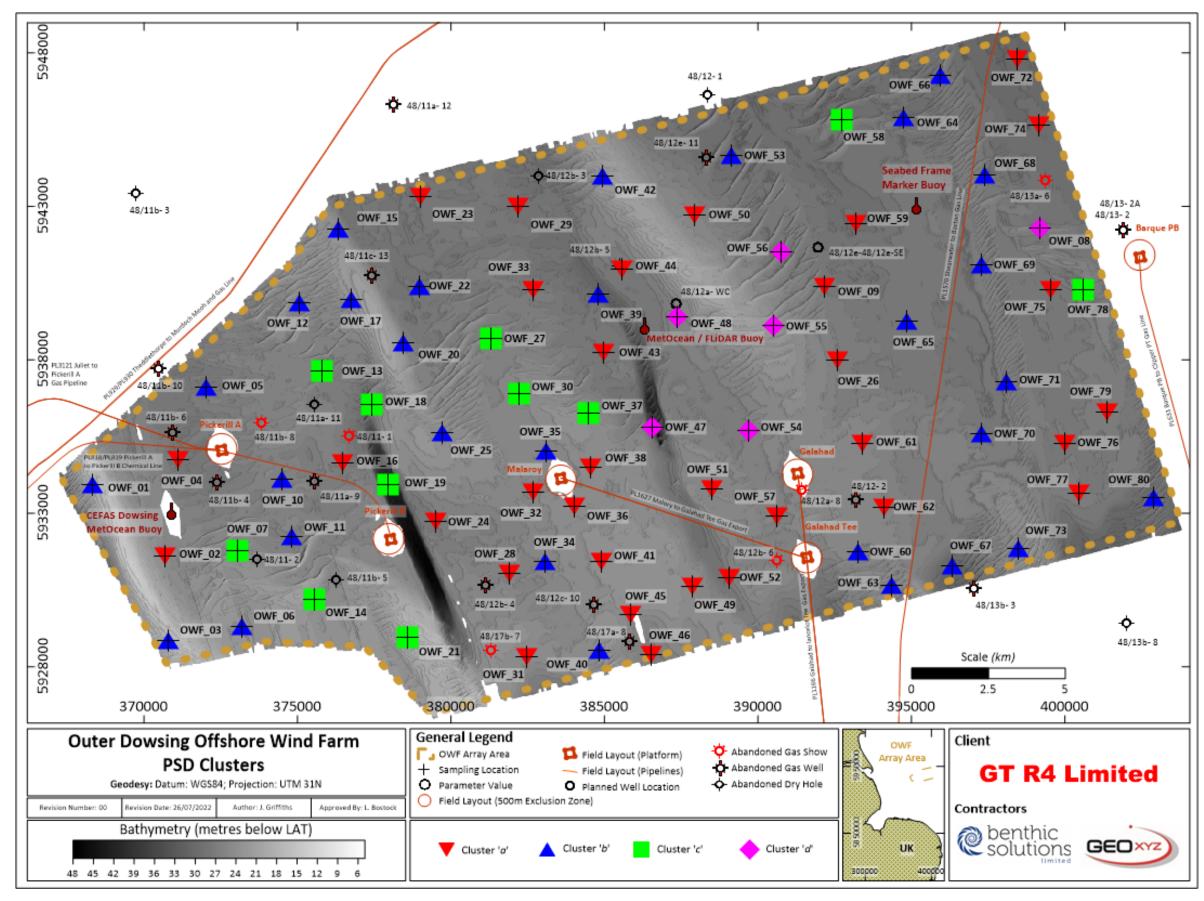


Figure 13 Multivariate PSD Cluster Distribution over MBES

Document No. UK4855H-824-RR-01 Page 64 of 292

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

4.4 TOTAL ORGANIC CARBON CONTENT

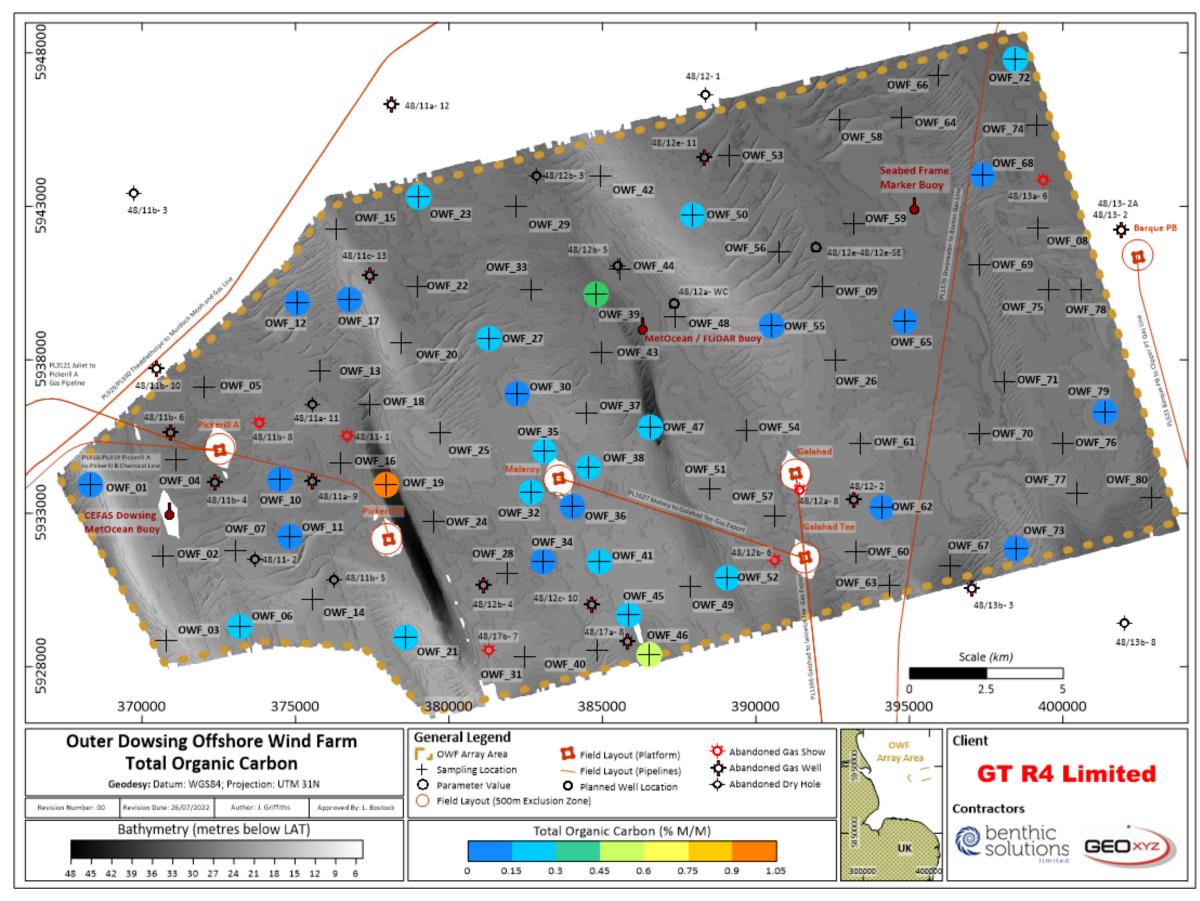
Sediments were analysed for total organic carbon (TOC) and the results of which are presented in (Table 15), with the spatial variation in TOC illustrated in (Figure 17). TOC represents the proportion of biological material and organic detritus within substrates. The method if less susceptible to the interference sometimes record using crude combustion techniques, such as analysing total organic matter by loss on ignition (LOI).

TOC was low across the OWF survey area and ranged between 0.05% at stations OWF_03, OWF_15, OWF_17, OWF_56 and OWF_80 to 0.65% at station OWF_19 (mean 0.17%±0.11SD), reflecting an organically-deprived environment. Higher TOC generally corresponded to the deeper areas of the site, for example at station OWF_19 (0.65%) which was sampled within the western canyon (Figure 14). In contrast, lower concentrations were typically found at the shallower sand dominated stations, such as stations OWF_01 (0.06%) and OWF_21 (0.14%) which were sampled on the crests of sandbanks. Increases in TOC may also reflect increases in both physical factors (i.e. fines) and common co-varying environmental factors through greater sorption on increased sediment surface areas (Thompson and Lowe, 2004). This general pattern was supported by significant positive Spearman's correlations between TOC and fines proportion (9(80)=0.641, p<0.001), TOC and water depth (9(80)=0.371, p<0.001) and a significant negative correlation between TOC and sand proportion (9(80)=-0.761, p<0.001). However, there was a significant negative Spearman's correlation between distance to the nearest well and TOC (9(80)=-0.301, p<0.001), indicating that both natural and anthropogenic factors were likely to be mediating the distribution of TOC across the OWF survey area.

Terrestrially derived carbon from runoff and fluvial systems, combined with primary production from sources such as phytoplankton blooms, contribute to the TOC levels recorded in sediments. While both allochthonous and autochthonous sources will be present throughout the OWF survey area, the general lack of fine sediment and therefore, reduced surface area for adsorption, meant that overall TOC levels were low. This may in turn affect the richness and abundance of deposit-feeding organisms within the sediment.

Previous BSL surveys carried out close to the OWF survey area had a similar range in TOC of 0.10% to 0.33% when compared to 0.17% for the current OWF survey, indicating that the TOC recorded reflected typical background levels for this region of the SNS. The coefficient of variance (CV) was greater for the current OWF survey (61.1%) when compared to the range of CVs for the previous surveys (15.8% to 33.6%), which was unsurprising given the large area of the OWF site and the variability in sediment composition recorded.

Table 15 Total Organic Carbon Content


		Distance to Nearest Well	Total Organic Carbon (%					
Station	Depth (m)	(Km)	M/M)					
OWF_01	11	3.12	0.06					
OWF_02	19	2.95	0.18					
OWF_03	10	3.90	0.05					
OWF_04	22	0.89	0.24					
OWF_05	23	1.67	0.32					
OWF_06	19	2.24	0.29					
OWF_07	19	0.68	0.15					
OWF_08	21	1.57	0.08					
OWF_09	23	5.71	0.17					
OWF_10	21	1.07	0.16					
OWF_11	20	1.34	0.09					
OWF_12	20	2.50	0.06					
OWF_13	21	1.10	0.15					
OWF_14	18	0.94	0.16					
OWF_15	18	1.83	0.05					
OWF_16	21	0.91	0.22					
OWF_17	17	1.01	0.05					
OWF_18	21	1.26	0.13					
OWF_19	40	1.74	0.65					
OWF_20	18	2.43	0.09					
OWF_21	12	2.75	0.14					
OWF_22	23	1.59	0.11					
OWF_23	23	3.01	0.18					
OWF_24	23	1.61	0.31					
OWF_25	18	3.01	0.06					
OWF_26	21	3.94	0.12					
OWF_27	19	4.82	0.13					
OWF_28	21	0.87	0.21					
OWF_29	24	1.21	0.37					
OWF_30	20	5.31	0.15					
OWF_31	19	1.16	0.28					
OWF_32	20	0.99	0.19					
OWF_33	23	2.93	0.25					
OWF_34	20	2.10	0.17					
OWF_35	20	1.06	0.20					
OWF_36	19	0.95	0.25					
OWF_37	19	2.37	0.15					
OWF_38	19	1.05	0.24					
OWF_39	27	1.15	0.43					
OWF_40	17	1.49 1.44	0.06					
OWF_41	18		0.26					
OWF_42	16	2.07	0.11					
OWF_43	23	2.79	0.36					
OWF_44		0.13	0.34					
OWF_45	19	0.85	0.19					
OWF_46 OWF_47	22 37	0.82 3.44	0.24					
OWF_47 OWF 48	21		0.21					
		2.51	0.10					
OWF_49	18 21	2.09	0.16 0.22					
OWF_50	20	1.93	0.25					
OWF_51 OWF 52	20	2.80 1.66	0.25					
OWF_52 OWF 53	25	0.81	0.25					
OWF_53	22	2.12	0.12					
	17	4.92	0.12					
OWF_55	1/	4.92	0.10					

Station	Depth (m)	Distance to Nearest Well (Km)	Total Organic Carbon (% M/M)					
OWF_56	19	3.91	0.05					
OWF_57	21	1.16	0.36					
OWF_58	25	4.42	0.15					
OWF_59	25	5.31	0.17					
OWF_60	20	1.69	0.06					
OWF_61	20	1.84	0.17					
OWF_62	21	0.94	0.14					
OWF_63	19	2.67	0.08					
OWF_64	24	3.72	0.07					
OWF_65	23	6.10	0.15					
OWF_66	22	2.38	0.07					
OWF_67	27	1.00	0.15					
OWF_68	23	2.00	0.08					
OWF_69	22	3.47	0.06					
OWF_70	23	4.64	0.15					
OWF_71	22	6.23	0.07					
OWF 72	26	3.62	0.33					
OWF_73	19	1.93	0.05					
OWF 74	25	1.80	0.20					
OWF_75	23	3.05	0.33					
OWF 76	23	5.56	0.28					
OWF 77	22	4.52	0.13					
OWF 78	22	2.17	0.07					
OWF_79	22	4.90	0.14					
OWF 80	23	5.99	0.05					
Mean			0.17					
SD			0.11					
CV (%)			61.1					
Minimum			0.05					
Maximum			0.65					
Regional Examples								
	Mean		0.20					
BSL SNS, 2019	SD		0.05					
	CV (%)		26.3					
	Mean		0.33					
BSL SNS, 2020a	SD		0.11					
·	CV (%)		33.6					
	Mean		0.10					
BSL SNS, 2020b	SD		0.02					
, , , , , , , , , , , , , , , , , , , ,	CV (%)		15.8					

Figure 14 Total Organic Carbon

Document No. UK4855H-824-RR-01 Page 68 of 292

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

4.5 SEDIMENT HYDROCARBONS

Results for hydrocarbon analyses are summarised and tabulated as total polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), organotins (DBT, TBT and MBT) and organochlorides (Dieldrin and DDT) in Table 16, Table 19, Table 20 and Table 21.

4.5.1 Non-normalised Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAH) were analysed at each station using gas chromatography-mass spectrometry (GC-MS). Results of the single ion current (SIC) analyses are summarised in Table 16.

PAHs and their alkyl derivatives have been recorded in a wide range of marine sediments (Laflamme and Hites, 1978) with the majority of compounds produced from what is thought to be pyrolytic sources. These include the combustion of organic material such as forest fires (Youngblood and Blumer, 1975), the burning of fossil fuels and, in the case of offshore oil fields, flare stacks. The resulting PAHs, rich in the heavier weight 4-6 ring aromatics, are normally transported to the sediments via atmospheric fallout or river runoff. Another PAH source is petroleum hydrocarbon, often associated with localised drilling activities. These are rich in the lighter, more volatile 2 and 3 ring PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene)

The sum of the EPA's 16 PAH (Σ 16PAH) concentrations (2-6 compounds) were variable across the OWF survey area ranging from <1µg.kg⁻¹ (LOD) at seven stations, OWF_01, OWF_17, OWF_21, OWF_30, OWF_62, OWF_65 and OWF_73, to 677µg.kg⁻¹ at station OWF_19 which was above the Cefas action level 1 (cAL1) of 100mg.kg⁻¹ and twice the UKOOA 95th percentile threshold value of 366µg.kg⁻¹ (Figure 15). The elevated Σ 16PAH concentration at station OWF_19 was due to the elevated contribution of each individual PAH; however, only acenaphthylene exceeded its respective TEL (6.71µg.kg⁻¹) and phenanthrene exceeded its respective TEL (86.7µg.kg⁻¹) and ERL (240µg.kg⁻¹) thresholds. The elevated Σ 16PAH at station OWF_19 could potentially be attributed to the accelerated natural accumulation of organic material within the canyon feature (see Sections 4.2 and 4.4) as suspended organic compounds can adsorb PAHs and settle out in more sheltered, depositional, environments. This hypothesis was corroborated by a significant positive Spearman's correlation between TOC and Σ 16PAH (Σ 16PAH (Σ 16PAH) compared to station OWF_47 sampled within the eastern canyon, albeit at a shallower water depth (37m) compared to station OWF_19 (40m), had a lower Σ 16PAH of 5.49µg.kg⁻¹, indicating that the higher TOC and PAH concentrations at station OWF-19 could be due to chance.

Similarly to Σ 16PAH, the sum of 22 PAH (Σ 22PAH) concentrations (2-6 compounds) were also variable across the OWF survey area ranging from <1 μ g.kg⁻¹ (LOD) at two stations, OWF_01 and OWF_62, to 2,118 μ g.kg⁻¹ at station OWF_19 which was elevated above the CCME TEL threshold (1,684 μ g.kg⁻¹) due to elevated concentrations of C1-naphthalenes, C2-naphthalenes and C1-phenanthrene (Table 16 and Figure 16). Therefore, Σ 22PAH, similarly to Σ 16PAH could potentially represent the upper background level of PAHs within the OWF survey area, as accelerated natural accumulation within the canyon feature at OWF_19 could have resulted in the elevated concentrations of the individual PAHs. However, the influence of the canyon features on the natural deposition of PAHs is unknown as the PAH concentrations at station OWF_47 were within the expected ranges for this region of the SNS.

The similar distributions of Σ 16PAH and Σ 22PAH were corroborated by a significant positive Spearman's correlation between the two parameters (g(80)=0.942, p<0.001) and potentially indicates that both Σ 16PAH and Σ 22PAH can adequately capture variability in PAH distributions across the OWF survey area.

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

The MMO have considered the use of low (2-3 ring PAHs) and high (4-6 ring PAHs) molecular weight PAHs, in conjunction with ERL and ERM reference values, can provide suitable benchmarks for PAH interpretation (MMO, 2015). Similarly to the Σ 16PAH and Σ 22PAH distributions, elevated low and high molecular weight PAHs of 321 μ g.kg⁻¹ and 356 μ g.kg⁻¹, respectively, were recorded at station OWF_19 when compared to the other stations; however, both low and high molecular weight PAHs were below their respective ERL and ERM reference levels, with only the low molecular weight PAHs slightly elevated above its respective TEL (312 μ g.kg⁻¹) concentration. As previously discussed, the concentrations of low and high molecular weight PAHs could be attributed to the increased deposition of organic matter within the canyon feature a station OWF_19 (low: 9(80)=0.565, p<0.01; high: 9(80)=0.545, p<0.01). Therefore, the general lower abundance of low molecular weight PAHs compared to the high molecular weight PAHs could indicate a mixed and petrogenic influenced upper background limit of PAH distribution across the OWF survey area. However, caution must be applied when comparing and interpreting low and high-molecular-weight PAHs as low molecular weight PAHs are more susceptible to microbial degradation (Douglas *et al.*, 1996).

All the maximum PAH concentrations recorded during the current survey were higher than the PAH content observed in previous surveys carried out by BSL in the SNS. However, this was due to the elevated PAH concentrations recorded at just one station, OWF_19. Excluding station OWF_19, the remaining PAH concentrations, apart from naphthalene, C1 naphthalenes, acenaphthene, phenanthrene, anthracene, were within the ranges recorded from the previous BSL SNS surveys. Although five individual PAHs were elevated when compared to the regional comparisons, the Σ 16PAH and Σ 22PAH levels were within the range recorded during previous SNS surveys (Table 16). Therefore, it is likely that the PAH levels recorded across the OWF survey area likely reflect background levels for this region of the SNS.

Table 16 Summary of Non-normalised PAH Concentrations (µg.kg⁻¹ or ppb)

	Table 16 Summary of Non-normalised PAH Concentrations (µg.kg ⁻¹ or ppb)																											
Station	Depth	Distance to Nearest Well (Km)	Naphthalene	C1 Naphthalenes	C2 Naphthalenes	C3 Naphthalenes	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	C1-phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo[a]anthracene	Chrysene	Benzo[b]fluoranthene (Benzo[k]fluoranthene	Benzo[e]pyrene	Benzo[a]pyrene	Perylene	Indeno[123,cd]pyrene	Dibenzo[a,h]anthrace ne	Benzo[ghi]perylene	Total PAHs (Σ16)	Total PAHs (Σ22)	Total 2-3 ring PAH *	Total 4-6 ring PAH *
OWF_01	11	3.12	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
OWF_06	19	2.24	2.25	15.00	16.2	24.60	<1	<1	<1	10.60	16.50	<1	6.74	10.60	4.36	4.67	3.74	1.61	4.83	3.82	1.34	1.77	<1	5.78	55.9	134	12.90	43.10
OWF_10	21	1.07	<1	2.78	2.84	2.64	<1	<1	<1	1.50	1.94	<1	1.06	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.09	3.65	13.90	1.50	2.15
OWF_11	20	1.34	<1	2.39	4.74	6.84	<1	<1	<1	3.41	5.16	<1	1.99	2.17	<1	1.28	1.27	<1	1.41	<1	<1	<1	<1	1.70	11.80	32.40	3.41	8.41
OWF_12	20	2.50	<1	1.67	1.56	1.23	<1	<1	<1	<1	1.05	<1	1.07	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.07	6.58	<1	1.07
OWF_17	17	1.01	<1	<1	4.34	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	4.34	<1	<1
OWF_19	40	1.74	14.90	267	372	429	5.13	10.20	12.20	265	327	13.40	60.30	77.20	41.00	41.10	28.80	14.50	37.00	38.00	9.53	12.10	3.27	39.60	677	2,118	321	356
OWF_21	12	2.75	<1	1.37	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.37	<1	<1
OWF_23	23	3.01	1.21	4.49	6.15	11.30	<1	<1	<1	4.10	7.10	<1	2.87	2.98	1.14	1.90	1.78	<1	1.97	1.07	<1	1.02	<1	2.75	20.80	51.80	5.31	15.5
OWF_27	19 20	4.82 5.31	<1 <1	1.45 1.27	1.70 1.19	4.32	<1	<1	<1 <1	1.93	4.74	<1 <1	1.20	1.23	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1	<1	<1 <1	<1	<1 <1	4.36 <1	16.60 2.46	1.93	2.43
OWF_30 OWF_32	20	0.99	1.18	5.11	12.2	16.00	<1	<1	<1	4.73	<1 6.83	<1	<1 2.01	<1 2.68	<1	1.16	1.17	<1	1.56	<1	1.50	<1	<1 <1	2.50	15.40	58.6	5.91	9.52
OWF_34	20	2.10	<1	1.41	2.08	2.34	<1	<1	<1	1.31	2.17	<1	1.55	1.65	<1	1.21	1.29	<1	1.30	<1	<1	<1	<1	1.34	8.35	17.70	1.31	7.04
OWF_35	20	1.06	<1	3.10	3.68	6.77	<1	<1	<1	3.08	3.86	<1	2.37	2.50	<1	1.46	1.32	<1	1.84	1.07	<1	<1	<1	2.18	14.00	33.20	3.08	10.90
OWF_36	19	0.95	<1	1.06	1.43	2.61	<1	<1	<1	1.58	5.76	2.47	2.55	5.04	2.44	3.10	1.38	<1	2.03	1.89	<1	<1	<1	2.16	22.60	35.50	4.05	18.6
OWF_38	19	1.05	1.16	4.12	3.41	4.96	<1	<1	<1	2.24	3.46	<1	1.54	1.98	<1	1.19	<1	<1	1.17	<1	<1	<1	<1	2.07	10.20	27.30	3.40	6.78
OWF_39	27	1.15	2.28	7.12	19.2	28.8	<1	2.17	1.23	9.47	15.3	<1	7.45	8.42	2.87	4.39	4.33	1.88	5.14	3.04	3.51	2.22	<1	6.77	56.50	136	15.2	41.40
OWF_41	18	1.44	1.28	4.90	4.94	5.96	<1	<1	<1	3.33	4.85	<1	1.84	2.47	<1	1.47	1.49	<1	2.24	1.2	<1	<1	<1	3.48	16.60	39.50	4.61	12.00
OWF_45	19	0.85	<1	2.10	3.22	5.05	<1	<1	<1	2.72	5.89	<1	2.44	3.19	1.48	1.94	2.01	1.09	2.52	1.46	<1	1.13	<1	2.58	20.00	38.80	2.72	17.30
OWF_46	22	0.82	19.80	55.60	38.20	33.50	<1	<1	<1	33.6	33.30	<1	11.00	10.3	5.55	8.65	6.03	2.35	6.95	4.47	1.07	2.24	<1	5.86	110	278	53.4	56.50
OWF_47	37	3.44	<1	1.21	1.66	2.41	<1	<1	<1	1.60	1.93	<1	1.48	1.35	<1	<1	1.06	<1	<1	<1	<1	<1	<1	<1	5.49	12.70	1.60	3.89
OWF_50	21	1.93	1.36	3.35	5.07	7.00	<1	<1	<1	2.98	4.61	<1	2.61	3.23	<1	1.89	1.63	<1	1.86	<1	<1	<1	<1	2.67	16.40	38.30	4.34	12.00
OWF_52	22	1.66	<1	4.18	6.25	7.47	<1	<1	<1	4.63	5.79	<1	2.24	2.45	1.12	1.48	1.48	<1	1.53	<1	<1	<1	<1	1.24	14.60	39.90	4.63	10.00
OWF_55	17	4.92	<1	3.83	4.70	5.59	<1	<1	<1	3.35	4.17	<1	2.56	1.72	1.01	1.32	2.25	<1	1.23	<1	<1	<1	<1	1.15	13.40	32.90	3.35	10.00
OWF_62	21	0.94	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
OWF_65	23	6.10	<1	1.24	2.01	1.96	<1	<1	<1	<1	1.55	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	6.76	<1	<1
OWF_68	23	2.00 3.62	1.34	2.99	4.35	5.92	<1	<1	<1 <1	2.66	4.19	<1	2.10	2.51	<1	1.37	<1	<1	1.22	<1	<1	<1	<1	1.95	11.90	30.6	4.00	7.93 2.56
OWF_72 OWF_73	19	1.93	<1 <1	<1 <1	1.18 1.06	1.15	<1	<1	<1	<1	1.20	<1 <1	1.41	1.15	<1 <1	<1	<1 <1	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	2.56	6.09 1.06	<1 <1	<1
OWF_79	22	4.90	<1	3.04	4.44	7.71	<1	<1	<1	3.54	5.72	<1	2.81	3.58	1.34	1.8	1.98	<1	2.47	1.66	1.35	<1	<1	4.37	21.10	45.80	3.54	17.50
Mean		1.50	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
SD			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
CV (%)			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Minimum			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Maximum			19.8	267	372	429	5.13	10.2	12.2	265	327	13.4	60.3	77.2	41	41.1	28.8	14.5	37	38	9.53	12.1	3.27	39.6	677	2,118	321	356
Regional Exam	nples																											
BSL SNS, 2019	** Min	imum	<1	3.08	3.18	3.40	<1	<1	<1	1.79	2.54	<1	1.47	1.28	<1	1.10	1.21	<1	1.10	<1	<1	<1	<1	1.43	8.27	21.8	1.79	6.48
552 5143, 2013	Max	imum	6.27	30.2	32.7	39.8	<1	2.15	3.85	16.5	25.1	1.58	8.54	9.37	3.96	6.93	5.67	1.83	6.96	4.91	4.34	3.62	<1	11.4	86.6	226	30.4	56.2
BSL SNS, 2020	a**	imum	1.42	5.41	5.02	7.13	<1	<1	<1	3.59	7.10	<1	3.92	4.30	1.66	2.95	2.64	1.09	3.34	1.84	<1	1.46	<1	3.79	29.5	59.0	5.00	24.5
	Max	imum	10.2	39.6	38.3	55.7	<1	1.94	2.62	28.4	40.9	2.22	17.8	20.3	6.77	13.3	10.1	4.34	13.8	7.21	3.63	5.18	1.57	15.8	148	339	45.1	102
BSL SNS, 2020	b**	imum	<1	<1	1.37	1.68	<1	<1	<1	1.53	1.50	<1	1.13	1.03	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	4.91	10.6	1.53	2.16
0.6		timum	3.22	5.67	4.21	3.82	<1	<1	<1	3.16	4.21	<1	2.23	2.41	<1	1.56	1.50	<1	1.47	<1	<1	<1	<1	1.76	12.7	29.2	6.38	9.23
TEL (CCME, 20	Reference Levels		24.6				E 0	6.7	21.2	86.7		46.0	112	152	74.0	108				00.0			6.22			1.694	212	655
Cefas cAL1 (MI			34.6	-	-	-	5.9	6.7	21.2	- 86.7	-	46.9	113	153	74.8	108	-	-	-	88.8	-	-	6.22	-	100	1,684	312	655
UKOOA 95th Pe		IS	_	-	_			-	_	_	_	-	_	_	_		_		_			-	_	_	366	_	_	_
OSPAR ERL (OS			160	155	150	-	44	16	19	240	170	85	600	665	261	384	-	240	-	430	-	240	63	85	-	4,022	552	1,700
PEL (CCME, 20		,	391	-	-	-	128	88.9	144	544	-	245	1494	1398	693	846	-	-	-	763	-	-	135	33	-	16,770	1,442	6,676
OSPAR ERM (C		2)	2,100	-	-	-	640	500	540	1,500	-	1,100	5,100	2,600	1,600	2,800	-	-	-	1,600	-	-	260	2,800	-	44,792	3,160	9,600
(-																												

NC = Not calculated due to incomplete dataset

*Low molecular weight (2-3 ring) PAHs and high molecular weight (4-6 ring) PAHs calculated from the EPA 16 PAHs

**Minimum and maximum data for regional examples shown instead of means due to 'NC' values

Document No. UK4855H-824-RR-01 Page 71 of 292

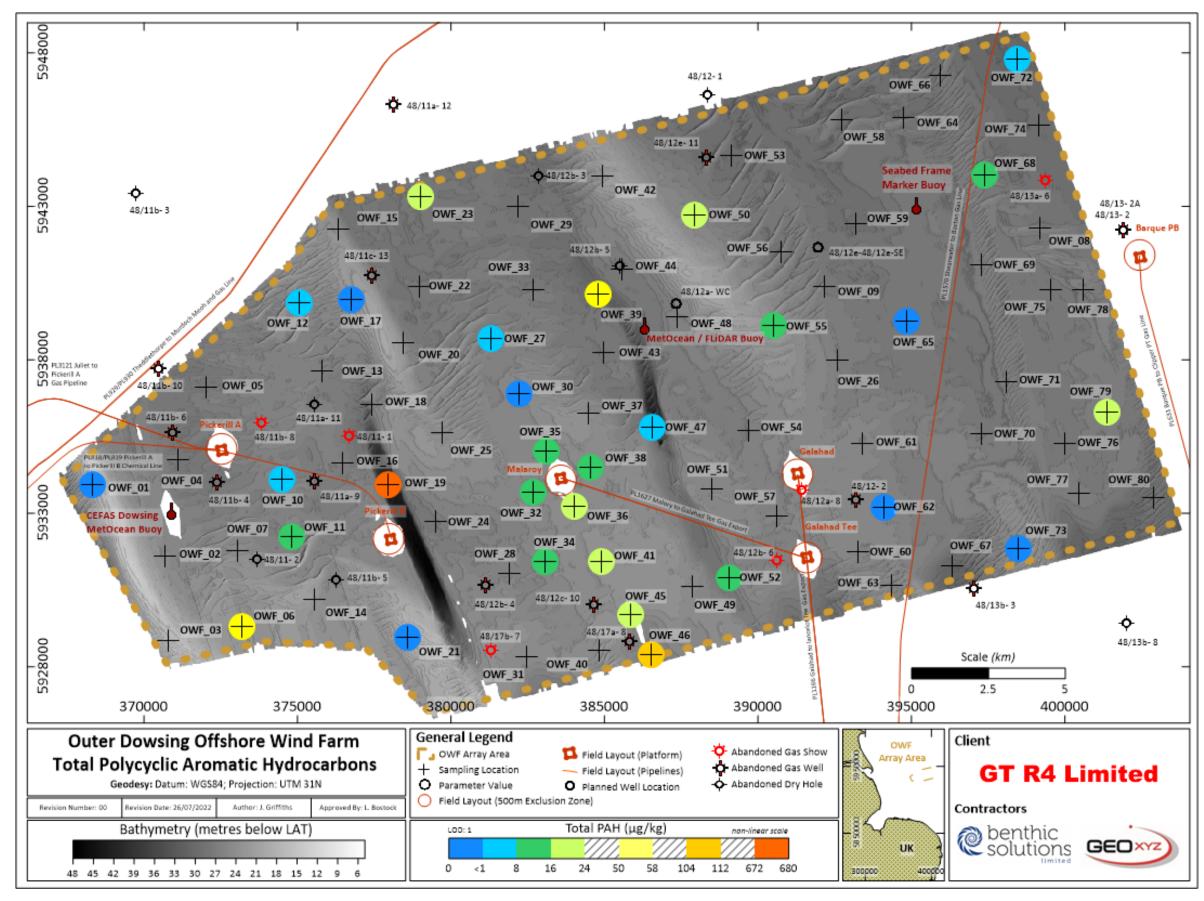


Figure 15 Total Polycyclic Aromatic Hydrocarbons (∑16PAH)

Document No. UK4855H-824-RR-01 Page 72 of 292

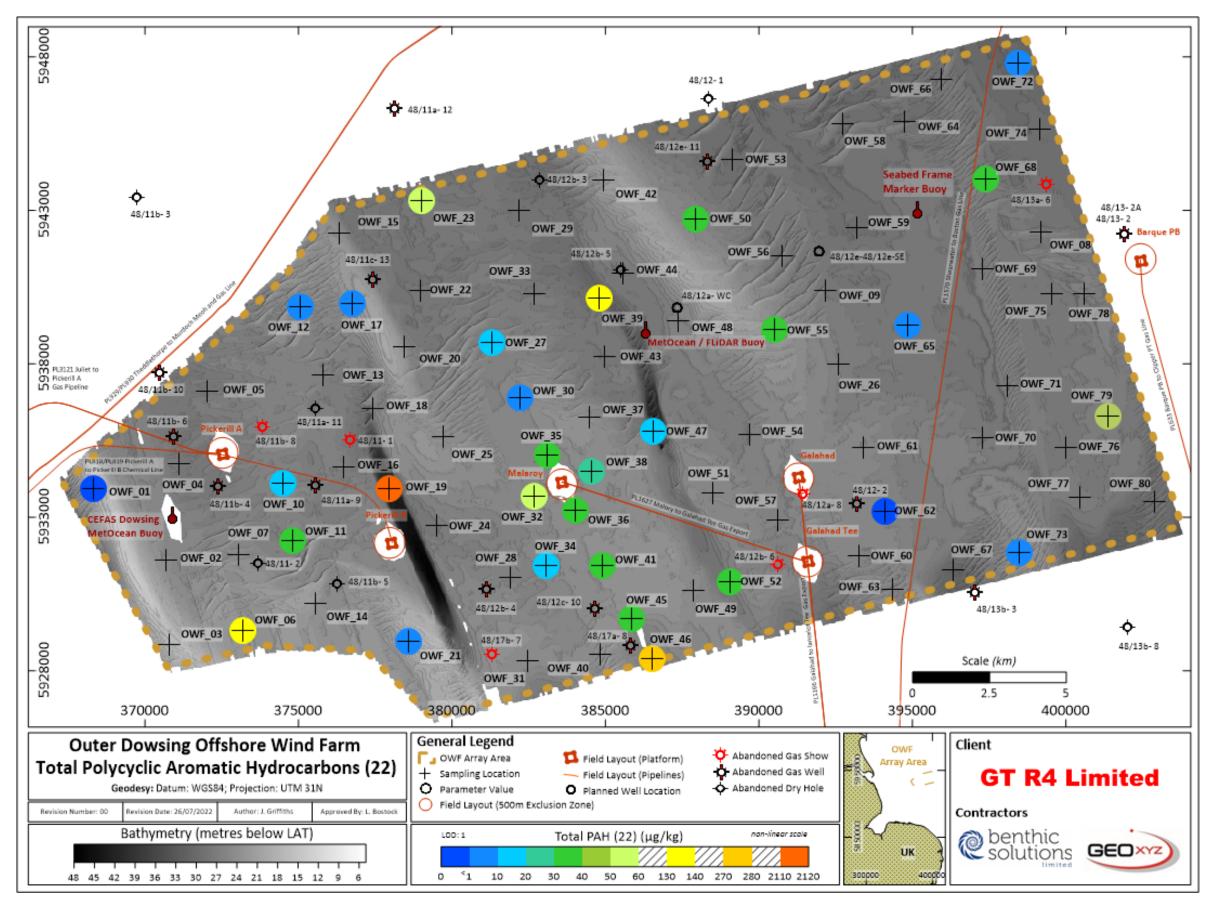


Figure 16 Total Polycyclic Aromatic Hydrocarbons (∑22PAH)

Document No. UK4855H-824-RR-01 Page 73 of 292

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

Further information on the source(s) of PAH in the sediment may be obtained from a study of their alkyl homologue distributions (i.e. the degree of methyl, ethyl, substitution of the parent compounds). Pyrolytically derived PAHs are predominantly unalkylated, whereas PAHs derived from petrogenic sources are formed at relatively low temperatures (<150°C) and contain mainly alkylated species. The proportion of 2-6 ring PAH comprising unalkylated parent compounds also reflects whether the source is petrogenic or pyrolytic. However, due to the absence of specific PAHs the alkylated/ unalkylated species could not be calculated and plotted.

An alternative approach to characterising PAH source(s) of PAH in sediments may be obtained from a study of their isomeric ratios (i.e. the same molecular formula but different arrangement of atoms). Two isomeric ratios were used to assess the potential pyrolytic and petrogenic sources of PAHs within the OWF survey area: (1) phenanthrene/anthracene compared with fluoranthene/pyrene and (2) benzo[a]anthracene/ (benzo[a]anthracene + chrysene) compared with fluoranthene/(fluoranthene + pyrene). Isomeric ratios can, to a certain extent, distinguish the pyrolytic and petrogenic sources of PAHs as phenanthrene and fluoranthene are more thermally stable than their anthracene and pyrene isomers (Vane et al., 2014). However, due to the presence of <1 (LOD) concentrations of PAHs the isomeric ratios could not determine the likely source of the PAH across the OWF survey area. Furthermore, the isomeric method alone cannot provide a definitive source due to the degree of uncertainty (Vane et al., 2014).

For further investigation into the possible source(s) of PAH, a principal component analysis (PCA) was performed on the correlation matrix of log-transformed individual 22PAH concentrations. The resultant PCA plot shows the distribution of each station along axes formed by the two principal components (PC1 and PC2) which together describe the largest proportion of overall variability in the PAH concentration dataset. The direction of influence of each individual PAH concentration is shown by the eigenvectors and hence can indicate the potential source(s) of PAH within the OWF survey area. Overall, the PCA plot illustrated a mixed source of (i.e. pyrolytic and petrogenic) PAHs within the survey area, with the differences in PAH concentrations across the stations potentially attributed to variability in natural distribution instead of a dominance of one PAH over another (Figure 17). The mixed source of PAHs was unsurprising given the oil and gas exploration within the OWF survey area and proximity to the Humber Estuary.

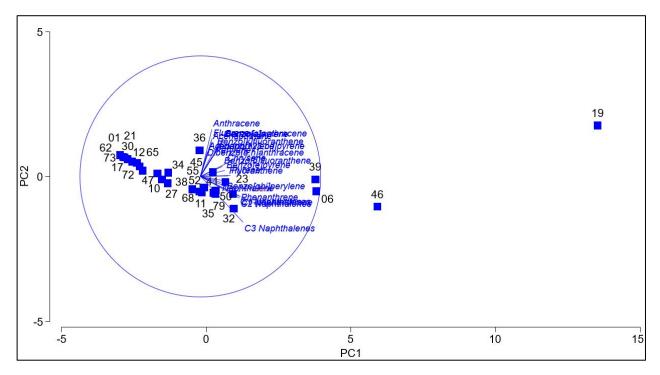


Figure 17 Polycyclic Aromatic Hydrocarbons Principal Component Analysis Source Assignment

4.5.2 Normalised Polycyclic Aromatic Hydrocarbons

a ANZECC and ARMCANZ Sediment Guidelines

Normalised PAH concentrations were calculated to allow comparison to the ANZECC and ARMCANZ SQGVs and OSPAR (2014) background concentrations. The ANZECC and ARMCANZ framework (see Section 2.5.3 and Appendix D) aims to assess contaminated sediment against a set of sediment quality guideline values (SQGV) to establish the level of risk to the biological community, with concentrations below their respective SQGVs indicative of 'low risk' to marine life (Simpson *et al.*, 2013). Whereas, the BCs are concentrations of contaminants derived from analysis of core samples to reflect pre-industrial background levels for the OSPAR area. BACs have been statistically derived from BCs and represent the level above which concentrations can be considered significantly higher than the relevant BC (OSPAR, 2008). Contaminants tend to show a much higher affinity to fine particulate matter (OSPAR, 2009b) due to the increased adsorption capacity of organic matter and clay minerals. In sites where there is variability in grain size between stations, effects due to point sources of contamination will at least partly be obscured by grain size differences.

All PAH concentrations have been normalised to 1% total organic carbon content of the sediment at each station in line with guidance set by the ANZECC and ARMCANZ framework are displayed in Table 17, along with OSPAR BCs and BACs, and OSPAR effect range low (ERL) and effect range median (ERM) thresholds. ERLs are defined as the lowest concentration producing adverse effects in 10% of studies, whilst ERMs are the levels at which harmful effects are expected in 50% of studies.

Normalised PAHs were incalculable at most stations due to concentrations being below the limit of detection (<1µg.kg⁻¹). Of the 22 PAHs analysed during this study, eight PAHs (out of a possible 10 with BCs and BACs) were elevated above their respective BACs at one or more stations, with all eight elevated PAHs recorded at station OWF_19 (Table 17). At station OWF_19, the concentration of phenanthrene (408µg.kg⁻¹) was 12 times greater than its respective BAC of 32µg.kg⁻¹ and almost double its respective ERL of 240µg.kg⁻¹. The presence of PAHs

UK4855H-824-RR-01

significantly elevated above their respective BCs and ERLs is not surprising given the proximity of the survey area to oil and gas exploration activities. However, the ANZECC and ARMCANZ framework state that, while it is recognised the toxicities of individual PAHs differ significantly, it considers individual PAHs unlikely to be dominant when compared to the total PAH concentration. In light of this, the concentration of $\Sigma 22PAH$ was below the SQGV at every station and indicates that the total PAH concentrations observed across the OWF survey area were likely to be 'low risk' with negligible effects to marine life based on the ANZECC and ARMCANZ framework. Therefore, the PAH concentrations and distribution across the OWF survey area are likely to reflect ambient background conditions of diffuse loading for this region of the SNS. However, it should be noted that the current study used $\Sigma 22PAH$ while the ANZECC and ARMCANZ SQGVs were based on $\Sigma 18PAH$, which could potentially limit the conclusions drawn from direct comparisons.

Table 17 Normalised ANZECC and ARMCANZ Total Polycyclic Aromatic Hydrocarbons (µg.kg-1 or ppb)

								able 17 N	ormansed	ANZECC a	10 AKIVICA	ANZ TOTAL	Polycyci	ic Aroma	tic Hyard	carbons	(µg.kg-1	or ppb)										
Station	Depth	Distance to Nearest Well (Km)	Naphthalene	C1 Naphthalenes	C2 Naphthalenes	C3 Naphthalenes	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	C1-phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo[a]anthracene	Chrysene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[e]pyrene	Benzo[a]pyrene	Perylene	Indeno[123,cd]pyrene	Dibenzo[a,h]anthracene	Benzo[ghi]perylene	Total PAHs (Σ16)	Total PAHs (Σ22)	Total 2-3 ring PAH *	Total 4-6 ring PAH *
OWF_01	11	3.12	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	<1	<1	<1	<1
OWF_06	19	2.24	7.8	51.7	55.9	84.8	NC	NC	NC	36.6	56.9	NC	23.2	36.6	15.0	16.1	12.9	5.6	16.7	13.2	4.6	6.1	NC	19.9	193	456	44.3	149
OWF_10	21	1.07	NC	17.4	17.8	16.5	NC	NC	NC	9.4	12.1	NC	6.63	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	6.8	22.8	86.6	9.38	13.4
OWF_11	20	1.34	NC	26.6	52.7	76.0	NC	NC	NC	37.9	57.3	NC	22.1	24.1	NC	14.2	14.1	NC	15.7	NC	NC	NC	NC	18.9	131	360	37.9	93
OWF_12	20	2.50	NC	27.8	26.0	20.5	NC	NC	NC	NC	17.5	NC	17.8	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	17.8	110	<1	17.8
OWF_17	17	1.01	NC	NC	86.8	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	<1	86.8	<1	<1
OWF_19	40	1.74	22.9	411	572	660	7.9	15.7	18.8	408	503	20.6	92.8	119	63.1	63.2	44.3	22.3	56.9	58.5	14.7	18.6	5.0	60.9	1,041	3,236	494	547
OWF_21	12	2.75	NC	9.8	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	<1	9.79	<1	<1
OWF_23	23	3.01	6.7	24.9	34.2	62.8	NC	NC	NC	22.8	39.4	NC	15.9	16.6	6.3	10.6	10.0	NC	10.9	5.9	NC	5.7	NC	15.3	116	281	29.5	86.2
OWF_27	19	4.82	NC	11.2	13.1	33.2	NC	NC	NC	14.8	36.5	NC	9.2	9.5	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	33.5	127	14.8	18.7
OWF_30	20	5.31	NC	8.8	7.9	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	<1	16.4	<1	<1
OWF_32	20	0.99	6.2	26.9	64.2	84.2	NC	NC	NC	24.9	35.9	NC	10.6	14.1	NC	6.1	6.2	NC	8.2	NC	7.9	NC	NC	13.2	81.2	302	31.1	50.1
OWF_34	20	2.10	NC	8.3	12.2	13.8	NC	NC	NC	7.7	12.8	NC	9.1	9.7	NC	7.1	7.6	NC	7.7	NC	NC	NC	NC	7.9	49.1	104	7.71	41.4
OWF_35	20	1.06	NC	15.5	18.4	33.9	NC	NC	NC	15.4	19.3	NC	11.9	12.5	NC	7.3	6.6	NC	9.2	5.4	NC	NC	NC	10.9	69.9	166	15.4	54.5
OWF_36	19	0.95	NC	4.2	5.7	10.4	NC	NC	NC	6.3	23.0	9.9	10.2	20.2	9.8	12.4	5.5	NC	8.1	7.7	NC	NC	NC	8.6	90.4	142	16.2	74.2
OWF_38	19	1.05	4.83	17.2	14.2	20.7	NC	NC	NC	9.3	14.4	NC	6.4	8.3	NC	5.0	NC	NC	4.9	NC	NC	NC	NC	8.6	42.4	109	14.2	28.3
OWF_39	27	1.15	5.3	16.6	44.7	67.0	NC	5.05	2.86	22.0	35.6	NC	17.3	19.6	6.7	10.2	10.1	4.4	12.0	7.1	8.2	5.12	NC	15.7	131	310	35.2	96.2
OWF_41	18	1.44	4.92	18.8	19.0	22.9	NC	NC	NC	12.8	18.7	NC	7.1	9.5	NC	5.7	5.7	NC	8.6	4.6	NC	NC	NC	13.4	63.7	147	17.7	46.0
OWF_45	19	0.85	NC	11.1	16.9	26.6	NC	NC	NC	14.3	31.0	NC	12.8	16.8	7.8	10.2	10.6	5.74	13.3	7.7	NC	6.0	NC	13.6	105	204	14.3	91.2
OWF_46	22	0.82	82.5	232	159	140	NC	NC	NC	140	139	NC	45.8	42.9	23.1	36.0	25.1	9.8	29.0	18.6	4.5	9.3	NC	24.4	458	1,078	223	235
OWF_47	37	3.44	NC	5.76	7.90	11.5	NC	NC	NC	7.6	9.19	NC	7.1	6.4	NC	NC	5.1	NC	NC	NC	NC	NC	NC	NC	26.1	60.5	7.62	18.5
OWF_50	21	1.93	6.2	15.2	23.0	31.8	NC	NC	NC	13.5	21.0	NC	11.9	14.7	NC	8.6	7.4	NC	8.5	NC	NC	NC	NC	12.1	74.4	168	19.7	54.7
OWF_52	22	1.66	NC	16.7	25.0	29.9	NC	NC	NC	18.5	23.2	NC	9.0	9.8	4.5	5.9	5.9	NC	6.1	NC	NC	NC	NC	5.0	58.6	159	18.5	40.0
OWF_55	17	4.92	NC	38.3	47.0	55.9	NC	NC	NC	33.5	41.7	NC	25.6	17.2	10.1	13.2	22.5	NC	12.3	NC	NC	NC	NC	11.5	134	329	33.5	100
OWF_62	21	0.94	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	<1	<1	<1	<1
OWF_65	23	6.10	NC	8.3	13.4	13.1	NC	NC	NC	NC	10.3	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	<1	45.1	<1	<1
OWF_68	23	2.00	16.8	37.4	54.4	74.0	NC	NC	NC	33.3	52.4	NC	26.3	31.4	NC	17.1	NC	NC	15.3	NC	NC	NC	NC	24.4	149	366	50.0	99.1
OWF_72	26	3.62	NC	NC	3.9	3.5	NC	NC	NC	NC	3.6	NC	4.3	3.5	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	7.8	18.5	<1	7.76
OWF_73	19	1.93	NC	NC	21.2	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	<1	21.2	<1	<1
OWF_79	22	4.90	NC	21.7	31.7	55.1	NC	NC	NC	25.3	40.9	NC	20.1	25.6	9.6	12.9	14.1	NC	17.6	11.9	9.6	NC	NC	31.2	151	327	25.3	125
Mean			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
SD			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
CV (%)			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Minimum			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Maximum			82.5	411	572	660	7.89	15.7	18.8	408	503	20.6	92.8	119	63.1	63.2	44.3	22.3	56.9	58.5	14.7	18.6	5.03	60.9	1,041	3,236	494	547
Reference Values																												
BC (OSPAR, 2008)			5	-	-	-	-	-	-	17	-	3	20	13	9	11	-	-	-	15	-	50	-	45	-	-	-	-
BAC (OSPAR, 2008)			8	-	-	-	-	-	-	32	-	5	39	24	16	20	-	-	-	30	-	103	-	80	-	-	-	-
UKOOA 95th Percentile	e SNS		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	366	-	-	-
OSPAR ERL (OSPAR, 2			160	155	150		44	16	19	240	170	85	600	665	261	384	-	240	-	430	-	240	63	85	-	4,022	552	1,700
SQGV (Simpson et al.,	<u> </u>		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		10,000	-	-
OSPAR ERM (OSPAR,			2,100				640	500	540	1,500		1,100	5,100	2,600	1,600	2,800	-	-	-	1,600	-	-	260	2,800	-	44,792	3,160	9,600
SQGV High (Simpson			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				50,000		-
NC = Not calculated d		ete dataset																										

*Low molecular weight (2-3 ring) PAHs and high molecular weight (4-6 ring) PAHs calculated from the EPA 16 PAHs

Document No. UK4855H-824-RR-01 Page 77 of 292

UK4855H-824-RR-01

b OSPAR Coordinated Environmental Guidelines

Normalised PAH concentrations were calculated to allow comparison to OSPAR (2014) background concentrations (BCs) and background assessment concentrations (BACs). BCs are concentrations of contaminants derived from the analysis of core samples to reflect pre-industrial background levels for the OSPAR area. BACs have been statistically derived from BCs and represent the level above which concentrations can be considered significantly higher than the relevant BC (OSPAR, 2008). Contaminants tend to show a much higher affinity to fine particulate matter (OSPAR, 2009b) due to the increased adsorption capacity of organic matter and clay minerals. In sites where there is variability in grain size between stations, effects due to point sources of contamination will at least partly be obscured by grain size differences.

All total PAH concentrations (based on the 11 PAH components outlined in OSPAR, 2014) have been normalised to the 2.5% total organic carbon content of the sediment at each station. Total PAH concentrations normalised to 2.5% TOC content are displayed in Table 18, along with OSPAR BCs and BACs, and OSPAR effect range low (ERL) and effect range median (ERM) thresholds. ERLs are defined as the lowest concentration producing adverse effects in 10% of studies, whilst ERMs are the levels at which harmful effects are expected in 50% of studies.

Normalised PAHs were incalculable at most stations due to concentrations being below the limit of detection (<1μg.kg¹). Similarly to the ANZECC and ARMCANZ normalisation, nine out of 22 PAHs had a concentration elevated above their respective BAC concentrations, with all nine elevated PAHs recorded at station OWF_19 (Table 18). At station OWF_19, phenanthrene (1,019μg.kg¹) was 31 times greater than its respective BAC of 32μg.kg¹ and 4. times greater than its respective ERL of 240μg.kg¹, indicating that the OSPAR normalisation was less conservative when compared to the ANZECC and ARMCANZ normalisation. Additionally, station OWF_19 had five PAHs recorded above their respective ERLs (Table 18). Whereas stations OWF_17 and OWF_46 had a single PAH (naphthalene and C2 naphthalene's) above their ERLs of 217μg.kg¹ and 206μg.kg¹, respectively. As previously discussed in the ANZECC and ARMCANZ normalisation section, the elevated PAHs significantly above their BCs and ERLs is not surprising given the close proximity of the survey area to gas exploration activities. However, the total concentration of PAHs may provide a more suitable approach to investigating impacts to marine life. Σ22PAH concentration (8,090μg.kg¹) was elevated above its respective ERL of 4,022μg.kg¹ but was below the OSPAR ERM of 44,792μg.kg¹¹. Therefore, the PAH concentrations and distribution across the OWF survey area were likely to reflect background ambient conditions of diffuse PAH loading for this region of the SNS.

In addition, Brils *et al.* (2002) states that weathered sediments are significantly less toxic than freshly-spiked sediments and the toxicity to marine life was attributed to oil constituents rather than the co-occurring PAHs. Therefore, GC traces and TPH analysis could be conducted during environmental baseline surveys to form a more holistic approach when linking historic oil and gas exploration to marine life toxicity and background conditions.

Table 18 Normalised OSPAR Total Polycyclic Aromatic Hydrocarbons (µg.kg¹ or ppb)

										i ilialiseu C						(P.88	or pp.c/											
Station	Depth	Distance to Nearest Well (Km)	Naphthalene	C1 Naphthalenes	C2 Naphthalenes	C3 Naphthalenes	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	C1-phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo[a]anthracene	Chrysene	Benzo[b]fluoranthene	Benzo[k]fluoranthene (Benzo[e]pyrene	Benzo[a]pyrene	Perylene	Indeno[123,cd]pyrene	Dibenzo[a,h]anthracene	Benzo[ghi]perylene	Total PAHs (Σ16)	Total PAHs (Σ22)	2-3 ring PAH *	Total 4-6 ring PAH *
OWF_01	11	3.12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1
OWF_06	19	2.24	19.4	129.3	139.7	212	-	-	-	91.4	142	-	58.1	91.4	37.6	40.3	32.2	13.9	41.6	32.9	11.6	15.3	-	49.8	482	1,139	111	371
OWF_10	21	1.07	-	43.4	44.4	41.3	-	-	-	23.4	30.3	-	16.6	-	-	-	-	-	-	-	-	-	-	17.0	57.0	216	23.4	33.6
OWF_11	20	1.34	-	66.4	131.7	190	-	-	-	94.7	143	-	55.3	60.3	-	35.6	35.3	-	39.2	-	-	-	-	47.2	328	899	94.7	234
OWF_12	20	2.50	-	69.6	65.0	51.3	-	-	-	-	43.8	-	44.6	-	-	-	-	-	-	-	-	-	-	-	44.6	274.2	<1	44.6
OWF_17	17	1.01	-	-	217.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	217.0	<1	<1
OWF_19	40	1.74	57.3	1,027	1,431	1,650	19.7	39.2	46.9	1,019	1,258	51.5	232	297	158	158	111	55.8	142	146	36.7	46.5	12.6	152.3	2,603	8,090	1,234	1,369
OWF_21	12	2.75	-	24.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	24.5	<1	<1
OWF_23	23	3.01	16.8	62.4	85.4	157	-	-	-	56.9	98.6	-	39.9	41.4	15.8	26.4	24.7	-	27.4	14.9	-	14.2	-	38.2	289	703	73.8	215
OWF_27	19	4.82	-	27.9	32.7	83.1	-	-	-	37.1	91.2	-	23.1	23.7	-	-	-	-	-	-	-	-	-	-	83.8	319	37.1	46.7
OWF_30	20	5.31	-	21.2	19.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	41.0	<1	<1
OWF_32	20	0.99	15.5	67.2	160.5	211	-	-	-	62.2	89.9	-	26.4	35.3	-	15.3	15.4	-	20.5	-	19.7	-	-	32.9	203	756	77.8	125
OWF_34	20	2.10	-	20.7	30.6	34.4	-	-	-	19.3	31.9	-	22.8	24.3	-	17.8	19.0	-	19.1	-	-	-	-	19.7	123	260	19.3	104
OWF_35	20	1.06	-	38.8	46.0	84.6	-	-	-	38.5	48.3	-	29.6	31.3	-	18.3	16.5	-	23.0	13.4	-	-	-	27.3	175	415	38.5	136
OWF_36	19	0.95	-	10.6	14.3	26.1	-	-	-	15.8	57.6	24.7	25.5	50.4	24.4	31.0	13.8	-	20.3	18.9	-	-	-	21.6	226	355	40.5	186
OWF_38	19	1.05	12.1	42.9	35.5	51.7	-	-	-	23.3	36.0	-	16.0	20.6	-	12.4	-	-	12.2	-	-	-	-	21.6	106	272	35.4	70.6
OWF_39	27	1.15	13.3	41.4	111.6	167	-	12.6	7.2	55.1	89.0	-	43.3	49.0	16.7	25.5	25.2	10.9	29.9	17.7	20.4	12.9	-	39.4	329	775	88.1	241
OWF_41	18	1.44	12.3	47.1	47.5	57.3	-	-	-	32.0	46.6	-	17.7	23.8	-	14.1	14.3	-	21.5	11.5	-	-	-	33.5	159	367	44.3	115
OWF_45	19	0.85	-	27.6	42.4	66.4	-	-	-	35.8	77.5	-	32.1	42.0	19.5	25.5	26.4	14.3	33.2	19.2	-	14.9	-	33.9	264	511	35.8	228
OWF_46	22	0.82	206	579	398	349	-	-	-	350	347	-	115	107	57.8	90.1	62.8	24.5	72.4	46.6	11.1	23.3	-	61.0	1,144	2,694	556	588
OWF_47	37	3.44	-	14.4	19.8	28.7	-	-	-	19.0	23.0	-	17.6	16.1	-	-	12.6	-	-	-	-	-	-	-	65.4	151	19.0	46.3
OWF_50	21	1.93	15.5	38.1	57.6	79.5	-	-	-	33.9	52.4	-	29.7	36.7	-	21.5	18.5	-	21.1	-	-	-	-	30.3	186	419	49.3	137
OWF_52	22	1.66	-	41.8	62.5	74.7	-	-	-	46.3	57.9	-	22.4	24.5	11.2	14.8	14.8	-	15.3	-	-	-	-	12.4	146	399	46.3	100
OWF_55	17	4.92	-	95.8	117.5	140	-	-	-	83.8	104	-	64.0	43.0	25.3	33.0	56.3	-	30.8	-	-	-	-	28.8	334	822	83.8	250
OWF_62	21	0.94	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	<1	<1
OWF_65	23	6.10	-	20.7	33.5	32.7	-	-	-	-	25.8	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	112.7	<1	<1
OWF_68	23	2.00	41.9	93.4	135.9	185	-	-	-	83.1	131	-	65.6	78.4	-	42.8	-	-	38.1	-	-	-	-	60.9	373	914	125	248
OWF_72	26	3.62	-	-	8.9	8.7	-	-	-	-	9.1	-	10.7	8.7	-	-	-	-	-	-	-	-	-	-	19.4	46.1	<1	19.4
OWF_73	19	1.93	-	-	53.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	53.0	<1	<1
OWF_79	22	4.90	-	54.3	79.3	138	-	-	-	63.2	102	-	50.2	63.9	23.9	32.1	35.4	-	44.1	29.6	24.1	-	-	78.0	376	818	63.2	313
Mean			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
SD			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
CV (%)			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Minimum			<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Maximum			206	1,027	1,431	1,650	19.7	39.2	46.9	1,019	1,258	51.5	232	297	158	158	111	55.8	142	146	36.7	46.5	12.6	152	2,603	8,090	1,234	1,369
Reference Values																												
BC (OSPAR, 2008)			5	-	-	-	-	-	-	17	-	3	20	13	9	11	-	-	-	15	-	50	-	45	-	-	-	-
BAC (OSPAR, 2008)	,		8	-	-	-	-	-	-	32	-	5	39	24	16	20	-	-	-	30	-	103	-	80	-	-	-	-
UKOOA 95 th Percer			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	366	-	-	-
OSPAR ERL (OSPAR			160	155	150	-	44	16	19	240	170	85	600	665	261	384	-	240	-	430	-	240	63	85	-	4,022	552	1,700
OSPAR ERM (OSPA	AR, 2012)		2,100	-	-	-	640	500	540	1,500	-	1,100	5,100	2,600	1,600	2,800	-	-	-	1,600	-	-	260	2,800	-	44,792	3,160	9,600

^{&#}x27;-' environmentally inadmissible due to the contaminant being below the LOD

Document No. UK4855H-824-RR-01 Page 79 of 292

NC = Not calculated due to incomplete dataset

^{*}Low molecular weight (2-3 ring) PAHs and high molecular weight (4-6 ring) PAHs calculated from the EPA 16 PAHs

UK4855H-824-RR-01

4.5.3 Sediment Endocrine Disrupters

a Polychlorinated Biphenyls

Samples were analysed for PCBs from 30 stations sampled across the OWF survey area using the Shipek grab sampler. These compounds are considered a major environmental concern due to their high lipophilicity and resistance to metabolic degradation and are used on oil and gas platforms in electrical plants and transformer oils. PCBs are non-ionic (hydrophobic) organic chemicals that have low solubility and as such concentrations in water and sediments are generally low (Cefas, 2001). Of the 25 PCBs analysed only seven (PCB47, PCB101, PCB110, PCB118, PCB138, PCB149 and PCB153) had concentrations above the LoD of <0.08µg.kg⁻¹, ranging between 0.09µg.kg⁻¹ to 0.13µg.kg⁻¹, with a peak value of 0.43µg.kg⁻¹ recorded for PCB47 at station OWF_50 (Table 19). All individual PCBs were below their respective EAC reference values, where applicable, indicating concentrations of individual PCBs across the survey area were representative of background concentrations. Due to the low concentrations of individual PCBs across the survey area, one station, OWF_01, had a calculable ICES 7 PCB congener of 0.43µg.kg⁻¹ and two stations, OWF_01 and OWF_50, had calculable 25 PCB congeners of 0.65µg.kg⁻¹ and 0.43µg.kg⁻¹, respectively (Table 19). All PCBs (individual and sum 7 and 25) were below their respective cAL 1, cAL 2, EAC, TEL and PEL thresholds at every station evidencing little to no PCB contamination across the site.

Table 19 Summary of Sediment Polychlorinated Biphenyls Analysis (ug.kg ¹ or ppb)

											Table 19	Summary	of Sedimen	it Polychiol	ппасей вір	nenyis An	aiysis (ug.	kg - or ppb)										
		Distance to																											
Station	Depth	Nearest		DCB 28	DCB 31	PCB 44	DCR /17	DCB //0	DCR 52	DCB 66	DCR 101	DCR 105	PCB 110	DCR 119	DCB 128	DCB 139	DCR 1/11	DCR 1/10	DCR 151	DCR 152	DCR 156	DCR 159	DCR 170	DCR 190	DCB 193	DCR 197	DCR 10/	Total ICES	Total of 25
Station	(m)		FCD 10	FCD 20	r CD JI	F CD 44	F CD 47	F CD 43	r CD JZ	FCD 00	F CD 101	FCD 103	F CD 110	F CD 110	F CD 120	F CD 130	FCD 141	FCD 143	F CD 131	FCD 133	F CD 130	F CD 130	F CD 170	F CD 100	F CD 103	F CD 107	F CD 134	7 PCB	Congeners
		Well (Km)																											
OWF_01	11	3.12	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	0.13	<0.08	0.13	0.10	<0.08	0.11	<0.08	0.09	<0.08	0.09	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	0.43	0.65
OWF_06	19	2.24	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_10	21	1.07	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 11	20	1.34	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 12	20	2.50	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 17	17	1.01	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 19	40	1.74	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 21	12	2.75	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
			1								-			<0.08	 				 		-								1
OWF_23	23	3.01	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08		<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_27	19	4.82	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_30	20	5.31	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_32	20	0.99	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_34	20	2.10	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_35	20	1.06	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_36	19	0.95	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_38	19	1.05	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_39	27	1.15	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 41	18	1.44	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 45	19	0.85	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 46	22	0.82	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 47	37	3.44	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 50	21	1.93	<0.08	<0.08	<0.08	<0.08	0.43	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	0.43
OWF 52	22	1.66	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF 55	17	4.92	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
			1	-							-				 		-	-	 		-				ł				1
OWF_62	21	0.94	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_65	23	6.10	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_68	23	2.00	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_72	26	3.62	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_73	19	1.93	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
OWF_79	22	4.90	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Mean			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
SD			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
CV (%)			NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Minimum			<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Maximum			<0.08	<0.08	<0.08	<0.08	0.43	<0.08	<0.08	<0.08	0.13	<0.08	0.13	0.10	<0.08	0.11	<0.08	0.09	<0.08	0.09	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	0.43	0.65
Reference \	'alues			,	•				•	•			•	•															
Cefas cAL1 (MMO, 20	015)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10.00	
ERL (OSPAR		<u>, </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11.50	-
TEL (CCME,			_	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	_	_	_	-	-	-	_	-	_	-	21.60
EAC (OSPAR	•		_	1.70	_	_	-	_	2.70	-	3	_	_	0.60	_	7.90	_	_	_	40.00	_	_	-	12.00	_	-	_	67.90	
Cefas cAL2 (115)	-	1.70	-				2.70	-	-		-	0.00	-	7.30	-			40.00		-	-	12.00	_	-		140.00	
)13)																										140.00	190.00
PEL (CCME,	•	to incomplet	o datasat	-	-	-	-	-	-	-	_		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	189.00
NC = NOT CAIC	calculated due to incomplete dataset																												

Document No. UK4855H-824-RR-01 Page 81 of 292

UK4855H-824-RR-01

b Organotin

Organotin compounds, principally tributyltin (TBT), have historically been used in marine antifouling products, but their use is now prohibited due to the disruption of the reproductive capabilities of a number of gastropod species (Iguchi *et al.*, 2007). Organotin compounds are relatively persistent and may still be present in offshore cuttings piles from their use in the 1980s. No formal environmental assessment criteria (EAC) thresholds for TBT in sediment have been set through CEMP (OSPAR, 2008), however, limits have been proposed via various OSPAR programmes and meetings, with 0.01µg.kg⁻¹ suggested as a provisional EAC for TBT (OSPAR, 2009). No organotin compounds (Dibutyltin, TBT and MBT) were recorded above their respective LoD of <1µg.kg⁻¹ (Table 20). The lack of organotin presence across the OWF survey area was unsurprising given the lack of platform infrastructure surrounding the grab locations, as grab samples were taken >500m from any platform infrastructure. However, it is worth noting the LOD of the method used is higher than the EAC thresholds set by OSPAR, including the highest upper EAC level of 0.15µg.kg⁻¹ issued in 2004.

UK4855H-824-RR-01

Table 20 Summary of Sediment Organotin Analysis (µg.kg⁻¹ or ppb)

Station	Depth (m)	Distance to Nearest Well (Km)	Dibutyltin (DBT)	Tributyltin (TBT)	Monobutyltin (MBT)
OWF_01	11	3.12	<1	<1	<1
OWF_06	19	2.24	<1	<1	<1
OWF_10	21	1.07	<1	<1	<1
OWF_11	20	1.34	<1	<1	<1
OWF_12	20	2.50	<1	<1	<1
OWF_17	17	1.01	<1	<1	<1
OWF_19	40	1.74	<1	<1	<1
OWF_21	12	2.75	<1	<1	<1
OWF_23	23	3.01	<1	<1	<1
OWF_27	19	4.82	<1	<1	<1
OWF_30	20	5.31	<1	<1	<1
OWF_32	20	0.99	<1	<1	<1
OWF_34	20	2.10	<1	<1	<1
OWF_35	20	1.06	<1	<1	<1
OWF_36	19	0.95	<1	<1	<1
OWF_38	19	1.05	<1	<1	<1
OWF_39	27	1.15	<1	<1	<1
OWF_41	18	1.44	<1	<1	<1
OWF_45	19	0.85	<1	<1	<1
OWF_46	22	0.82	<1	<1	<1
OWF_47	37	3.44	<1	<1	<1
OWF_50	21	1.93	<1	<1	<1
OWF_52	22	1.66	<1	<1	<1
OWF_55	17	4.92	<1	<1	<1
OWF_62	21	0.94	<1	<1	<1
OWF_65	23	6.10	<1	<1	<1
OWF_68	23	2.00	<1	<1	<1
OWF_72	26	3.62	<1	<1	<1
OWF_73	19	1.93	<1	<1	<1
OWF_79	22	4.90	<1	<1	<1
Mean			NC	NC	NC
SD			NC	NC	NC
CV (%)			NC	NC	NC
Minimum			<1	<1	<1
Maximum			<1	<1	<1
Reference Levels					
Cefas cAL1 (MMO, 201	5)		100	100	100
Cefas cAL2 (MMO, 201	5)		1000	1000	1000

UK4855H-824-RR-01

c Organochlorine Pesticides

Organochlorine pesticides (OCPs) are synthetic pesticides used globally for the control of biological vectors. OCPs are considered persistent organic pollutants due to their high toxicity, degradation resistance, fat solubility and bioaccumulation. Many OCPs are semi-volatile and can be transported over long distances via atmospheric currents in a gaseous state before wet or dry deposition occurs in the oceans. These compounds are transported from the surface waters to the bottom sediments as OCPs are denser than water and can adsorb onto fine particles. Humans and biota can be affected by the toxic effects caused by OCPs, which involve reproductivity damage, endocrine disruption and immune suppression (Girones *et al.*, 2020). Two OCPs were analysed during the current survey, dieldrin and DDT, of which only two stations, OWF_01 and OWF_34, had a DDT concentration recorded above the LoD at 0.2µg.kg⁻¹ and 0.1µg.kg⁻¹, respectively (Table 21). The DDT concentrations at stations OWF_01 and OWF_34 were slightly above or at the Cefas action level 1 value of 0.1µg.kg⁻¹, indicating the material at these stations would have to be further investigated before disposal. However, DDT was below the ERL and TEL reference values so it is unlikely the concentrations of DDT would have impacted the macrobenthic community. Furthermore, the UK Cefas action level 1 concentration for DDT were the lowest and strictest for any OSPAR country (MMO, 2015). It is also worth noting the LOD of the method used is equal to the thresholds set by the UK.

Table 21 Summary of Sediment Organochlorine Analysis (µg.kg $^{\text{-}1}$ or ppb)

Station	Depth (m)	Distance to Nearest	Dieldrin	DDT*
OWF_01	11	Well (Km) 3.12	<0.1	0.2
OWF_06	19	2.24	<0.1	<0.1
OWF_10	21	1.07	<0.1	<0.1
OWF_11	20	1.34	<0.1	<0.1
OWF_12	20	2.50	<0.1	<0.1
 OWF_17	17	1.01	<0.1	<0.1
OWF_19	40	1.74	<0.1	<0.1
OWF_21	12	2.75	<0.1	<0.1
OWF_23	23	3.01	<0.1	<0.1
OWF_27	19	4.82	<0.1	<0.1
OWF_30	20	5.31	<0.1	<0.1
OWF_32	20	0.99	<0.1	<0.1
OWF_34	20	2.10	<0.1	0.1
OWF_35	20	1.06	<0.1	<0.1
OWF_36	19	0.95	<0.1	<0.1
OWF_38	19	1.05	<0.1	<0.1
OWF_39	27	1.15	<0.1	<0.1
OWF_41	18	1.44	<0.1	<0.1
OWF_45	19	0.85	<0.1	<0.1
OWF_46	22	0.82	<0.1	<0.1
OWF_47	37	3.44	<0.1	<0.1
OWF_50	21	1.93	<0.1	<0.1
OWF_52	22	1.66	<0.1	<0.1
OWF_55	17	4.92	<0.1	<0.1
OWF_62	21	0.94	<0.1	<0.1
OWF_65	23	6.10	<0.1	<0.1
OWF_68	23	2.00	<0.1	<0.1
OWF_72	26	3.62	<0.1	<0.1
OWF_73	19	1.93	<0.1	<0.1
OWF_79	22	4.90	<0.1	<0.1
Mean			NC	NC
SD			NC	NC
CV (%)			NC	NC
Minimum			<0.1	<0.1
Maximum			<0.1	0.2
Reference Levels				
Cefas cAL1 (MMO, 2015)			0.5	0.1
TEL (CCME, 2001)			0.72	1.19
ERL (OSPAR, 2012)			2	1
PEL (CCME, 2001)			4.3	4.77
ERM (OSPAR, 2012)			8	7
* DDT = p,p'-Dichlorodipher	yltrichloroethane			

UK4855H-824-RR-01

4.6 TRACE METALS

4.6.1 Non-normalised Trace Metals

Results for trace metals analysis are given in Table 22 and Figure 18 to Figure 21. All of the metals analysed (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn)), underwent an aqua-regia acid digestion and extraction for partial sediment metals.

The question of bioavailability of metals to marine organisms is a complex one, as sediment granulometry and the interface between water and sediment all affect the bioavailability and subsequent toxicity. Therefore, even if a metal is found in higher concentrations it does not necessarily follow that this will have a detrimental effect on the environment, if present in an insoluble state. Historically, several extraction techniques have been applied to metal analysis, with the most common applying to an HF/perchloric extraction for total metals, and a weaker nitric or aqua regia extraction. The latter techniques have shown close correlation to metal burdens in the tissues of benthic organisms (Luoma and Davies, 1983; Bryan and Langston, 1992). However, the way bioavailability is reflected by the extent to which a particular metal digests is not well understood, and research is ongoing.

Metals occur naturally in the marine environment and are widely distributed in both dissolved and sedimentary forms. Some are essential to marine life while others may be toxic to numerous organisms (Paez Osuna and Ruiz-Fernandez, 1995). Rivers, coastal discharges, and the atmosphere are the principal modes of entry for most metals into the marine environment (Schaule and Patterson, 1983), with anthropogenic inputs occurring primarily as components of industrial and municipal wastes. Historically, several metals are found in elevated concentrations where drilling fluids or produced waters have been discharged by oil and gas installations. These include intentional additives (such as metal based salts and organo-metallic compounds in the fluids) as well as impurities within the drilling mud systems such as clays (e.g. bentonites; a gelling and viscosifying agent) and metal lignosulphates (a viscosity controller; Bordin *et al.*, 1992). Metals most characteristic of offshore contamination of marine sediments from oil and gas exploration are barium (Ba), chromium (Cr), lead (Pb) and zinc (Zn; Neff, 2005), although these may vary greatly dependent upon the constituents in drilling fluids used.

Trace metal contaminants in the marine environment tend to form associations with the non-residual phases of mineral matter, such as iron and manganese oxides and hydroxides, metal sulphides, organics, and carbonates. Metals associated with these non-residual phases are prone to various environmental interactions and transformations (physical, chemical and biological), potentially increasing their biological availability (Tessier *et al.*, 1979). Residual trace metals are defined as those which are part of the silicate matrix of the sediment and that are located mainly in the lattice structures of the component minerals. Non-residual trace metals are not part of the silicate matrix and have been incorporated into the sediment from aqueous solution by processes such as adsorption and organic complexes and may include trace metals originating from sources of pollution. Therefore, in monitoring trace metal contamination of the marine environment, it is important to distinguish these more mobile metals from the residual metals held tightly in the sediment lattice (Chester and Voutsinou, 1981), which are of comparatively little environmental significance.

Metals are generally not harmful to organisms at concentrations normally found in marine sediments and some, like zinc, may be essential for normal metabolism although can become toxic above a critical threshold. In order to assign a level of context for toxicity, an approach used by Long, et al. (1995) to characterise contamination in sediments will be used here. These researchers reviewed field and laboratory studies and identified nine metals that were observed to have ecological or biological effects on organisms. They defined 'effect range low' (ERL) values as the lowest concentration of a metal that produced adverse effects in 10% of the data reviewed, whilst

UK4855H-824-RR-01

'effect range median' (ERM) values designate the level at which half of the studies reported harmful effects. Consequently, metal concentrations recorded below the ERL and TEL value are not expected to elicit adverse effects, while levels above the ERM and PEL value are likely to be toxic to some marine life.

Of particular relevance to the offshore wind farm industry within close proximity to offshore oil and gas exploration are metals associated with drilling related discharges. Trace metals such as either from impurities or additives can accumulate in marine sediments surrounding oil and gas exploration activities (NRC, 1983; McLeese et al., 1987). Mercury, nickel and zinc were above their respective UKOOA 95th percentile thresholds of 0.05mg.kg^{-1} , 21.5mg.kg⁻¹ and 35.8mg.kg⁻¹ at minimum of one station, with mercury and nickel above their respective Cefas action level 1s of 0.30mg.kg^{-1} and 20.0mg.kg^{-1} at a minimum of one station (Table 22). Furthermore, copper was elevated above the CCME TEL reference value of 18.7mg.kg^{-1} at station OWF_41 with a concentration of 20.7mg.kg^{-1} recorded (Table 22). The elevated values could indicate a potential residual trace of historical drilling activities within the OWF area as all metals, excluding mercury, had a significant positive relationship to $\Sigma 16 \text{PAH}$ and could indicate a similar diffuse source of metals (Appendix K; p > 0.05). However, a majority of the metals were below their respective UKOOA 95th percentiles and no significant relationship was observed between the nearest well and any metal concentration (Appendix K; p > 0.05). Furthermore, all metals, apart from mercury, had a significant negative Spearman's correlation to the proportion of sand along with a significant positive relationship to the proportion of gravel (Appendix K). The lack of correlations to mercury was unsurprising given the majority of stations recording a mercury concentration at or below the LoD of 0.01mg.kg^{-1} .

A series of significant correlations between the metal concentrations and sediment proportions indicate that sediment variability was likely influencing the distribution of metals across the OWF survey area. For example, aluminosilicates present in gravels are associated with several trace metals (Zn, Cr, Ni, Co and Cu) and the erosion of aluminosilicates can lead to the accumulation of trace metals in the overlaying surface sediments (Musafa *et al.*, 1996). In addition, the small scale variability in sediment composition was more likely to be attributed to the variation in metal concentrations, as the elevated concentrations of trace metals, in particular zinc, occurred across multiple geophysical sediment delineations (i.e. Gravelly SAND, SAND Sandy CLAY).

Arsenic was elevated above the NOAA ERL and CCME TEL values of 8.2mg.kg⁻¹ and 7.24mg.kg⁻¹, respectively at the majority of stations, excluding stations OWF_01, OWF_10, OWF_11 and OWF_17, with a further four stations, OWF_21, OWF_27, OWF_36 and OWF_46, elevated above the Cefas action level 1 of 20mg.kg⁻¹ (Table 22). The elevated arsenic concentrations recorded across the OWF survey area was unsurprising given previous studies that have found comparably high levels of arsenic within the southern North Sea, potentially due to the influence of historic industrial discharge from the Humber Estuary (Whalley *et al.*, 1999). Furthermore, it can be speculated, given the high intensity of drilling activity, that arsenic rich shale has been brought and distributed across the surface sediments of the OWF survey area potentially resulting in elevated surface arsenic concentrations (Whalley *et al.*, 1999). Therefore, the concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc are likely to represent the upper limit of natural background levels for this region of the SNS.

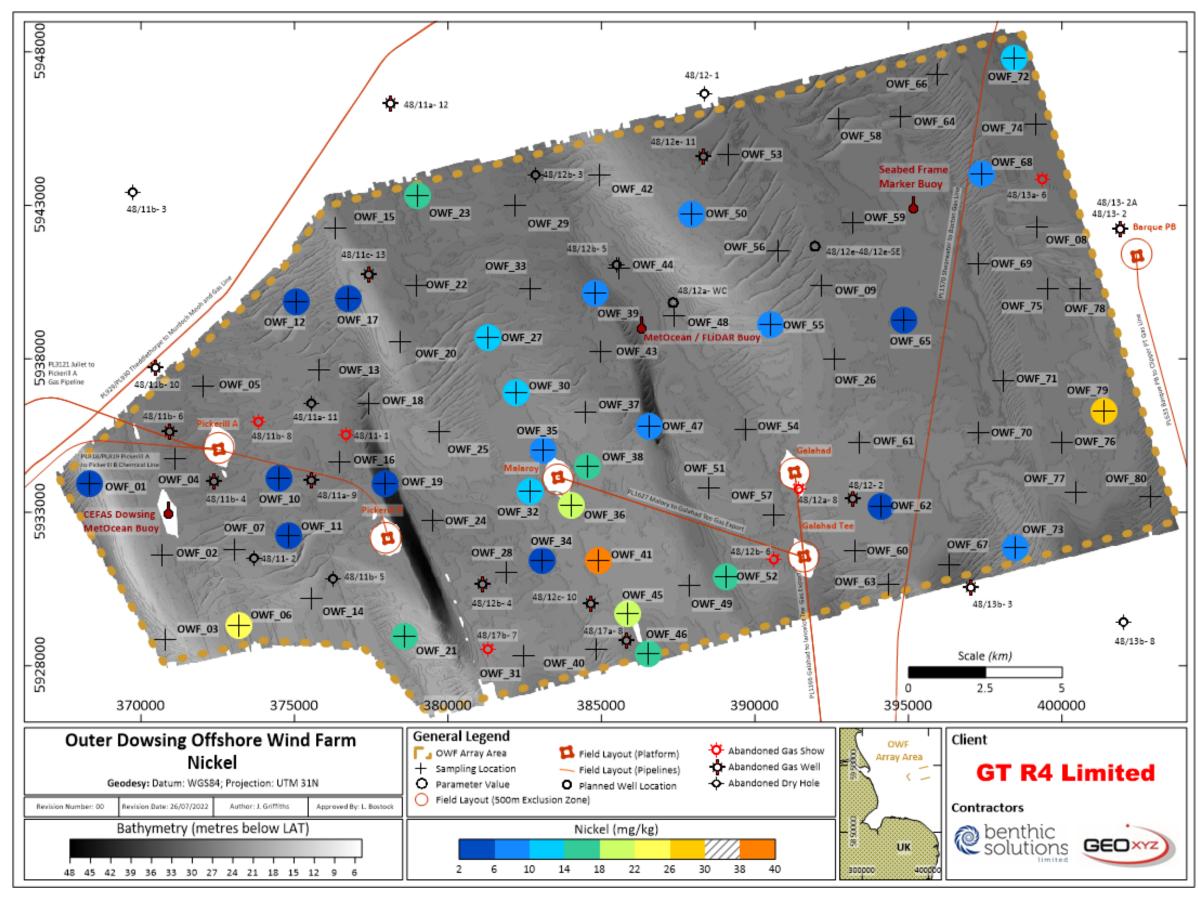

The previous SNS surveys carried out by BSL within close proximity to the OWF survey area utilised the same 'aqua-regia' digest on the trace metals analysed enabling a direct comparison between results. All metals analysed (Cr and Zn) were lower or comparable (As, Cd, Cu, Pb, Hg and Ni) in the current OWF survey when compared to the regional SNS surveys (Table 22). For example, the mean arsenic concentration (15.1mg.kg⁻¹) for the current survey was well within the range of the mean concentrations (11.4mg.kg⁻¹ to 25.8mg.kg⁻¹) calculated from the previous BSL SNS surveys. Therefore, further indicating the potential for metal concentrations across the OWF survey area to be representative of natural background conditions for this region of the SNS.

Table 22 Total Trace Metal Concentrations (mg.kg⁻¹ or ppm)

Station	Depth (m)	Distance from nearest well (m)	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Lead (Pb)	Mercury (Hg)	Nickel (Ni)	Zinc (Zn)
OWF 01	11	3.12	6.5	0.08	5.0	6.9	4.9	0.02	4.1	16.1
OWF 06	19	2.24	19.7	0.15	19.1	10.5	6.5	0.03	22.5	40.6
OWF 10	21	1.07	6.5	0.08	4.7	5.6	4.9	0.01	4.1	14.3
OWF 11	20	1.34	5.1	0.04	4.1	4.6	3.6	0.01	3.1	12.7
OWF 12	20	2.50	9.9	0.07	5.4	4.3	3.3	<0.01	5.1	18.8
OWF 17	17	1.01	4.90	0.05	4.0	4.3	2.7	<0.01	2.8	9.6
OWF 19	40	1.74	17.0	0.03	4.0	3.7	10.5	0.01	5.1	20.2
OWF_19	12	2.75	37.3	0.08	13.7	8.4	9.9	0.01	15.9	45.5
OWF_21	23	3.01	19.9	0.19	14.0	8.3	7.9	0.01	15.9	54.1
OWF_23	19	4.82	31.4	0.19	10.3	7.2	7.9		11.9	
								0.05		33.5
OWF_30	20	5.31	18.7	0.12	8.9	6.9	6.6	0.02	11.1	26.6
OWF_32	20	0.99	15.4	0.14	10.8	9.5	6.0	0.02	12.8	33.0
OWF_34	20	2.10	11.8	0.07	5.4	6.3	4.1	0.01	4.5	15.0
OWF_35	20	1.06	11.1	0.07	7.4	7.3	5.6	0.01	6.7	19.9
OWF_36	19	0.95	24.0	0.17	15.9	9.8	7.1	0.01	18.3	47.4
OWF_38	19	1.05	16.5	0.12	13.4	9.9	6.4	0.02	14.5	34.0
OWF_39	27	1.15	15.1	0.08	10.3	7.2	6.4	<0.01	9.8	24.8
OWF_41	18	1.44	15.5	0.24	17.1	20.7	6.5	0.02	39.4	55.6
OWF_45	19	0.85	14.7	0.16	16.2	9.8	6.7	<0.01	19.	33.0
OWF_46	22	0.82	21.5	0.14	13.1	9.4	5.9	<0.01	14.8	47.4
OWF_47	37	3.44	17.5	0.09	8.9	6.2	6.8	0.01	9.0	27.6
OWF_50	21	1.93	9.0	0.06	6.5	5.7	4.5	0.01	6.0	17.0
OWF_52	22	1.66	19.9	0.11	17.5	12.2	5.8	<0.01	17.7	47.2
OWF_55	17	4.92	18.9	0.09	7.9	6.3	5.0	0.04	7.9	25.6
OWF_62	21	0.94	6.9	0.06	6.7	6.2	3.6	0.01	4.9	14.2
OWF_65	23	6.10	9.4	0.08	6.8	6.7	5.2	0.01	5.7	18.6
OWF_68	23	2.00	12.6	0.05	6.3	6.5	3.9	0.01	6.8	20.6
OWF_72	26	3.62	14.7	0.07	10.4	8.2	6.5	<0.01	11.3	26.6
OWF_73	19	1.93	8.6	<0.04	7.1	5.7	3.3	<0.01	7.50	16.8
OWF_79	22	4.90	14.2	0.13	28.9	12.5	8.4	0.01	28.2	42.9
Mean			15.1	0.11	10.3	7.89	5.86	0.02	11.5	28.6
SD			7.38	0.05	5.69	3.29	1.87	0.01	8.2	13.4
CV (%)			48.7	45.3	55.1	41.7	31.9	66.8	71.2	46.9
Maximum			37.3	0.24	28.9	20.7	10.5	0.05	39.4	55.6
Minimum			4.90	0.04	4.00	3.70	2.70	0.01	2.80	9.60
Regional Exan	nples									
	М	lean	11.4	0.15	10.8	8.05	5.83	0.02	9.82	33.9
BSL SNS, 2019			4.62	0.07	5.23	3.18	1.56	0.00	4.72	12.5
	C\	/ (%)	40.7	48.9	48.5	39.5	26.7	20.3	48.1	36.9
		lean	15.0	0.14	47.9	8.09	11.0	0.03	12.9	38.5
BSL SNS, 2020			3.44	0.04	7.66	2.62	2.18	0.01	4.98	16.2
	C\	/ (%)	23.0	30.2	16.0	32.4	19.9	30.2	38.7	42.0
	M	lean	25.8	0.10	10.6	5.76	7.58	0.02	11.1	37.6
BSL SNS, 2020	Ob SC)	7.54	0.05	3.79	1.79	3.65	0.01	4.22	17.8
	C	/ (%)	29.3	45.3	35.8	31.0	48.1	47.1	38.1	47.3
Reference lev										
UKOOA (2001	.) 50 th Percenti	ile SNS	-	0.03	6.5	2.0	6.0	0.02	4.0	12.2
UKOOA (2001	JKOOA (2001) 95 th Percentile SNS		-	0.72	44.8	13.9	21.0	0.05	21.5	35.8
TEL (CCME, 20	TEL (CCME, 2001)		7.2	0.70	52.3	18.7	30.2	0.13	-	124
Cefas cAL1 (N	1MO, 2015)		20.0	0.40	40.0	40.0	50.0	0.30	20.0	130
NOAA ERL (Bu	uchman, 2008))	8.2	1.20	81.0	34.0	46.7	0.15	20.9	150
SQGV (Simpso	on <i>et al.,</i> 2013)	20.0	1.50	80.0	65.0	50.0	0.15	21.0	200
PEL (CCME, 20	001)		41.6	4.20	160	108	112	0.70	-	271
SQGV High (S			70.0	10.00	370	270	220	1.00	52.0	410
NOAA ERM (B	Buchman, 2008	8)	70.0	9.60	370	270	218	0.71	51.6	410
Cefas cAL2 (N	1MO, 2015)		50.0	2.00	400	400	500	3.00	200	800

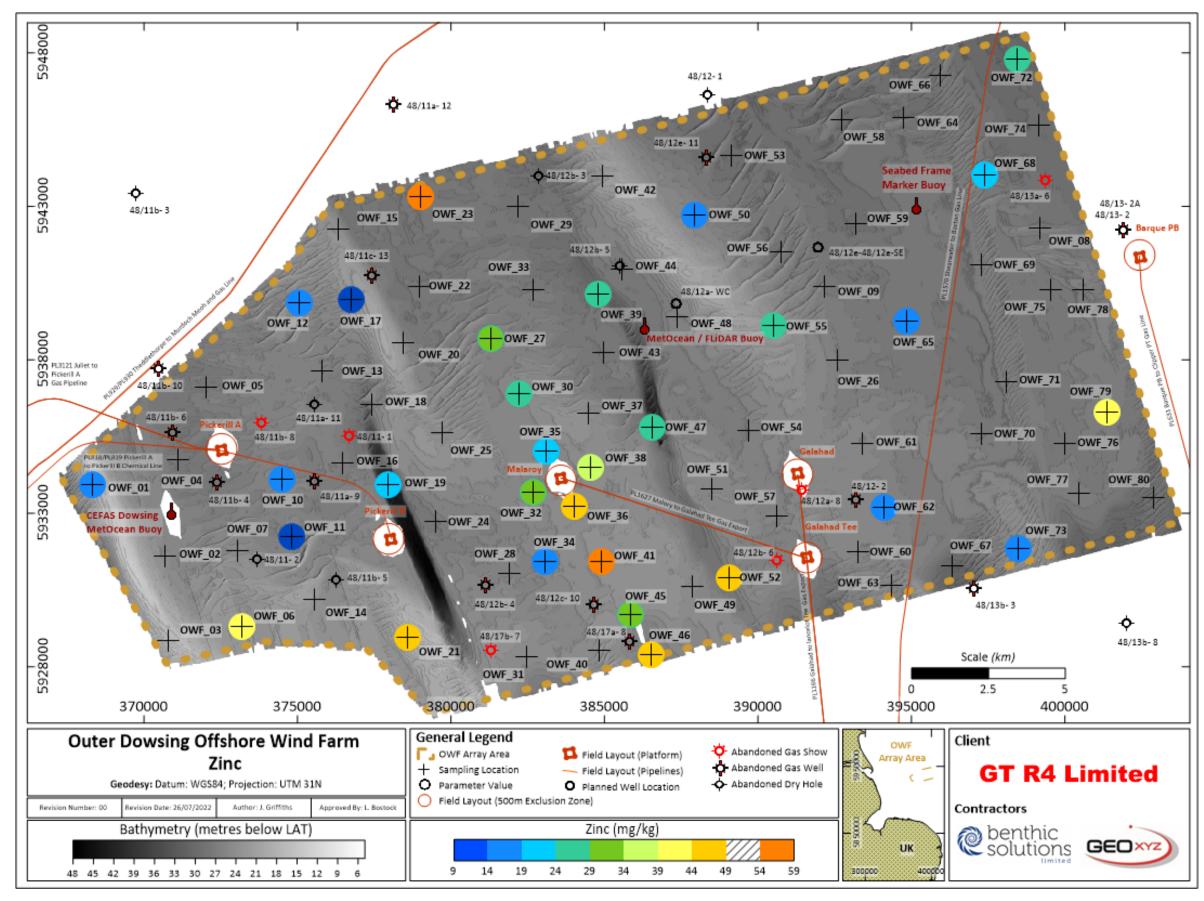


Figure 18 Concentration of Nickel

Document No. UK4855H-824-RR-01 Page 89 of 292

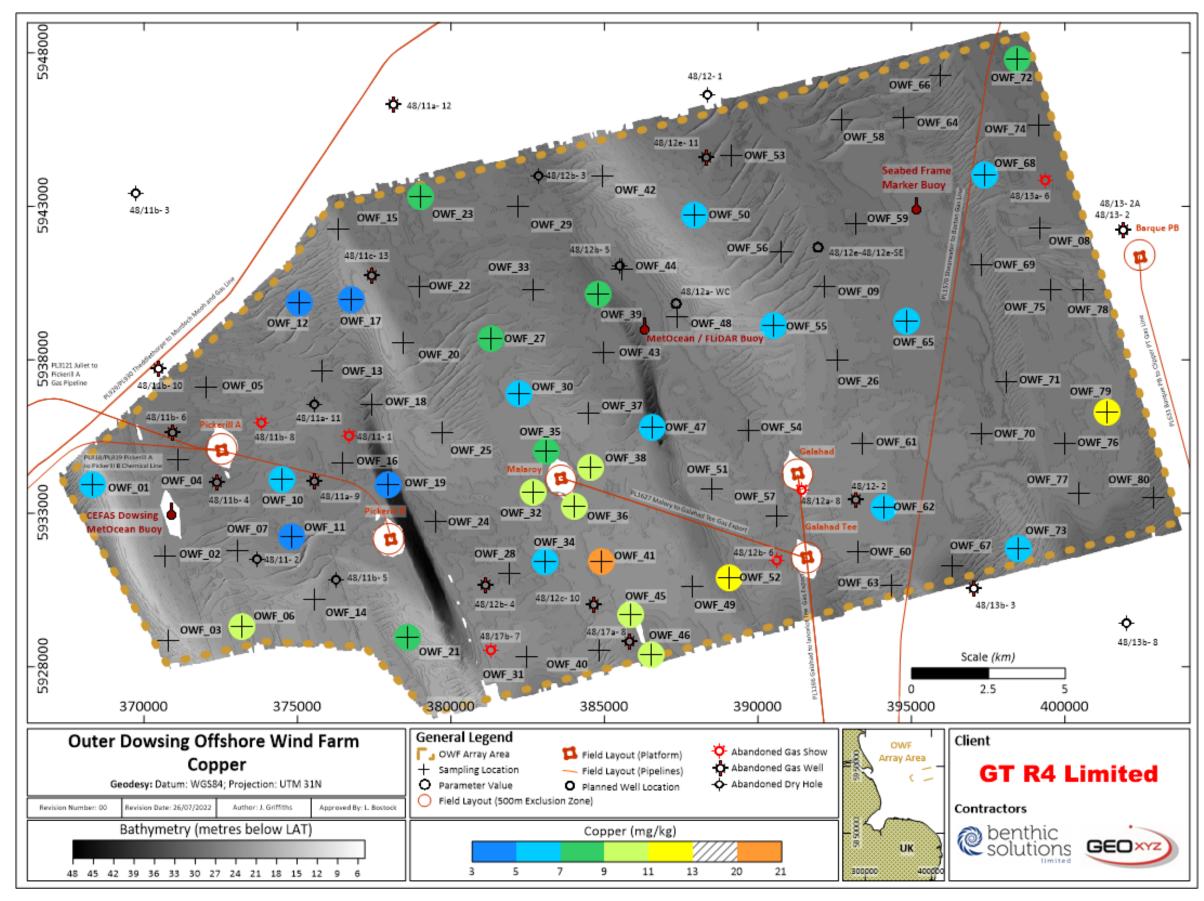


Figure 19 Concentration of Zinc

Document No. UK4855H-824-RR-01 Page 90 of 292

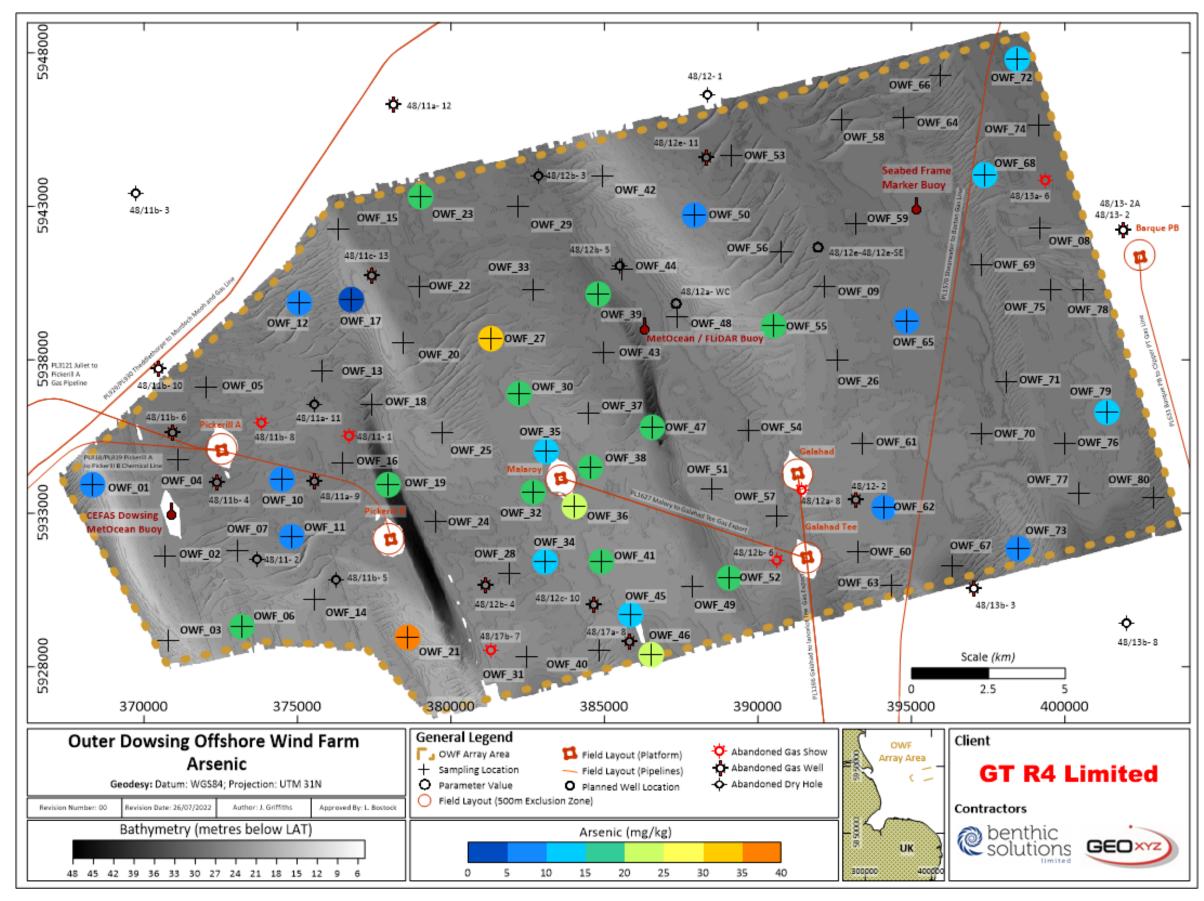


Figure 20 Concentration of Copper

Document No. UK4855H-824-RR-01 Page 91 of 292

Figure 21 Concentration of Arsenic

Document No. UK4855H-824-RR-01 Page 92 of 292

UK4855H-824-RR-01

4.6.2 Normalised Heavy Metals

a ANZECC and ARMCANZ Sediment Guidelines

As previously stated, the bulk properties of the sediment and the distribution of coarse grained material are closely related to the distribution of heavy metal concentrations across the OWF survey area (Musafa *et al.*, 1996). The ANZECC and ARMCANZ framework (see Section 2.5.3 and Appendix D) aims to assess contaminated sediment against a set of sediment quality guideline values (SQGV) to establish the level of risk to the biological community (Simpson *et al.*, 2013).

The framework dictates that all analysed metals are first assessed against the SQGVs following a total particular metal digestion, with results below their respective SQGVs deemed to constitute 'low risk', indicating the contaminant poses negligible risk of adverse biological effects (Simpson et al., 2013). As shown in Table 22, all metals with the exception of arsenic and nickel were below their respective SQGVs and are deemed to be 'low risk' within the OWF survey area. Arsenic and nickel exceeded their SQGVs of 20mg.kg⁻¹ and 21mg.kg⁻¹ at four and three stations, respectively but as per the ANZECC and ARMCANZ framework, these levels are acceptable if the concentrations recorded are below the background levels determined from previous surveys close to the OWF survey area. Three previous SNS surveys conducted by BSL close to the OWF survey area had average arsenic concentrations of between 11.3mg.kg⁻¹ and 25.8mg.kg⁻¹ along with average nickel concentrations of between 9.8mg.kg⁻¹ and 12.8mg.kg⁻¹. Therefore, the arsenic and nickel concentrations recorded at the four and three stations within the OWF survey area are likely to reflect the upper limit of background concentrations for this region of the SNS. Furthermore, based on the ANZECC and ARMCANZ framework, the mean concentrations of arsenic and nickel were below their respective SQGVs, indicating that arsenic and nickel across the wider OWF survey area are deemed 'low risk' with 'negligible' effects to wildlife. However, it is worth noting that comparisons to SQGVs were limited due to partial strong acid extraction rather than a total metal extraction, which likely resulted in lower concentrations of extracted metals during the current study. However, it should be noted that Santoro et al. (2017) state differences in metal extraction metals can result in a 10% difference, which given the metal concentrations across the OWF survey area would result in concentrations well below their respective SQGV-high thresholds.

UK4855H-824-RR-01

b OSPAR Coordinated Environmental Guidelines

Normalisation to a normaliser metal such as aluminium or lithium can be carried out in an attempt to standardise metal concentrations by filtering out the effect that variable clay and aluminosilicates will have on metal concentrations. Normalisation to lithium attempts to standardise metals data by filtering out the effect that variable clay content will have on metal concentrations and is considered a superior cofactor to aluminium for the normalisation of metal data from sediments derived mainly from the glacial erosion of crystalline rocks, such as those found in the southern North Sea. Glacially derived sediments tend to be enriched with T-O-T phyllosilicates which can amplify results if an aluminium normalisation is undertaken (Loring 1990; Herut and Sandler, 2006).

Normalisation for the full range of metals in line with the current Coordinated Environmental Monitoring Programme (CEMP) normalisation procedure, involving the use of pivot values, was not possible due to the absence of lithium analysis (OSPAR, 2008). However, due to the minimal proportion and variation of fines a lithium based normalisation may not have been entirely beneficial across the OWF survey area.

4.7 FAUNAL ANALYSIS

4.7.1 Grab Macrofaunal Analysis

Macrofaunal analysis was carried out on 71 single grab samples obtained from 71 stations across the OWF survey area. Nine stations were excluded from macrofaunal analysis as they were deemed unrepresentative of the macrofaunal community due to low sample retentions of <40% as a result of the underlying hard substrate. The sediments were relatively variable across the survey area with 58.8% of the stations assigned to sand dominant folk classifications such as "Sand", "Slightly Gravelly Sand", "Gravelly Sand" or 'Gravelly Muddy Sand", while the remaining stations (41.3% of the total) were assigned gravel dominant classifications such as "Gravel", "Sandy Gravel" or "Muddy Sandy Gravel". Macrofaunal samples were processed in the field and the lab over a 1mm mesh sieve.

For this assessment epifaunal species have been separated into two categories: solitary epifauna and colonial epifauna. Solitary epifauna includes specimens that, although epifaunal in nature, are recorded in low counts. As such, solitary epifauna are often considered to be less ecologically important components of the marine benthos; for this survey they consisted of solitary Cnidaria, Annelida, Arthropoda and Mollusca individuals. Colonial epifauna are inclusive of encrusting epifauna which are generally recorded in high counts or as presence/absence. For this survey they include colonial Porifera, Cnidaria, Bryozoa and Entoprocta. Within these analyses colonial epifauna have been omitted as they are often not possible to enumerate and therefore only assessed on a presence/absence basis; however, due to the importance of colonial epifauna at stations containing coarse sediments, the richness of this component of the macrobenthos is discussed separately in Section 4.7.1c.

Subsequent macrofaunal taxonomy of all recovered fauna identified a total of 4,429 individuals (infauna and solitary epifauna) from the 71 samples analysed. Faunal data for each sample are listed in Appendix I, whilst univariate analyses are summarised in Table 23. Of the 265 taxa recorded, 37 were colonial epifauna, nine were solitary epifauna and 228 were infaunal. The infaunal taxa consisted of 116 annelid species accounting for 37.7% of the total individuals. The arthropods were represented by 50 species (18.6% of the total individuals), the molluscs by 34 species (22.7% of the total individuals), echinoderms by seven species (1.3% of the total individuals) and the Chordata by four species (0.2% of the total individuals). Solitary epifauna was represented by a single Cnidaria (Actiniaria sp.), four Annelida (Sabellaria spinulosa, Hydroides norvegica, Spirobranchus lamarcki and

Spirobranchus triqueter), three Athropoda (Balanus balanus, Balanus crenatus and Verruca stroemia) and a single Mollusca (Crepidula fornicata). All other groups (Cnidaria, Hemichordata, Foraminifera, Phoronida, Platyhelminthes, Nemertea and Nematoda) were represented by 8 species, accounting for 4.8% of the total individuals. Three specimens of the lesser sand eel, Ammodytes marinus, were identified at station OWF_42. This species is a priority species under the UK Post 2010 Biodiversity Framework as it is considered an important food source for many commercial fish, seals and seabirds. Furthermore, five specimens of the invasive non-native slipper limpet, Crepidula fornicata, were identified at station OWF_05. Slipper limpets can form dense aggregations, which can compete for space and smother native benthic fauna.

The fluctuation in accumulation of taxa with each new sample and hence heterogeneity across the survey area was demonstrated by a species accumulation curve as shown in Figure 22. The species accumulation curve as sampled in this figure demonstrates the variable but incremental increase in recorded species as additional samples were acquired. The stepwise increase in species at sample three (OWF_04) was due to sampling an area of coarse sediment compared to the previously sampled species poor infralittoral fine sand on the crest of a sandbank (OWF_01 and OWF_03). This suggests that the population was diverse with a relatively high species richness being recorded in every new sample. This analysis estimated the maximum species accumulation (Chao-1 curve) for the survey area to be 287 species, compared to the actual 228 infaunal species recorded during the survey. The number of species recorded exceeds the representative portion of the population (i.e. 67% or 191 species) meaning no additional replicates would be required. The current survey discovered 228 infaunal species with over two-thirds (79%) of the population represented. If colonial epifaunal species were considered (37 species), roughly 92% of the interpolated population would have been sampled.

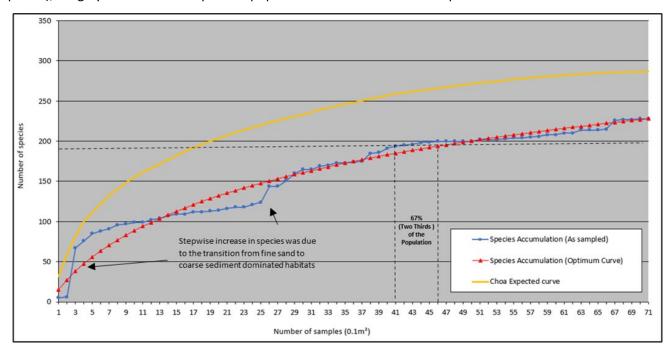


Figure 22 Species Accumulation Curve of OWF Survey Area

UK4855H-824-RR-01

With the exception of species that have been intentionally grouped into higher taxonomic levels (e.g. Nematoda, Nemertea, Platyhelminthes etc.), the majority of adult specimens were identified to genus level or lower (~98%). A total of 35 juvenile taxa were recorded during the current survey area, of which Mollusca (12 individuals), Arthropoda (ten individuals) and Annelida (seven individuals) were the most abundant. It was not possible to ascribe these specimens to a particular species at this stage in their lifecycle, and as such have been usually grouped to order level. Juveniles are often excluded from community analyses due to their high mortality prior to reaching maturity and difficulties in distinguishing species of the same genus. Consequently, they tend to induce a recruitment spike at certain times of the year due to rapid settlement and colonisation but are essentially an ephemeral part of the population masking the underlying trends within the mature adults. Similarly to juveniles, eight damaged specimens could not be ascribed to a particular species and could potentially add processing bias to the macrofaunal dataset. These specimens have, therefore, been excluded from univariate and multivariate analyses but have been listed separately in Appendix I.

Nematoda have been included in macrofauna analysis, as they can often serve as indicators of organic enrichment. However, as Nematoda vary in size, the estimates of its abundance may not be entirely accurate, with some likely to have passed through the 1mm sieve during macrofauna sample processing.

a Primary and Univariate Parameters

The primary and univariate parameters for all stations are listed in Table 23 and graphically represented in Figure 23 and Figure 25.

The number of individuals per 0.1m^2 was highly variable across the OWF survey area, ranging between 3 per 0.1m^2 at station OWF_03 to 683 per 0.1m^2 at station OWF_76 (Table 23; Figure 24). The variation is also evidenced by a relatively high coefficient of variation (149.2%; Table 23). The number of species per 0.1m^2 sample was also variable, ranging from 2 species per 0.1m^2 at station OWF_03 to 63 per 0.1m^2 at station OWF_04 (Table 23; Figure 23).

The variation in the number of individuals and species was unsurprising given the variability in sediment composition observed across the OWF survey area, which was corroborated by significant negative Spearman's correlations between the number of species and individuals to the proportion of sand along with a significant positive correlation to the proportion of gravel (Appendix K; p<0.05). The number of individuals and species also positively correlated with several parameters which can be indicators of organic enrichment, TOC, Σ 16PAH and Σ 22PAH (Appendix K; p<0.05). However, as previously discussed, the TOC along with a majority of the PAH concentrations across the survey area were low and would be unlikely to impact the macrofaunal community, so these parameters are likely to be autocorrelated to other factors such as sediment composition (Appendix K).

The highest number of individuals and second highest number of species recorded at station OWF_76 could be attributed to the presence of *Sabellaria spinulosa*, as *S. spinulosa* aggregations can act as refuges for marine species and hence create localised hotspots of biodiversity (see Section 4.8.2b).

Table 23 displays the UKOOA predicted macrofauna parameters for three environments. Due to the abundance of both sand and gravel in the survey area, both sediment types are provided in the table, as well as the expected values for the general SNS area. When comparing the abundance of individuals and species to UKOOA background levels for the SNS, the current survey had an average lower than expected species abundance (15±12SD species) and a similarly low individual abundance with 62±93SD individuals compared to a predicted 37 species and 334 individuals. Abundances were also lower than those given by UKOOA for gravel and sand substrata. However, only four samples were included in the creation of gravel community predictions, as opposed to >200 for the creation

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

of the sand habitat background macrofauna levels, highlighting the uncertainty in the values provided for gravel communities. Furthermore, as the sand dominated survey area lies within an area of known sandbanks (see Section 4.8.2f), which are characterised by impoverished faunal communities, the numbers observed in the current survey are thought to represent the natural levels for this type of environment.

Margalef's Index, a measure of species richness, was highest at station OWF_04 (11.01) and lowest at station OWF_03 (0.91; Table 23). The denuded community at OWF_03 may relate to the dominance of fine sand sampled from the top of a sand ridge, which are naturally characterised by impoverished faunal communities (JNCC, 2020). In contrast, OWF_04 had a higher species richness due to the inclusion of cobbles and pebbles at this station, which provided additional attachment points for the colonisation and establishment of solitary epifauna contributing to an increased species diversity.

Simpson's Diversity Index was highly variable within the survey area, ranging from a minimum of 0.126 at station OWF_13 to a maximum of 0.970 at station OWF_41, with an average of 0.765±0.197SD indicating a variable but overall fairly diverse macrofaunal community (Table 23 and Figure 25). Pielou's Equitability was similar to the Simpsons Index, with station OWF_13 having the lowest evenness at 0.165, compared to a maximum of 0.967 at station OWF_63 (Table 23). The Shannon-Wiener Diversity index showed a similar pattern, with the lowest diversity of 0.55 recorded at station OWF_13 compared to the highest recorded diversity of 4.85 at station OWF_04. The impoverished macrofaunal community at OWF_13 could be attributed to the firm coarse sand encountered at this station, which could have limited the establishment of burrowing macrofaunal assemblages (Appendix F).

The macrofauna data obtained from three previous BSL surveys carried out in the SNS between 2019 and 2020 revealed similar univariate parameters to the current OWF survey. The previous surveys sampled two macrofaunal replicates per station, while the current survey sampled a single replicate per station. To account for this difference, the two replicates were averaged to enable for comparison between the previous and current OWF survey (Table 23). Species richness and abundance were within the values of the previous surveys with comparable sediment composition, ranging from 8 to 29 species and 22 to 188 individuals per 0.1m². The previous surveys also had species richness and individual abundance below the respective UKOOA values for the SNS, apart from BSL SNS 2020a which was slightly above the UKOOA 50th percentile for individual abundance for gravel. Therefore, the macrofaunal assemblages within the OWF can be considered to reflect the ambient background conditions for this region of the SNS.

Table 23 Univariate Faunal Parameters (0.1m²)

Sample	Distance to Nearest Well (km)	Depth (m)	Number of Species (S)	Number of Individuals (N)	Richness (Margalef)	Evenness (Pielou's Evenness)	Simpsons Diversity (1-Lambda')	Shannon- Wiener Diversity
OWF_01_F1			5	12	1.61	0.767	0.667	1.78
OWF_02_F1			No	MF sample acquir	red (<40% retenti	on)	•	
OWF_03_F1			2	3	0.91	0.918	0.667	0.92
OWF_04_F1			63	279	11.01	0.811	0.940	4.85
OWF_05_F1			11	138	2.03	0.266	0.231	0.92
OWF_06_F1			15	39	3.82	0.901	0.912	3.52
OWF_07_F1			12	22	3.56	0.935	0.926	3.35
OWF_08_F1			4	10	1.30	0.880	0.733	1.76
OWF_09_F1			14	41	3.50	0.835	0.867	3.18
OWF_10_F1			11	24	3.15	0.839	0.851	2.90
OWF_11_F1			7	10	2.61	0.943	0.911	2.65
OWF_12_F1			6	26	1.53	0.781	0.732	2.02
OWF_13_F1			10	185	1.72	0.165	0.126	0.55
OWF_14_F1			9	14	3.03	0.914	0.901	2.90
OWF_15_F1			10	30	2.65	0.850	0.841	2.82
OWF_16_F1			No	MF sample acquir	red (<40% retenti	on)	l .	l
OWF_17_F1			7	32	1.73	0.842	0.782	2.36
OWF_18_F1			5	17	1.41	0.924	0.801	2.15
OWF_19_F1			16	260	2.70	0.287	0.288	1.15
OWF_20_F1			8	40	1.90	0.654	0.601	1.96
OWF_21_F1			6	13	1.95	0.787	0.718	2.04
OWF_22_F1			12	25	3.42	0.895	0.900	3.21
OWF_23_F1			12	149	2.20	0.409	0.507	1.47
OWF_24_F1			15	30	4.12	0.880	0.897	3.44
OWF_25_F1			5	47	1.04	0.299	0.203	0.69
OWF_26_F1			13	25	3.73	0.844	0.860	3.12
OWF_27_F1			11	20	3.34	0.908	0.905	3.14
OWF_28_F1			No	MF sample acquir	red (<40% retenti	on)	l .	
OWF_29_F1			46	185	8.62	0.796	0.910	4.40
OWF_30_F1			11	41	2.69	0.732	0.767	2.53
OWF_31_F1			22	73	4.89	0.731	0.822	3.26
OWF_32_F1			26	82	5.67	0.858	0.918	4.03
OWF_33_F1			30	126	6.00	0.822	0.920	4.03
OWF_34_F1			8	29	2.08	0.832	0.798	2.50
OWF_35_F1			No	MF sample acqui	red (<40% retenti	on)		1
OWF_36_F1			26	86	5.61	0.829	0.912	3.90
OWF_37_F1			14	54	3.26	0.833	0.874	3.17
OWF_38_F1			No	MF sample acqui	red (<40% retenti	on)		1
OWF_39_F1			36	93	7.72	0.891	0.950	4.61

UK4855H-824-RR-01

Sample	Distance to Nearest Well (km)	Depth (m)	Number of Species (S)	Number of Individuals (N)	Richness (Margalef)	Evenness (Pielou's Evenness)	Simpsons Diversity (1-Lambda')	Shannon- Wiener Diversity
OWF_40_F1			4	13	1.17	0.676	0.526	1.35
OWF_41_F1			33	55	7.99	0.939	0.970	4.74
OWF_42_F1			9	23	2.55	0.785	0.763	2.49
OWF_43_F1			48	147	9.42	0.806	0.919	4.50
OWF_44_F1			8	30	2.06	0.729	0.694	2.19
OWF_45_F1			25	71	5.63	0.834	0.913	3.87
OWF_46_F1			21	33	5.72	0.939	0.958	4.12
OWF_47_F1			16	104	3.23	0.453	0.485	1.81
OWF_48_F1			9	26	2.46	0.771	0.760	2.45
OWF_49_F1			14	23	4.15	0.928	0.937	3.53
OWF_50_F1			No	MF sample acqui	red (<40% retenti	on)		
OWF_51_F1			11	30	2.94	0.858	0.864	2.97
OWF_52_F1			16	31	4.37	0.883	0.903	3.53
OWF_53_F1			7	33	1.72	0.760	0.737	2.13
OWF_54_F1			7	22	1.94	0.607	0.541	1.71
OWF_55_F1			8	11	2.92	0.948	0.927	2.85
OWF_56_F1			3	6	1.12	0.921	0.733	1.460
OWF_57_F1			31	62	7.27	0.916	0.960	4.54
OWF_58_F1			13	48	3.10	0.609	0.608	2.25
OWF_59_F1			No	MF sample acqui	red (<40% retenti	on)	•	
OWF_60_F1			8	15	2.58	0.869	0.838	2.61
OWF_61_F1 OWF_62_F1			No	MF samples acqui	ired (<40% retent	ion)		
OWF_63_F1			6	7	2.57	0.976	0.952	2.52
OWF_64_F1			16	59	3.68	0.693	0.739	2.77
OWF_65_F1			10	23	2.87	0.875	0.870	2.91
OWF_66_F1			6	10	2.17	0.898	0.844	2.32
OWF_67_F1			8	23	2.23	0.732	0.723	2.20
OWF_68_F1			9	29	2.38	0.818	0.820	2.59
OWF_69_F1			7	41	1.62	0.770	0.738	2.16
OWF_70_F1			14	49	3.34	0.773	0.828	2.94
OWF_71_F1			9	93	1.76	0.619	0.633	1.96
OWF_72_F1			21	40	5.42	0.822	0.883	3.61
OWF_73_F1			7	36	1.67	0.504	0.437	1.42
OWF_74_F1			13	37	3.32	0.701	0.725	2.60
OWF_75_F1			13	25	3.73	0.800	0.810	2.96
OWF_76_F1			56	683	8.43	0.576	0.762	3.35
OWF_77_F1			18	30	5.00	0.957	0.961	3.99
OWF_78_F1			6	8	2.40	0.931	0.893	2.41
OWF_79_F1			23	92	4.87	0.689	0.771	3.12

UK4855H-824-RR-01

Sample	Distance to Nearest Well (km)	Depth (m)	Number of Species (S)	Number of Individuals (N)	Richness (Margalef)	Evenness (Pielou's Evenness)	Simpsons Diversity (1-Lambda')	Shannon- Wiener Diversity
OWF_80_F1			8	101	1.52	0.282	0.223	0.85
Mean			15	62	3.49	0.768	0.765	2.72
SD			12	93	2.15	0.184	0.197	1.02
CV (%)			81.6	149.2	61.6	24.0	25.8	37.6
Minimum			2	3	0.91	0.165	0.126	0.55
Maximum			63	683	11.01	0.976	0.970	4.85
Regional Compar	isons							
	Mean		18	74	4.37	0.823	0.856	3.25
BSL SNS, 2019	SD		12	105	1.66	0.157	0.155	0.680
	CV (%)		66.3	141.5	38.0	19.0	18.1	20.9
	Mean		29	157	5.68	0.763	0.824	3.27
BSL SNS, 2020a	SD		22	188	3.03	0.170	0.154	0.84
	CV (%)		75.2	119.7	53.3	22.2	18.7	25.7
	Mean		8	22	2.37	0.817	0.768	2.26
BSL SNS 2020b	SD		4	16	0.88	0.128	0.118	0.66
	CV (%)		49.5	69.9	37.3	15.7	15.4	29.3
Reference levels								
UKOOA (2001) Ba	ckground Gravel		34	116	-	0.830	0.910	4.20
UKOOA (2001) Background -Sand		65.	451	-	0.760	0.880	4.44	
UKOOA (2001) SN	JKOOA (2001) SNS Mean		37	334	-	0.690	0.810	3.45

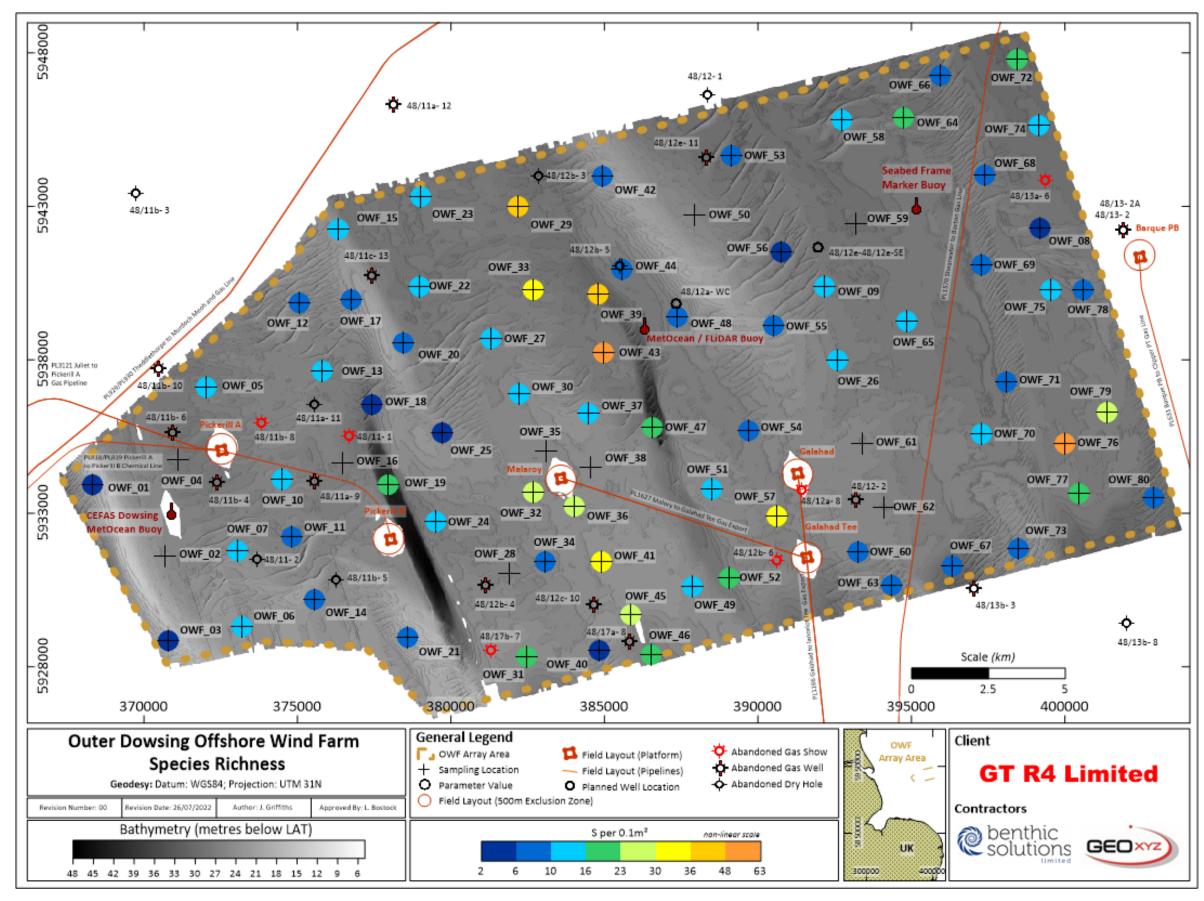


Figure 23 Macrofauna Species Richness (0.1m²)

Document No. UK4855H-824-RR-01 Page 101 of 292

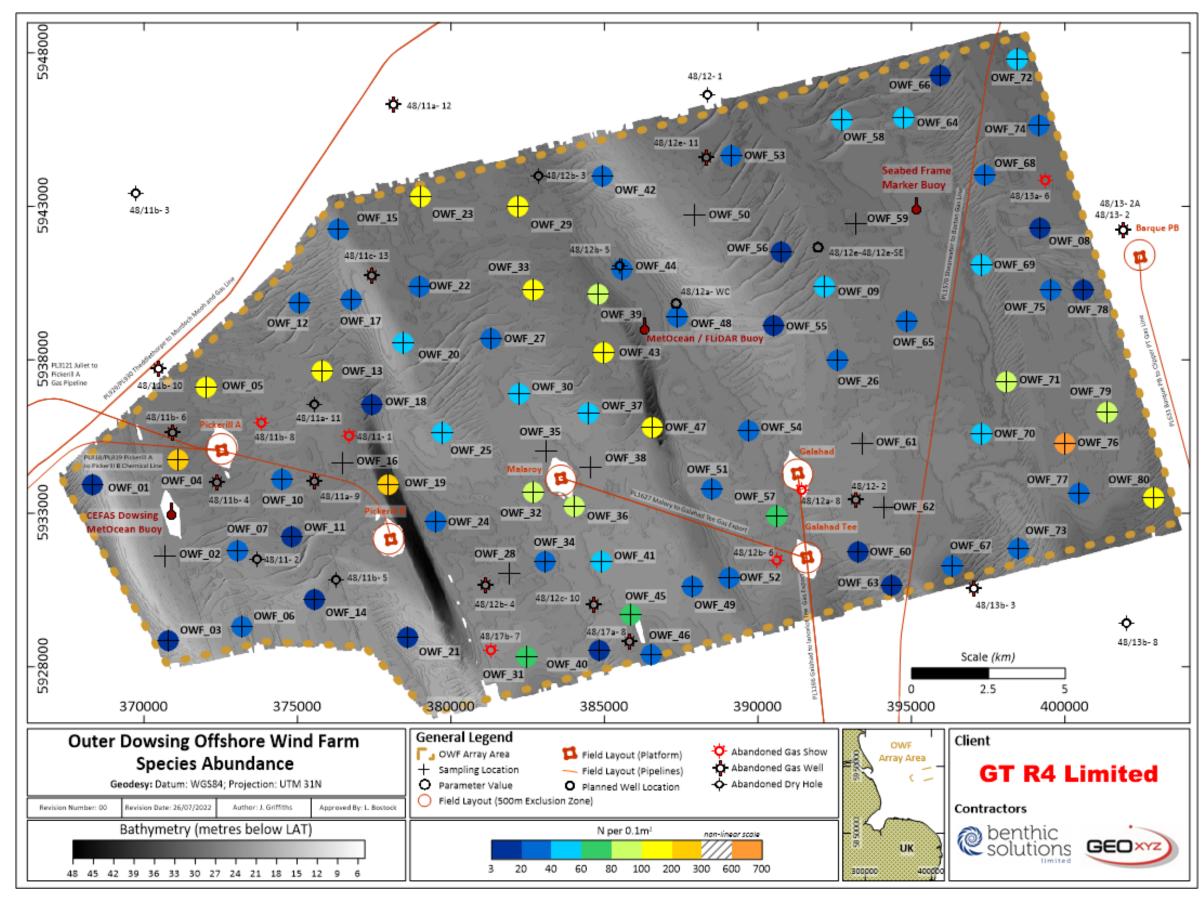


Figure 24 Macrofauna Faunal Abundance (0.1m²)

Document No. UK4855H-824-RR-01 Page 102 of 292

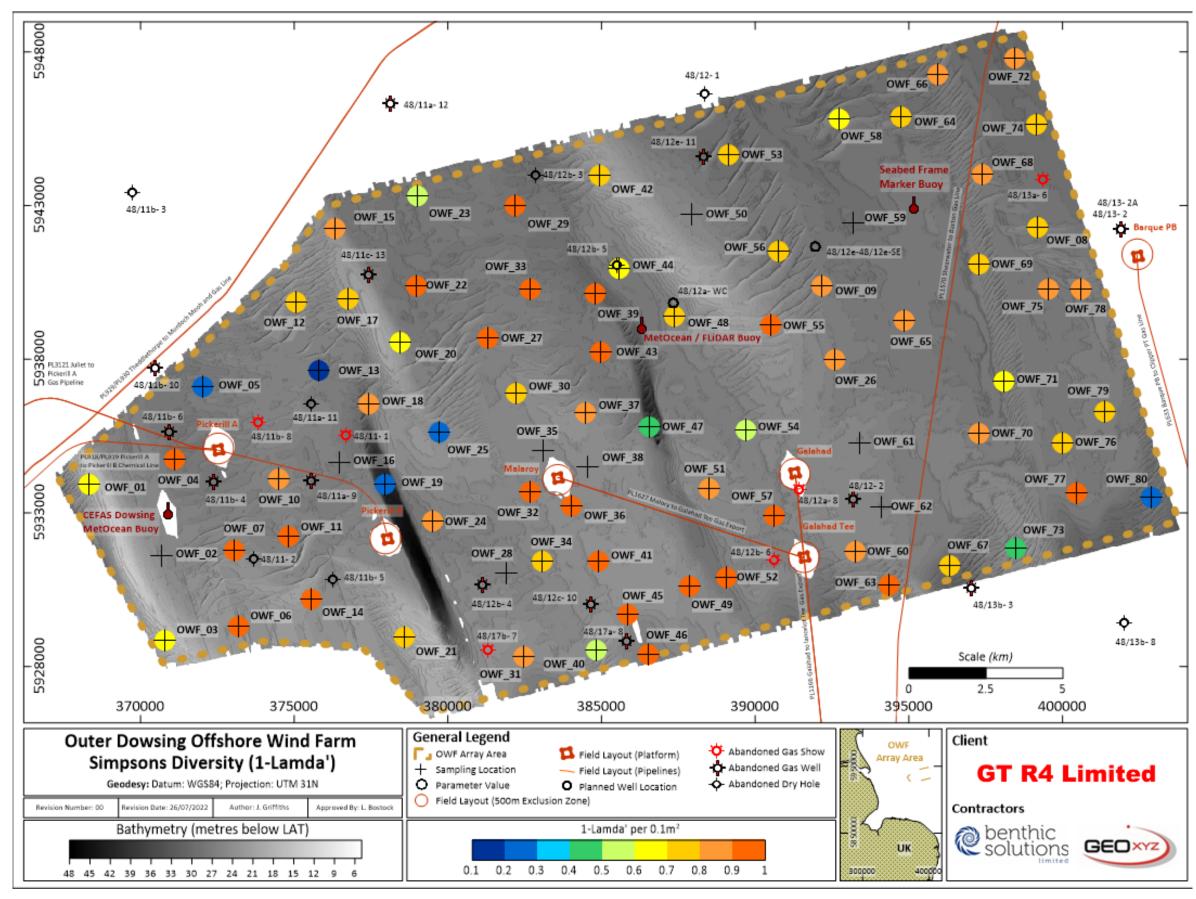


Figure 25 Macrofauna Simpsons Diversity (1-Lambda') per 0.1m²

Document No. UK4855H-824-RR-01 Page 103 of 292

UK4855H-824-RR-01

b Multivariate Analysis

To provide a more thorough examination of the macrofaunal community, multivariate analysis was performed upon the replicate and station data using Plymouth Routines in Multivariate Ecological Research software (PRIMER 7.0.17; Clarke, K.R. *et al.*, 2014) to illustrate data trends. Unlike univariate or derived diversity indices, multivariate analyses preserve the identity of the different species by assigning a similarity or dissimilarity between the samples based on differences in the abundances of constituent species. All data were squared-root transformed prior to analysis to down-weight the influence of any overriding species dominance between sample similarities/dissimilarities.

Hierarchical Agglomerative Clustering – Group Average Method

A similarity dendrogram was created using hierarchical agglomerative clustering (CLUSTER) and is presented for all stations in Figure 26. SIMPROF analysis highlighted the presence of seven significantly different (p<0.05) clusters which were differentiated by black branches and the different structural groups are interpreted below in Table 24. The dendrogram revealed little intra-cluster variability as the stations differentiated at a similar similarity level within each cluster group, indicating that the clusters had a high degree of similar macrofaunal assemblages. Overlaying the MESH sediment classification across the cluster groupings indicated that stations within cluster 'a' were predominantly comprised of finer sand dominated sediments when compared to stations within clusters 'c' and 'd' which were comprised of coarser sediments (Figure 27). Cluster 'g' was predominately comprised of mixed sediment stations. Stations within clusters 'b', 'e' and 'f' had similar MESH sediment classifications, which potentially indicates the macrofaunal clusters differentiated based on variability in macrofaunal assemblages rather than the underlying sediment composition (Figure 27). Similarly, station OWF_08 (cluster 'e') had a similar habitat classification to the other stations, so potentially separated from the other stations and clusters due to a different macrofaunal assemblage.

Table 24 Summary of SIMPROF Station Groupings

SIMPROF Group	Similarity (%)	Stations	Interpretation
ʻa'	32.59	01,09,10,11,12 15,17,20,22,25, 26,40,42,53,54, 56,60,63,64,65, 66,67,68,69,70, 71,73,80	The first cluster of stations were primarily comprised of stations with fine sandy sediments with several stations (10, 26, 70, 65,67, 09 and 12) conforming to a coarser sediment habitat classification. The stations within the cluster had relatively low abundances of species and individuals when compared to the other clusters with <i>Ophelia borealis, Bathyporeia elegans, Nephtys cirrose and Scoloplos armiger</i> accounting for 93% of the total number of individuals. This cluster could be considered to represent the finer sediment species poor macrofaunal assemblages.
'b'	32.09	03,14,78	The second cluster contained three stations that had relatively low abundances of species and individuals compared to other stations. These stations were dominated by <i>Ophelia borealis</i> and <i>Glycera oxycephala</i> which together accounted for 100% of the total number of individuals. This cluster can be considered to represent the variable coarse sediment macrofaunal assemblages across the OWF survey area.
'c'	26.71	05,06,07,13,18 19,23,30,44,47, 48,55,58	The third cluster of stations had a relatively low species diversity but a relatively high individual abundance. These stations had the highest abundance of <i>Goodallia triangularis</i> and <i>Ophelia borealis</i> , accounting for 80% of the total number of individuals. This cluster can be considered to represent the variable coarse sediment macrofaunal assemblages across the OWF survey area.
'd'	21.92	21,24,27,31,32, 34,36,37,41,46, 49,51,52,57,72, 74,75,77	The sixth cluster contained stations primarily comprised of coarse sediments which were characterised by intermediate species and individual abundances, with <i>Ophelia borealis</i> , Nematoda and Nemertea accounting for 65% of the total number of individuals. This cluster can be considered to represent the variable coarse sediment macrofaunal assemblages across the OWF survey area.
'e'	*	08	The fifth cluster was comprised of a single station, OWF_08, which had a relatively low species and individual abundance. The species poor station was dominated by an annelid assemblage comprised of <i>Nephtys cirrose</i> , <i>Pisione remota</i> and <i>Tharyx killariensis</i> . This cluster could be considered to represent the finer sediment species poor macrofaunal assemblages across the OWF survey area.
J'	*	45	This cluster consisted exclusively of station OWF_45 and had an intermediate species abundance and intermediate individual abundance. The most abundant species at this station were the polychaete, <i>Sabellaria spinulosa</i> , amphipod, <i>Urothoe elegans</i> , and the horseshoe worm, <i>Phoronis</i> . This cluster can be considered to represent the variable coarse sediment macrofaunal assemblages across the OWF survey area.
'g'	27.6	04,29,33,39,43, 76,79	These stations had a high species abundance and number of individuals resulting in a highly diverse community being present with high a Shannon-Wiener diversity index and Margalet's index values recorded. These stations were dominated by Sabellaria spinulosa and Urothoe elegans which represented 46% of the total number of individuals. This cluster can be considered to represent the variable coarse and mixed sediment macrofaunal assemblages across the OWF survey area.

^{*}Less than two samples in group, unable to perform SIMPER analysis

Document No. UK4855H-824-RR-01 Page 105 of 292

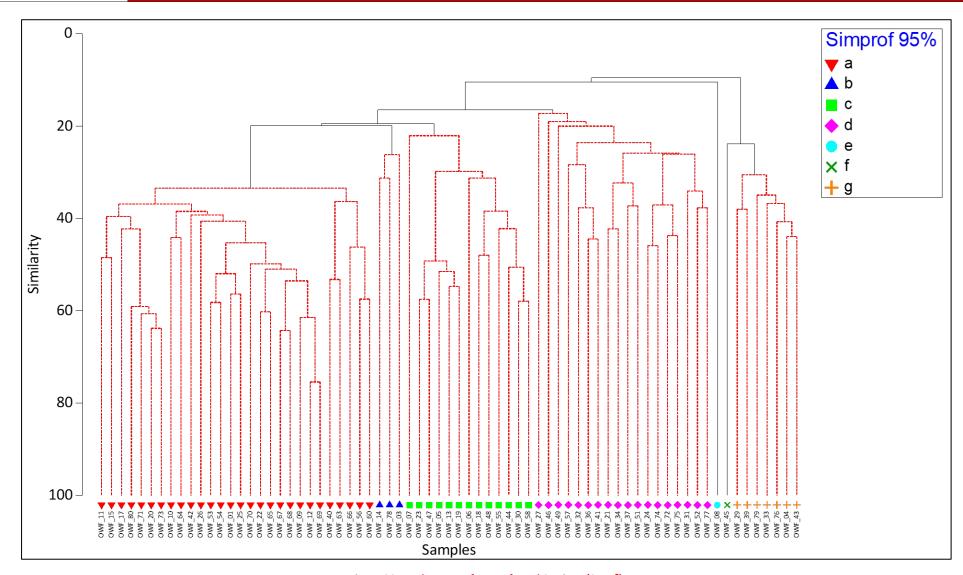


Figure 26 Dendrogram of Macrofaunal Stations (0.1m²)

Document No. UK4855H-824-RR-01 Page 106 of 292

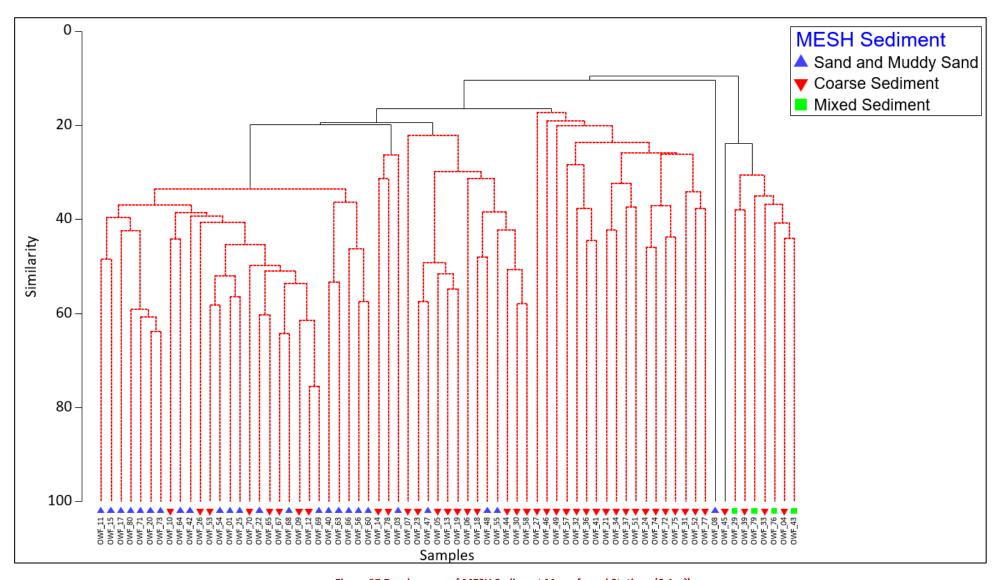


Figure 27 Dendrogram of MESH Sediment Macrofaunal Stations (0.1m²)

Document No. UK4855H-824-RR-01 Page 107 of 292

UK4855H-824-RR-01

Non-metric Multi-dimensional Scaling (nMDS) Ordination

Similarities in the macrofaunal communities recorded across the OWF survey area are presented in Figure 28 as a 2-dimensional non-metric multi-dimensional scaling (nMDS) ordination. The nMDS plot revealed seven different SIMPROF groupings with a moderate stress value of 0.19 (Figure 28). The plotted stations were fairly consistent to the clusters identified in the dendrogram (Figure 26), with cluster 'a' grouping more tightly together, representing a higher proportion of sand dominated macrofaunal assemblages. Whereas the other clusters were more loosely grouped potentially due to the variability in the coarse and mixed sediment fractions resulting in variable macrofaunal communities.

The nMDS plot, overlain with the MESH sediment classifications, revealed clusters 'g', 'd' and 'c' macrofaunal assemblages were more likely to be influenced by inter-specific differences in sediment composition. Whereas clusters 'a', 'b', 'e' and 'f' had overlaps in sediment compositions and hence were more likely to be differentiated based on macrofaunal assemblages. The geographical distribution of multivariate clusters is provided in Figure 30 and further corroborates the spatial variability in the macrofaunal communities which were not solely attributed to sediment composition or by extension the geophysical sediment delineations. For example, stations OWF_01 and OWF_03 were sampled on the crest of a sandbank with similar sediments, but different macrofaunal communities and stations OWF_10, sampled in an area of 'GRAVEL', and OWF_71, within an area of 'Sand', had similar macrofaunal communities. The macrofaunal communities present within each cluster grouping will be further explored in the sections discussed below.

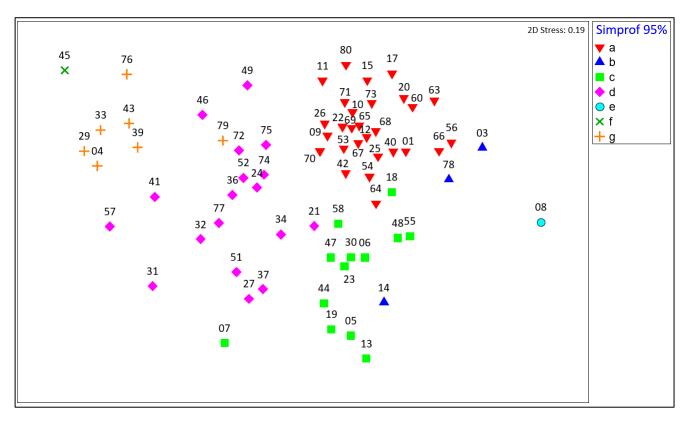


Figure 28 nMDS Ordination Plot of Macrofaunal Stations (0.1m²)

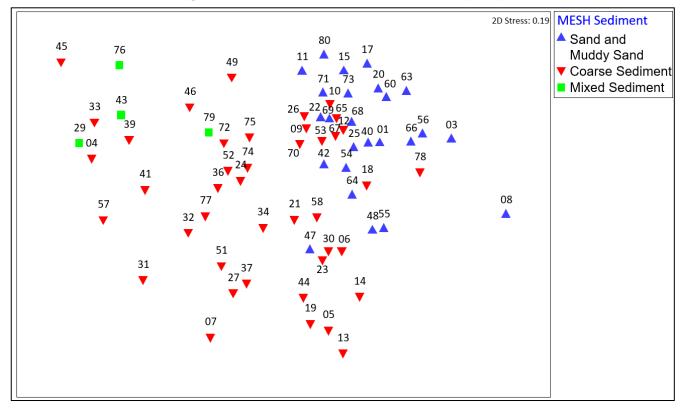
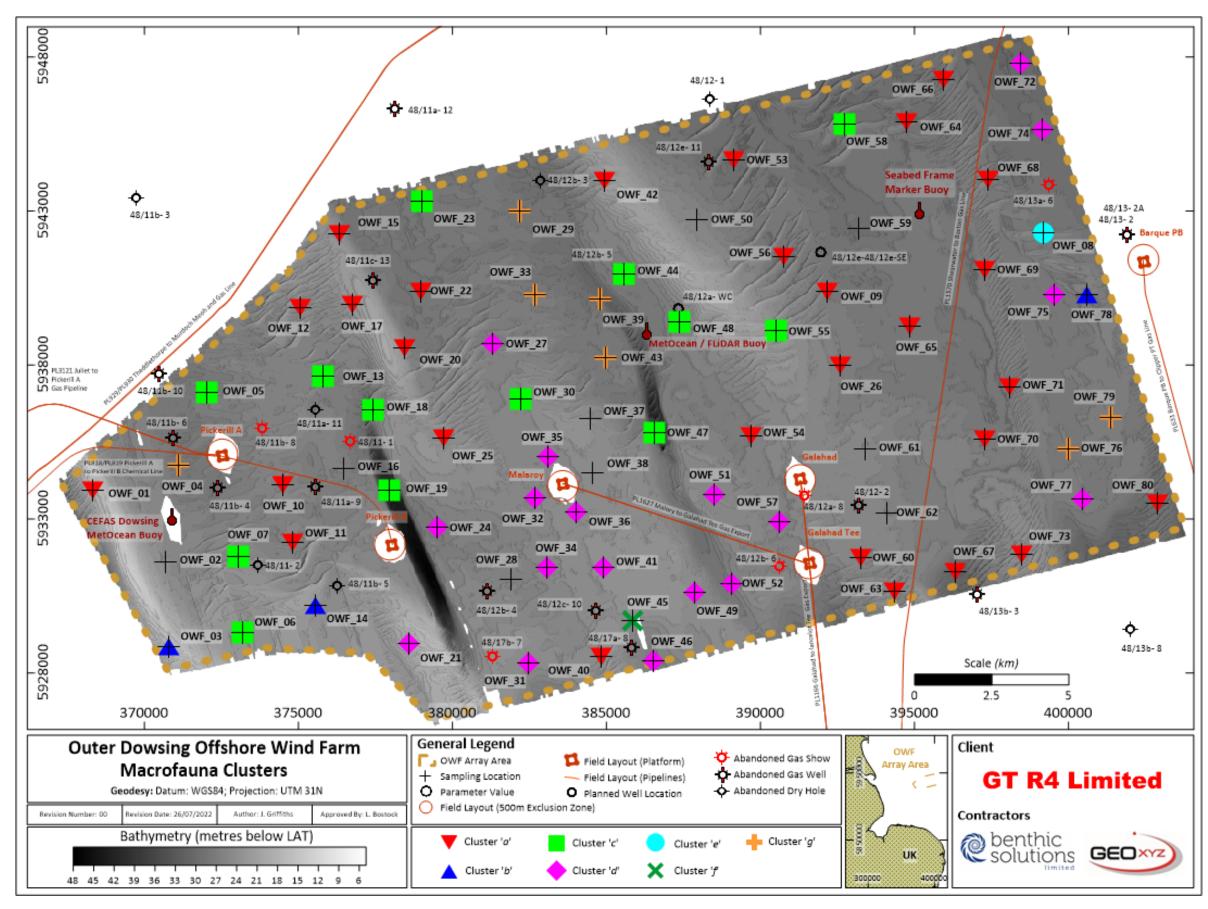



Figure 29 nMDS Ordination Plot of MESH Sediment Macrofaunal Stations (0.1m²)

Figure 30 Macrofauna SIMPROF Groupings

Document No. UK4855H-824-RR-01 Page 110 of 292

UK4855H-824-RR-01

Correlation with Environmental Variables

To assess whether the observed differences in community composition were a result of any relationships between the biological community and environmental parameters, such as sediment composition or the concentrations of metals or hydrocarbons, a series of RELATE tests (correlation tests) were performed.

A RELATE test between the macrofaunal and PSA phi fractions and PSA proportions (i.e. sands, fines and gravel) similarity matrices indicated a significant relationship with sample statistics of ϱ =0.345 p<0.001 and ϱ =0.391 p<0.001, respectively. To visualise this relationship a PCA was carried out on the PSA phi data overlain with clusters identified from the macrofauna dataset (Figure 31). The PCA plot highlighted that cluster 'a' was primarily influenced by the phi fractions 2 and 3, whereas the other six clusters were more influenced by the phi fractions 1 to -3. All the clusters, apart from 'a' were ordinated on the PCA plot across several eigenvectors indicating greater variability in the sediment compositions at these stations.

The PCA plot further indicates that the influence of the PSA data on the macrofaunal dataset was not the ubiquitous environmental driver of the dissimilarity between all the macrofaunal clusters. For example, coarser sediment stations, OWF_10, OWF_26, OWF_53, OWF_70, OWF_65, OWF_67 and OWF_09, influenced by phi fractions -1 to -3 were grouped within the primarily sand dominated macrofaunal cluster 'a', indicating that the dissimilarity in macrofauna within this cluster was more likely to be influencing the differentiation from the other clusters than sediment composition alone.

Similarly, macrofaunal cluster 'b' had variable phi fractions, with station OWF_03 more influenced by phi fractions 2 and 3 while OWF_78 and OWF_14 were more influenced by phi fractions 1 and -1, indicating that a similarity between macrofauna was driving the clustering of these stations despite the dissimilarity in PSA. Furthermore, cluster 'e', station OWF_08, and cluster 'f', station OWF_45, had similar PSA phi fractions as the other macrofauna clusters, so the dissimilarity was likely to be driven by differences in macrofaunal community composition.

Additionally, station OWF_72 within the macrofaunal cluster 'g' had a similar phi fraction distribution to the other stations within the same cluster, but had a closer affinity to macrofaunal cluster 'd', indicating subtle macrofaunal differences were driving the pattern observed. However, the overall spatial distribution of clusters of 'g', 'd' and 'c' across the PCA plot, indicates these clusters were more likely to be influenced by sediment composition as they were all influenced by the coarser phi fractions (phi 1 to -3).

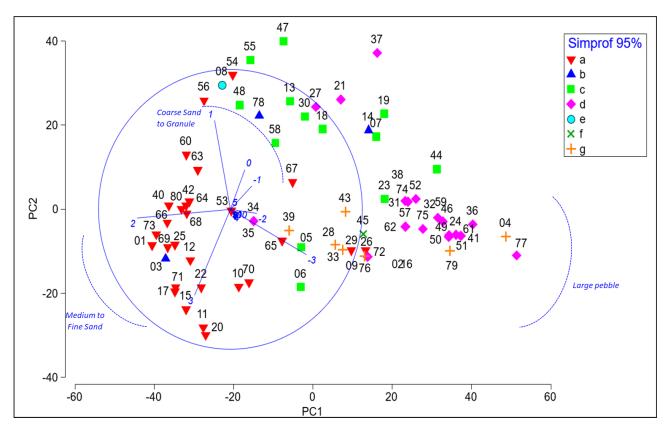


Figure 31 Principal Component Analysis of Phi PSA with Macrofaunal Clusters

Further RELATE tests were carried out between the macrofaunal dataset and separate subsets of PAH, TOC, and trace metal concentrations to further investigate any potential relationships between the benthic macrofauna and physico-chemical characteristics. These found a significant relationship between the macrofauna community data and trace metals (ϱ =0.179 p<0.02), PAHs (ϱ =0.300 p<0.005) and TOC (ϱ =0.428 p<0.001). These correlations could indicate the chemical parameters were influencing the macrofaunal community variation observed within the survey area. However, the fact that PAHs, TOC and metals results showed only minor variation across the OWF survey area, suggests that these chemical parameters are unlikely to be influencing the macrofaunal community differentiation observed. Therefore, it is unlikely that any point source contamination has altered the macrofaunal community present within the OWF survey area. For example, station OWF_19, sampled within a canyon feature, with a hypothesised increased sediment deposition and highest PAH and trace metal concentrations, had a similar macrofauna community to the other stations with cluster 'c'.

Inter-cluster Variation in Community Composition

To investigate the differing macrofaunal communities described by the identified multivariate clusters, the range in primary and derived univariate diversity indices for stations grouped within each cluster were calculated and are summarised in Table 25.

Stations within cluster 'g' had some of the highest and the greatest range for numbers of species and individuals across the OWF survey area (23 to 63 species and 92 to 683 individuals), while also representing stations with the highest Margalef's index (max 11.01)and Shannon-Wiener Diversity index (max 4.85). In contrast, cluster 'b' had the lowest range of number of species and individuals (2 to 9 species and 3 to 14 individuals) but had intermediate richness and diversities. Cluster 'c' had the widest range of Pielou's Evenness, Simpsons Diversity index and Shannon-Wiener Diversity index but had a relatively low number of species and an intermediate number of

individuals. Although each cluster had subtle differences between their respective univariate parameters, overlaps between the clusters was evident and indicates that more in depth review of the macrofaunal dataset is required to adequately describe the differentiation between the macrofaunal clusters.

Table 25 Overview of Univariate Parameters per SIMPROF Cluster

SIMPROF Cluster	Numl speci			per of uals (N)		ness galef)	Even (Piel Even		Dive	osons ersity nbda')		n Wiener ersity
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
а	3	16	6	101	1.03	3.72	0.282	0.976	0.203	0.952	0.69	3.21
b	2	9	3	14	0.91	3.03	0.914	0.934	0.667	0.901	0.92	2.90
С	5	16	11	260	1.41	3.82	0.164	0.948	0.125	0.927	0.55	3.52
d	6	33	13	86	1.94	7.98	0.701	0.956	0.717	0.970	2.03	4.74
e*	-	4	-	10	-	1.30	-	0.880	-	0.733	-	1.76
f*		25		71		5.63		0.834		0.913		3.87
g	23	63	92	683	4.86	11.01	0.576	0.891	0.761	0.949	3.12	4.85
*Less than tv	vo samples	in group										

Differences in the macrofaunal communities at a phyla level were explored by plotting the average percentage contribution of major phyla to the overall number of individuals and number of species within each cluster (Figure 32 and Figure 33). The results showed that a majority of clusters were dominated by annelids, which is expected for habitats composed of sand with variable gravel and mud contents. There was a notable difference in the abundances of molluscs, particularly for cluster 'c' where they accounted for a large proportion of the overall species abundance and clusters 'b' and 'e' where molluscs were completely absent. Additionally, echinoderms were completely absent in clusters 'b', 'c', 'e' and 'f', while solitary epifauna were dominant in clusters 'f' and 'g' due to the presence of Sabellaria spinulosa. A maximum of eight solitary epifauna taxa were recorded in cluster 'g', which was a major contributor to the community due to the 450 S. spinulosa individuals present. Discounting solitary epifauna, molluscs and echinoderms appeared to be the least abundant of all phyla, with the exception of cluster 'c' where molluscs were more abundant than the annelids.

In terms of the contribution of phyla to the numbers of species, the clusters were fairly similar, suggesting that the differing abundances of phyla were more important for the separation of clusters (Figure 33). All clusters were characterised by similar compositions of phyla, with Annelida accounting for the greatest proportion of the overall species richness. Crustacea and Mollusca also represented a large portion of overall species richness and these groups dominated Echinodermata, which was unsurprising given the low abundances of Echinodermata sampled throughout the survey area. The contribution of solitary epifauna to the overall species richness for clusters 'f' and 'g' and Mollusca for cluster 'c' were less dominant than the contributions to the total species abundance, which was attributed to high abundances of the polychaete, Sabellaria spinulosa, and the bivalve, Goodallia triangularis.

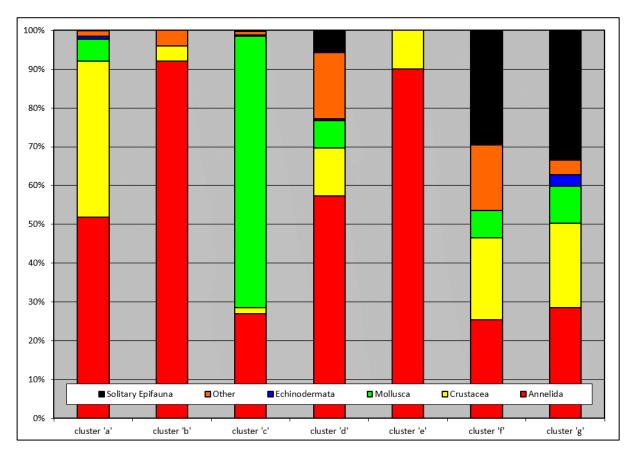


Figure 32 Average Contribution of Each Phyla to Total Faunal Abundance for Each Cluster

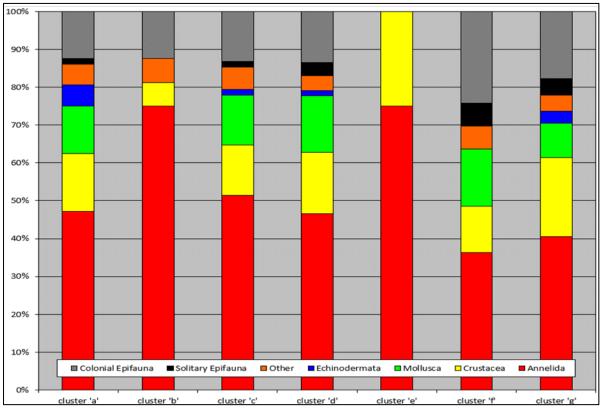


Figure 33 Average Contribution of Each Phyla to Total Number of Species for Each Cluster

UK4855H-824-RR-01

Table 26 provides further information on the ecological parameters driving the separation of macrofaunal clusters across the OWF survey area. The contribution of different feeding groups was calculated using the Infaunal Trophic Index, developed by Codling and Ashley (1992). This revealed the dominance of suspension feeders (ITI 1) and surface deposit feeders (ITI 3) across the OWF survey area (Figure 34), with the exception of cluster 'b' where sub-surface deposit feeders (ITI 4) were the most dominant feeding guild and ITI 1 feeders were the least prominent. All clusters had a representation of all four trophic feeding guilds apart from cluster 'e', station OWF 08, which had the highest proportion of surface detritus feeders (ITI 2) feeders due to the absence of competition from ITI 1 feeders such as molluscs. Overall the ITI scores for each cluster reflected a degraded, changed and normal seabed, with the exception of cluster 'g' which had a predominantly 'normal' seabed due to the wide range of species recorded, which could be attributed to the influence of Sabellaria spinulosa. However, high abundances of the bristleworm Ophelia borealis, an ITI 3 surface deposit feeder commonly found to inhabit sand dominated sediments, across all clusters reduced the overall ITI score of all the clusters. Once the influence of O. borealis was down-weighted the ITI scores increased and represented a greater proportion of 'normal' seabed across the cluster groupings. Therefore, high abundances of sediment influenced and commonly occurring species, in the absence of point source nutrient loading, reveals the potential inadequacy of the ITI method in areas of sandy sediment such as the OWF survey area.

The AZTI Marine Biotic Index (AMBI) is based on the proportion of disturbance-sensitive taxa, which are categorised into five ecological groups, depending on their dominance along a gradient of organic enrichment, and provides insights into the ecological quality status of soft-bottom marine benthic communities (WFD-UKTAG, 2014). The system operates between 0 and 6, with lower numbers corresponding to higher or good ecological status (WFD-UKTAG, 2014). The majority of stations (60.5%) sampled scored between 1 and 2, indicative of "good" ecological status, while 33.8% of stations scored above 2, indicative of "moderate" ecological status and the remaining 5% of stations scored below 5.6%, indicative of "high" ecological status. A "high" ecological status indicates the level of diversity and abundance of invertebrate taxa is within the range normally associated with undisturbed conditions, where species richness and diversity are high and all the disturbance-sensitive taxa associated with undisturbed conditions are present (WFD-UKTAG, 2014). Stations that were deemed to have "good" ecological status have slightly reduced species richness and diversity where most of the sensitive taxa of the type-specific communities are present (WFD-UKTAG, 2014). Whereas a "moderate" ecological status indicates a moderately reduced species richness and diversity where many of the sensitive taxa the type-specific communities are absent (WFD-UKTAG, 2014). The majority of stations with a "high" and "good" AMBI ecological status indicates that the majority of the survey area is considered to be within background levels for species diversity and abundance, with a minority of stations classed as "moderate", indicative of slight pollution disturbance. However, slight pollution disturbance is unsurprising given the proximity of the survey area to historic and current oil and gas extraction activities. The ecological status and hence degree of disturbance from anthropogenic pollution was unlikely to have differentiated the clusters, due to the overlaps in AMBI score between the cluster groups; therefore, it is likely the differentiation can be attributed to differences in community structure not accounted for during the AMBI and ITI analysis.

A comparison of the infaunal versus epifaunal richness within each cluster is provided in Table 26. The OWF survey area macrofaunal community, across all clusters, was dominated by infaunal taxa (all stations had >57.1% infaunal species), with coarse and mixed sediment stations having a greater proportion of epifaunal taxa when compared to the sand dominated stations. Clusters 'a', 'b', 'c', 'd' and 'e' had the highest maximum infaunal richness at 100%, but cluster 'd' also had the lowest at 57.1%. In contrast, clusters 'f' and 'g' had the lowest infaunal richness at

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

69.7% and 84.3%, respectively, indicating infaunal richness was variable within and between cluster groups. The dominance of the infauna was also evidenced by a low infauna/epifauna ratio of 0 for a majority of the clusters.

Table 26 Overview of Faunal Assemblage Parameters per SIMPROF Cluster

Silvii Noi Clastei	IT Contribu			12 ution (%)		13 ution (%)		14 ution (%)	ITI S	core	AMBI B	C Score		ogical tus*	Infa Richne	una ess (%)	Epifa Richne	auna ess (%)		una / na Ratio
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
а	0	89.1	0	36.4	0	70.0	3	89.4	5.0	93.1	0	1.91	М	G	62.5	100	0	37.5	0	14.0
b	0	33.3	0	46.1	0	62.5	30.8	66.7	20.8	43.6	1.00	1.68	-	М	75.0	100	0	25.0	0	3.0
С	6.3	94.1	2.0	38.1	1.0	44.4	0	64.6	20.1	96.9	0.78	2.00	М	G	64.7	100	0	35.3	0	12.0
d	5.4	38.4	6.9	41.4	7.7	44.4	8.1	61.5	20.7	57.0	0.80	2.30	М	G	57.1	100	0	42.9	0	8.7
e**	-	0	-	30	-	70	-	0	-	43.3	-	1.65	-	М	-	100	-	0	-	0
f**	-	68.6	-	17.14	-	11.43	-	2.8	-	83.8	-	0.80	-	G	-	69.7	-	30.3	-	2.3
g	34.1	60.6	15.9	37.9	17.4	27.8	0.8	14.1	66.3	79.1	0.94	1.50	G	Н	72.6	84.3	15.7	27.4	2.6	5.4

^{*} M = Moderate, G = Good and H = High

^{**} Clusters e and f contain a single station so only a max value is provided

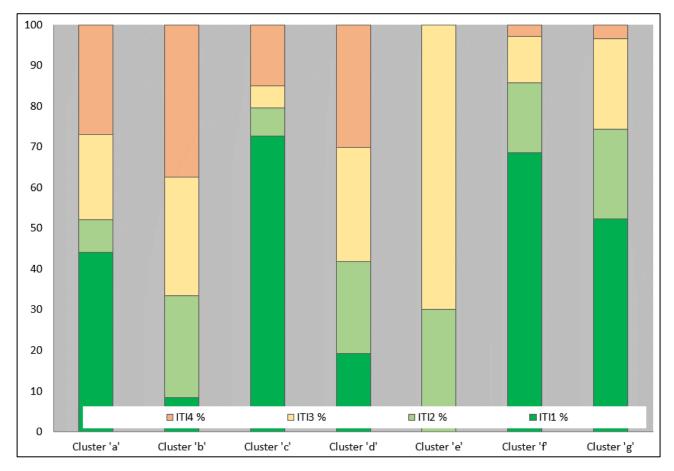


Figure 34 ITI Feeding Groups 1-4 Percentage Contribution per MF Cluster

To determine the species driving the differences between the five SIMPROF clusters identified from the macrofauna data, Table 27 presents the top ten species in each cluster together with their percentage contribution to the overall similarity within the cluster. Whereas Table 28 shows the top five species responsible for differences between clusters.

Table 27 highlights the similarities in the species assemblages represented by clusters 'a', 'b', 'c', 'd', 'e', 'f' and 'g'. All clusters with the exception of cluster 'g' were characterised by the bristle worm *O. borealis*, with this species being the top characterising species for clusters 'a', 'b' and 'd' and the second most characterising species for cluster 'c'. The mollusc, *Goodallia triangularis*, was the top characterising species for cluster 'c', this species showed a high average abundance of 56.46 per 0.1m² and contributed 54.52% of the population. The absence of *O. borealis* and the presence of seven characterising species that do not occur in any other group differentiated cluster 'g' from the other six clusters. For example, Cluster 'g' was characterised by the ross worm *Sabellaria spinulosa* which had the highest abundance of any characterising species over all clusters (64.29 per 0.1m²), which could potentially be attributed to the mixed sediment within this cluster providing a suitable habitat. Variation is still apparent between the remaining clusters with only one, two or three characterising species being shared between groups including *O. borealis*, *Scoloplos armiger* and *Glycera lapidum*.

Cluster 'd' showed the least dissimilarity, sharing three of the same top 10 characterising species with other clusters (O. borealis, Scoloplos armiger and Glycera lapidum). Abundances of the shared species varied for each species between the clusters. Despite being within the top two characterising species for all but one group, the abundance of the annelid Ophelia borealis varied among clusters (min 2.67 per 0.1m², max 10.38 per 0.1m²). Interestingly, within cluster 'b' O. borealis contributed 90.56% of the population, with Glycera oxycephala

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

contributing the remaining 9.44%. Within other clusters *O. borealis* only contributed 26.3% to 49.2% of the population. The variation between species abundances and contribution, along with the majority of characterising species differing for each cluster, explains the separation of the five clusters.

Review of the taxa most responsible for differentiating the six clusters (Table 28) included one dominating taxon (*Ophelia borealis*), previously highlighted as characteristic for four out of six clusters, again suggesting that some differentiation was due to variability in the abundance of consistently dominant taxa, which could potentially be attributed to sediment composition as *O. borealis* inhabits clean sands. Table 28 also showed *Sabellaria spinulosa* was the second most responsible taxa for differentiating the six clusters, separating clusters 'f' and 'g' from the other clusters.

As previously mentioned, cluster 'g' separated from the other stations on the dendrogram (Figure 26) and nMDS (Figure 28), indicating variation in the stations macrofauna assemblage. This separation was deemed to be a result of the variable coarse and mixed sediment at these stations. On closer review, the stations forming cluster 'g' were characterised by the dominance of the ross worm S. spinulosa and amphipod Urothoe elegans. Therefore, the natural variation in taxa and underlying sediment composition across the OWF survey area are both likely to be influencing the differentiation of the macrofaunal clusters.

Table 27 Top 10 Species Abundances for Clusters 'a', 'b', 'c', 'd', 'e', 'f' and 'g'

	Cluster	'a'		Cluste	r <i>'b'</i>		Cluster '	c'		Cluster	′d′		Cluster 'e'*	:		Cluster <i>'f</i>	C/*		Cluste	r 'g'	
Top 10 Species	Species	Av. Abundance	Contribution (%)	Species	Av. Abundance	Contribution (%)	Species	Av. Abundance	Contribution (%)	Species	Av. Abundance	Contribution (%)	Species	Abundance	Contribution (%)	Species	Abundance	Contribution (%)	Species	Av. Abundance	Contribution (%)
1	Ophelia borealis	8.46	49.2	Ophelia borealis	2.67	90.56	Goodallia triangularis	56.46	54.52	Ophelia borealis	5.83	36.84	Nephtys cirrosa	5	50	Sabellaria spinulosa	13	18.30	Sabellaria spinulosa	64.29	25.99
2	Bathyporeia elegans	10.5	24.62	Glycera oxycephala	0.67	9.44	Ophelia borealis	10.38	26.3	Nematoda	4.11	17.88	Pisione remota	2	20	Phoronis	11	15.49	Urothoe elegans	19.43	20.78
3	Nephtys cirrosa	1.93	10.63	-	-	-	Aonides paucibranchiata	1.31	4.79	Nemertea	2.44	10.37	Tharyx killariensis	2	20	Urothoe elegans	10	14.08	Scoloplos armiger	6.43	5.54
4	Scoloplos armiger	2.64	8.86	-	-	-	Glycera lapidum	1.54	3.09	Scoloplos armiger	1.5	4.65	Bathyporeia guilliamsoniana	1	10	Spirobranchus triqueter	8	11.26	Abra alba	5.57	4.93
5	Urothoe brevicornis	0.5	1.01	-	-	-	Pisione remota	1.69	2.8	Mediomastus fragilis	0.83	3.01				Golfingia elongata	3	4.22	Amphipholis squamata	5.29	4.1
6	Spiophanes bombyx	0.39	1.01	-	-	-	Nephtys cirrosa	0.62	2.09	Polycirrus	0.78	2.8				Pholoe baltica	3	4.22	Polycirrus	4.57	3.07
7	-	-	-	-	-	-	Pseudonotomastus southerni	0.46	1.36	Eusyllis blomstrandi	2.06	2.62				Photis Iongicaudata	3	4.22	Kurtiella bidentata	10.71	3.06
8	-	-	-	-	-	-	Chaetozone christiei	0.92	1.17	Aonides paucibranchiata	1.11	2.26				Nephtys Iongosetosa	2	2.81	Nemertea	3	2.77
9	-	-	-	-	-	-	-	-	-	Notomastus	1.22	2.22				Lanice conchilega	2	2.81	Phyllodoce maculata	6.29	2.71
10	-	-	-	-	-	-	-	-	ı	Glycera lapidum	0.56	2.01				Ampharete lindstroemi	1	1.40	Actiniaria	9.14	2.61
* = [ess than two sam	ples w	vithin th	ie cluster																	_

Dark blue shading = shared taxa across 4 clusters

Light blue shading = sharded taxa across 3 clusters

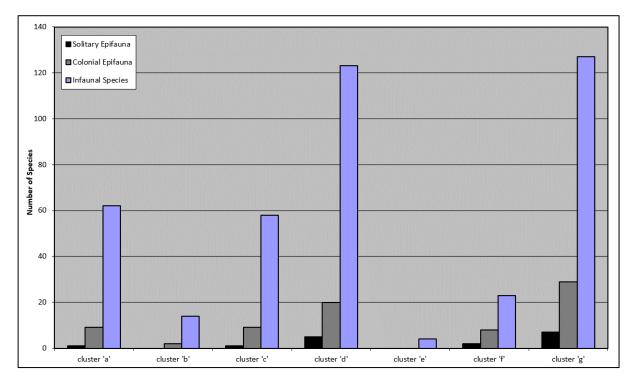
Orange shading = shared taxa across 2 clusters

Table 28 Dissimilarity Percentages (SIMPER) for Macrofauna Dataset

	Cluster a		Cluster b		Cluster c		Cluster d		Cluster e		Cluster <i>f</i>	
	Average dissimilarity 9	94.37%	Average dissimilarity 97	7.90%	Average dissimilarity 96	.75%	Average dissimilarity 89	0.22%	Average dissimilarity 99.7	2%	Average dissimilarity 77.8	0%
	Sabellaria spinulosa	17.61	Sabellaria spinulosa	19.68	Goodallia triangularis	17.02	Sabellaria spinulosa	16.58	Sabellaria spinulosa	19.48	Sabellaria spinulosa	12.17
Charter	Urothoe elegans	10.06	Urothoe elegans	11.55	Sabellaria spinulosa	15.21	Urothoe elegans	9.52	Urothoe elegans	11.41	Urothoe elegans	6.02
Cluster g	Bathyporeia elegans	4.59	Scoloplos armiger	3.47	Urothoe elegans	8.55	Pisidia longicornis	3.23	Pisidia longicornis	3.43	Phoronis	4.23
	Ophelia borealis	3.94	Pisidia longicornis	3.45	Ophelia borealis	4.11	Ophelia borealis	2.92	Scoloplos armiger	3.43	Pisidia longicornis	2.90
	Pisidia longicornis	3.23	Abra alba	2.87	Pisidia longicornis	2.92	Scoloplos armiger	2.55	Nephtys cirrosa	3.09	Spirobranchus triqueter	2.85
			Average dissimilarity 83	3.26%	Average dissimilarity 84	.62%	Average dissimilarity 84	1.02%	Average dissimilarity 87.7	<u>7%</u>	Average dissimilarity 98.3	5%
			Bathyporeia elegans	18.54	Goodallia triangularis	33.02	Bathyporeia elegans	11.16	Ophelia borealis	20.71	Sabellaria spinulosa	13.07
Cluster a			Ophelia borealis	15.91	Ophelia borealis	11.05	Ophelia borealis	9.75	Bathyporeia elegans	17.63	Phoronis	11.09
Ciustei u			Scoloplos armiger	6.51	Bathyporeia elegans	9.71	Nematoda	5.37	Nephtys cirrosa	9.91	Urothoe elegans	9.80
			Nephtys cirrosa	5.69	Scoloplos armiger	3.14	Scoloplos armiger	4.17	Scoloplos armiger	6.11	Bathyporeia elegans	8.19
			Glycera lapidum	3.48	Nephtys cirrosa	2.35	Nemertea	3.24	Tharyx killariensis	5.84	Spirobranchus triqueter	8.06
					Average dissimilarity 87	<u>'.67%</u>	Average dissimilarity 87	<u>7.73%</u>	Average dissimilarity 96.3	<u>)%</u>	Average dissimilarity 100	<u>1%</u>
					Goodallia triangularis	39.62	Ophelia borealis	9.94	Nephtys cirrosa	27.17	Sabellaria spinulosa	16.44
Charten					Ophelia borealis	12.22	Nematoda	7.59	Ophelia borealis	14.85	Phoronis	13.91
Cluster b					Glycera lapidum	3.62	Nemertea	4.66	Tharyx killariensis	11.61	Urothoe elegans	12.65
					Aonides paucibranchiata	2.48	Eusyllis blomstrandi	3.78	Pisione remota	11.61	Spirobranchus triqueter	10.12
					Pisione remota	2.38	Glycera lapidum	3.37	Bathyporeia guilliamsoniana	5.80	Golfingia (Golfingia) elongata	3.79
							Average dissimilarity 86	5.31%	Average dissimilarity 92.2	5%	Average dissimilarity 99.2	0%
							Goodallia triangularis	30.25	Goodallia triangularis	38.69	Goodallia triangularis	25.16
GI .							Ophelia borealis	8.94	Ophelia borealis	15.17	Sabellaria spinulosa	10.06
Cluster c							Nematoda	4.04	Nephtys cirrosa	7.94	Phoronis	8.71
							Nemertea	2.37	Tharyx killariensis	3.95	Urothoe elegans	7.87
							Pisione remota	2.1	Pisione remota	2.69	Ophelia borealis	7.24
								,	Average dissimilarity 98.2	5%	Average dissimilarity 93.1	4%
									Ophelia borealis	13.02	Sabellaria spinulosa	11.4
									Nephtys cirrosa	11.07	Phoronis	9.80
Cluster d									Nematoda	7.24	Urothoe elegans	8.88
									Pisione remota	5.28	Spirobranchus triqueter	7.13
									Nemertea	4.45	Ophelia borealis	5.32
											Average dissimilarity 100	
											Sabellaria spinulosa	16.05
											Phoronis	13.58
Cluster e	ıster e										Urothoe elegans	12.35
											Spirobranchus triqueter	9.88
											Nephtys cirrosa	6.17
											ivepinys cirrosu	0.17

Document No. UK4855H-824-RR-01 Page 121 of 292

UK4855H-824-RR-01


c Epifaunal and Other Biological Groups

All macrofaunal replicates obtained within the OWF survey area recorded the presence of colonial epifauna that were not statistically assessed within the infauna data analysis, as they were tabulated on a presence/absence basis. Due to the presence/absence scale to which epifaunal species were identified, for the purpose of this chart and to highlight the epifaunal richness; where epifaunal species were recorded as present this was given the numerical value of "1" to represent the colony. The distribution of epifaunal assemblages across the survey area is represented in Figure 35 and highlights the variation in infaunal and epifaunal richness. Analysis of the infaunal and epifaunal communities indicated that the infauna was dominant, with epifauna making up a very small, but important part of the community. While allowing the data to be presented, the actual abundance of epifaunal species cannot be determined. Infaunal and epifaunal species are listed separately in Appendix I.

Across the stations, 49 taxa were considered to be epifaunal which belonged to the phyla Porifera, Cnidaria, Annelida, Arthropoda, Mollusca, Entoprocta, Bryozoa and Chordata, most of which were Bryozoa. Bryozoa showed the highest number of species and were represented by 22 taxa with *Alcyonidium parasiticum* being the most prevalent recorded at 26% of stations. Cnidaria were represented by 13 taxa with *Sertularia* being the most prevalent at 21% of stations. Annelida was represented by five taxa with the ross worm *S. spinulosa* being the most prevalent appearing at 20% of stations. Arthropoda were represented by four taxa with Cirripedia being the most prevalent appearing at 12.5% of stations. Mollusca was represented by a single taxon, the non-native slipper limpet (*Crepidula fornicata*) which came in the form of five individuals at station OWF_04. Porifera were represented by two taxa including one recording of *Haliclona oculata* at OWF_04 and one recording of an unidentified Porifera at OWF_36. Entoprocta was represented by a single taxon and included two recordings of *Pedicellina* sp. at stations OWF_43 and OWF_47. Chordata were represented by 5 juvenile Ascidiacea individuals recovered from three stations (OWF_23, OWF_43 and OWF_76).

Cluster 'g' had the highest richness of epifaunal taxa (30 taxa), this is expected due to the high gravel content (23.47% to 75.72%) at all but one station (OWF_48, gravel content 4.26%), the observation of pebbles and/or cobbles at these stations and the presence of S. S spinulosB0 which can provide further attachment points. Grab sampling often fails to recover coarse material, especially larger pebbles and cobbles colonised by epifauna; therefore, it is important to not only assess epifauna through physical samples but also to analyse video footage. In this case, occasional patches of pebbles and cobbles were present throughout the survey area within areas previously delineated by the geophysical report as areas of 'Sandy CLAY' and 'Gravelly SAND'.

Figure 35 Epifaunal Versus Infaunal Richness

d Biomass

Biomass allows another viewpoint into the community structure of the benthos, providing additional information about changes to potential organic enrichment, pollution and natural variability within a habitat. The biomass (blotted wet weight) of the macrofauna for the OWF survey area is displayed by phylum in Table 29 and by taxa in Appendix I. This includes data for both infauna, epifauna and other biological groups.

The total biomass for the OWF survey area was estimated to be 4,001.21g/m², with the majority comprising Mollusca which accounted for 2,186.95g/m² (54.66%) of the total biomass. The next major contributor to total biomass was Echinodermata which accounted for 1,044.26g/m² (26.10%), however, Echinodermata only accounted for 3.25% of the total number of individuals recorded (Table 29). The high biomass in relation to low abundance could be attributed to the relatively large body sizes of *Asterias rubens* and *Echinocardium cordatum*.

Polychaeta was the next major contributor, accounting for 458.15g/m² (11.45%) of total biomass. It is also the most species rich and abundant group, representing 40.91% of the total species and 45.68% of the individuals found in the OWF survey area. Polychaeta were the only group present at all stations in the survey area. Chordata and Cnidaria represented a relatively small proportion of the total biomass, with 151.15g/m² (3.78%) and 100.90 g/m² (2.52%), respectively. Despite Crustacea contributing to only 1.24% of the total biomass, it represented 20.45% of the macrofaunal species found in the OWF survey area. Similarly, species categorised as 'other minor phyla' (Animalia eggs, Porifera, Foraminifera, Nematoda, Nemertea, Platyhelminthes, Phoronida, Bryozoa and Hemichordata) made up 0.25% of the proportional biomass contribution but was relatively species rich (contained 10.39% of the total number of species found). The groups contributing the lowest biomass in the OWF survey area were Arthropoda (0.002g/m², 0.08%), Annelida (0.001g/m², 0.06%) and Oligochaeta (0.0005g/m², 0.02%). The low biomass of Arthropoda, Oligochaeta and Annelida were unsurprising given the subdivisions of these groups (i.e. Polychaeta and Crustacea) so only represent those species that could not be taxonomically ranked any lower.

Table 29 Blotted Wet Weight Biomass (0.0001g) of Major Groups Within the OWF Survey Area

								•		<u> </u>			
Station	Depth (m)	Distance to Nearest Well (km)	Other minor phyla	Cnidaria	Annelida	Polychaeta	Oligochaeta	Arthropoda	Crustacea	Mollusca	Echinodermata	Chordata	Total
OWF_01	11	3.12	-	-	-	0.2759	-	-	0.0027	-	-	-	0.2786
OWF_03	10	3.9	-	=	-	0.2430	-	-	-	-	-	-	0.2430
OWF_04	22	0.89	0.1328	0.0263	-	5.5308	0.0013	0.0018	2.0415	28.2790	0.0247	-	36.0382
OWF_05	23	1.67	0.0007	-	-	0.1710	-	-	-	0.2468	0.0407	-	0.4592
OWF_06	19	2.24	-	-	-	0.2108	-	-	0.0047	0.8520	-	-	1.0675
OWF_07	19	0.68	0.0025	-	-	1.4947	-	-	-	19.2917	-	-	20.7889
OWF_081	21	1.57	0.0001	-	-	0.1573	-	-	0.0074	0.0185	-	-	0.1833
OWF_09	23	5.71	0.0037	-	-	0.4216	-	-	0.0285	0.0078	-	-	0.4616
OWF_10	21	1.07	-	-	-	0.2016	-	0.0008	0.0117	0.0008	-	-	0.2149
OWF_11	20	1.34	0.0025	-	-	0.2471	-	-	0.0038	0.0009	-	-	0.2543
OWF_12	20	2.5	-	-	-	0.3608	-	-	0.0177	=	=	-	0.3785
OWF_13	21	1.1	-	-	-	0.1011	-	-	0.0453	0.3861	-	-	0.5325
OWF_14	18	0.94	0.0001	-	-	0.0580	-	-	-	-	-	-	0.0581
OWF_15	18	1.83	-	-	-	0.1548	-	-	0.0367	0.5746	55.5300	-	56.2961
OWF_17	17	1.01	-	-	-	0.0909	-	-	0.0565	-	34.9221	-	35.0695
OWF_18	21	1.26	-	-	-	0.2569	-	-	0.0006	0.0062	-	-	0.2637
OWF_19	40	1.74	-	-	-	0.3838	-	-	0.0038	0.8101	0.0527	-	1.2504
OWF_20	18	2.43	-	-	-	0.6714	-	-	0.0668	-	-	-	0.7382
OWF_21	12	2.75	0.0001	-	-	0.0650	-	-	-	1.3184	-	-	1.3835
OWF_22	23	1.59	-	0.0521	-	0.4024	-	-	0.0175	0.0088	-	-	0.4808
OWF_23	23	3.01	0.1045	-	-	0.2902	-	-	0.0030	0.1524	-	-	0.5501
OWF_24	23	1.61	0.0051	-	-	0.4112	-	-	0.0232	0.0060	=	-	0.4455
OWF_25	18	3.01	-	-	-	0.3236	-	-	0.0017	0.0237	-	-	0.3490
OWF_26	21	3.94	-	-	-	0.3771	-	-	0.0012	0.0640	-	-	0.4423
OWF_27	19	4.82	0.0001	-	-	0.5933	0.0001	-	0.0013	-	-		0.5948
OWF_29	24	1.21	0.0641	0.0169	0.0001	1.7650	0.0001	-	0.0472	3.5536	0.0538	-	5.5008
OWF_30	20	5.31	-	=	-	0.2674	-	-	-	0.0195	0.0115	-	0.2984
OWF_31	19	1.16	0.0065	-	-	0.3349	-	-	-	20.4764	-	-	20.8178
OWF_32	20	0.99	0.0198	-	-	0.1870	-	0.0002	0.0111	0.2402	0.0035	-	0.4618
OWF_33	23	2.93	0.0056	=	0.0010	0.8225	-	0.0006	0.0910	0.1326	0.0043	-	1.0576
OWF_34	20	2.1	0.0167	-	-	0.7175	-	-	0.0021	0.0035	-	-	0.7398
OWF_36	19	0.95	0.0017	-	-	0.2606	-	-	0.0334	56.9002	0.0373	-	57.2332

Document No. UK4855H-824-RR-01 Page 124 of 292

Station	Depth (m)	Distance to Nearest Well (km)	Other minor phyla	Cnidaria	Annelida	Polychaeta	Oligochaeta	Arthropoda	Crustacea	Mollusca	Echinodermata	Chordata	Total
OWF_37	19	2.37	0.0155	-	-	0.7104	-	-	-	0.0352	-	0.1607	0.9218
OWF_39	27	1.15	-	0.3274	-	2.1208	-	0.0005	0.0226	0.0525	0.0493	0.0052	2.5783
OWF_40	17	1.49	-	-	-	0.3797	-	-	0.0044	-	-	-	0.3841
OWF_41	18	1.44	0.0116	0.0852	-	1.8378	-	0.0001	0.0964	0.3361	0.0041	-	2.3713
OWF_42	16	2.07	0.0001	-	-	0.1519	-	-	0.0001	0.0071	-	2.1320	2.2912
OWF 43	23	2.79	0.0329	0.0043	-	1.2173	-	0.0022	0.2356	0.5295	0.2121	-	2.2339
OWF_44	23	0.13	0.0223	-	-	0.0427	-	-	0.0006	0.0318	-	-	0.0974
OWF 45	19	0.85	0.1834	-	0.0021	1.0199	-	-	0.1073	8.6850	-	-	9.9977
OWF_46	22	0.82	-	-	0.0027	0.6358	-	-	0.0051	28.7390	0.0008	-	29.3834
OWF 47	37	3.44	0.0001	-	-	0.2747	0.0001	-	0.0188	24.4062	-	12.1173	36.8172
OWF 48	21	2.51	-	-	-	0.2143	0.0001	-	0.0043	0.0175	-	-	0.2362
OWF 49	18	2.09	-	-	-	0.0861	-	-	0.0072	-	-	-	0.0933
OWF 51	20	2.8	0.0049	-	-	0.2819	-	-	0.0055	0.6297	0.0011	-	0.9231
OWF 52	22	1.66	-	-	-	1.0303	-	-	0.0253	0.0434	-	-	1.0990
OWF 53	25	0.81	-	-	-	0.1296	-	-	0.0049	-	-	-	0.1345
OWF 54	22	2.12	0.0242	-	-	0.3738	-	-	0.0067	0.0062	0.0001	-	0.4110
OWF 55	17	4.92	-	-	-	0.0583	-	-	-	0.0150	-	0.3649	0.4382
OWF 56	19	3.91	-	-	-	0.1478	-	-	-	-	-	-	0.1478
OWF 57	21	1.16	0.0091	0.3986	-	1.8781	-	0.0001	0.0189	0.0612	-	-	2.3660
OWF 58	25	4.42	0.0001	-	-	0.3546	0.0001	-	0.0075	0.0877	-	-	0.4500
OWF 60	20	1.69	-	-	-	0.2082	-	-	0.0027	0.4422	11.7803	-	12.4334
OWF 63	19	2.67	-	-	-	0.1841	-	-	0.0043	-	-	0.3352	0.5236
OWF 64	24	3.72	0.0169	-	-	0.2728	-	-	0.0388	0.7019	0.0296	-	1.0600
OWF 65	23	6.1	-	-	-	0.2474	-	-	0.0217	-	-	-	0.2691
OWF 66	22	2.38	-	-	-	0.2797	-	-	0.0030	0.1380	-	-	0.4207
OWF 67	27	1	0.1989	-	-	0.1937	-	-	0.0067	1	0.0499	-	0.4492
OWF 68	23	2	-	-	-	0.4586	-	-	0.0172	-	0.4175	-	0.8933
OWF 69	22	3.47	-	-	-	0.5600	-	-	0.0449	0.0016	-	-	0.6065
OWF 70	23	4.64	0.0013	-	-	0.5650	-	-	0.0130	0.0796	-	-	0.6589
OWF 71	22	6.23	-	-	-	0.9981	-	-	0.1312	-	-	-	1.1293
OWF 72	26	3.62	0.0010	-	-	0.7883	-	0.0001	0.0140	3.8637	-	-	4.6671
OWF 73	19	1.93	-	-	-	0.2499	-	-	0.0536	-	0.0021	-	0.3056
OWF 74	25	1.8	0.0130	-	-	0.3099	-	-	0.0059	-	-	=	0.3288
OWF 75	23	3.05	0.0020	-	-	0.1259	-	-	0.0012	15.0120	-	-	15.1411

Document No. UK4855H-824-RR-01 Page 125 of 292

Station	Depth (m)	Distance to Nearest Well (km)	Other minor phyla	Cnidaria	Annelida	Polychaeta	Oligochaeta	Arthropoda	Crustacea	Mollusca	Echinodermata	Chordata	Total
OWF_76	23	5.56	0.0516	7.1584	-	7.2552	=	0.0015	1.2484	0.4454	1.1956	-	17.3561
OWF_77	22	4.52	0.0161	-	-	0.0798	0.0001	=	0.0182	0.5222	0.0001	-	0.6365
OWF_78	22	2.17	0.0096	-	-	0.2429	=	-	0.0022	0.0062	-	-	0.2609
OWF_79	22	4.9	0.0136	2.0205	-	1.6094	=	=	0.0396	0.3866	0.0030	-	4.0727
OWF_80	23	5.99	-	-	-	0.3912	-	-	0.1716	0.0384	-	-	0.6012
Total Biomass (g) by group		0.9948	10.0897	0.0059	45.8151	0.0019	0.0079	4.9698	218.6947	104.4262	15.1153	400.1213
Proportional Co	ntribution	(%)	0.2486	2.5217	0.0015	11.4503	0.0005	0.0020	1.2421	54.6571	26.0986	3.7777	-
Biomass (g/m²)	by group		9.9480	100.8970	0.0590	458.1510	0.0190	0.0790	49.6980	2,186.9470	1,044.2620	151.1530	4,001.2130

Document No. UK4855H-824-RR-01 Page 126 of 292

UK4855H-824-RR-01

4.7.2 Epibenthic Trawl Analysis

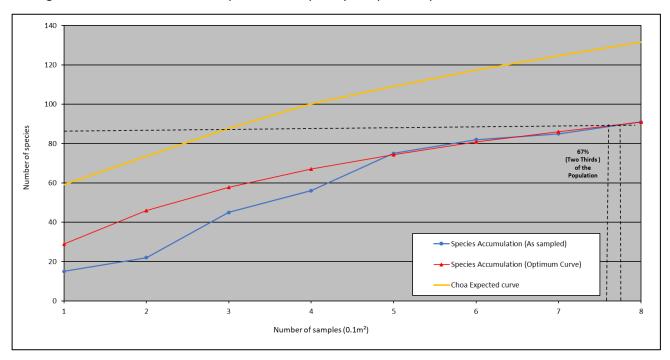
Beam trawling can capture species that are less likely to be represented by standard grab sampling and can offer supplementary macrofauna data for subsequent habitat characterisation and analysis. The beam trawl sampling undertaken across the survey area revealed a diverse fish and epifaunal assemblage. In total, 108 different species were recovered across the survey area, of which 99 were adults.

For the following epibenthic trawl assessment, the sampling effort was standardised to 500m for each trawl. Species that were recorded in their tens or hundreds are represented in the following analysis by the numerical equivalent of '10' or '100', respectively. This was necessary for small species that were present in extremely high abundances or aggregations, where counting individuals would be unfeasible in the field; For example, barnacle species *Balanus balanus* and *Balanus crenatus*, *Sabellaria spinulosa*, Serpulidae worms and *Pycnogonum littorale*.

Species that could not be enumerated and therefore only assessed on a presence/absence basis have been omitted from abundance analysis. This includes colonial fauna such as Cnidaria and Bryozoa, mixed Hydrozoa and Bryozoa assemblages and species where individuals are difficult to differentiate between, such as Porifera. However, due to the importance of these groups to the epibenthic community, these groups have been investigated in more detail in the Biomass analysis in Section 4.7.2c.

A total of nine juvenile specimens, including eggs, were also excluded from analysis due to their high mortality prior to reaching maturity. Consequently, they tend to induce a recruitment spike at certain times of the year due to rapid settlement and colonisation but are essentially an ephemeral part of the population masking the underlying trends within the mature adults. The planktonic comb jelly *Pleurobrachia pileus* was also excluded from analysis as it is not epibenthic, and likely entered the trawl during deployment and recovery.

Subsequent analysis of the epibenthic trawl samples identified a total of 4,866 individuals across 91 species from the eight trawl samples obtained in the OWF survey area. Faunal data for each sample are listed in Appendix I, whilst univariate analyses are summarised in Table 30 by trawl.


The epibenthic taxa consisted of Arthropods, represented by 23 species (38.8% of the total individuals). Chordata accounted for 23 species (29.7% of the total individuals) of which 91.3% of recorded Chordata were fish. This was followed by Echinoderms with eight species (15.3% of the total individuals), Molluscs with 27 species (10.2% of the total individuals) and seven Annelid species, which accounted for 5.0% of the total individuals. Solitary Cnidaria consisted of Actiniaria, identified down to two groups (Edwardsiidae and Actiniaria) representing 1.0% of the total individuals. Other groups included a single Platyhelminthes (flat worm) specimen, accounting for 0.02% of total individuals.

Five fish species recovered in trawl analysis are UKBAP Priority Species and Species of Principal Importance in England (SPIe) and are species of commercial value; Raitt's sand eel, *Ammodytes marinus*, whiting, *Merlangius merlangus*, ling, *Molva*, plaice, *Pleuronectes platessa* and sole, *Solea solea*. Furthermore, *Ammodytes marinus* is a priority species under the UK Post 2010 Biodiversity Framework as it is considered an important food source for many commercial fish, seals and seabirds (see Section 4.8.2d). Other species of sandeel were also recovered from the OWF survey area, including *Gymnammodytes semisquamatus*, *Ammodytes tobianus* and *Hyperoplus lanceolatus*. Other species that are commercially valuable that were recovered from trawl stations in the survey area included dab, *Limanda limanda*, lemon sole, *Microstomus kitt*, brown crab, *Cancer pagurus* and the common mussel, *Mytilus edulis*. Fish lengths were recorded on site and are presented in Appendix J.

The reef building ross worm, *S. spinulosa*, was recovered in samples from OWF_T5, OWF_T6_A and OWF_T9 and its presence is discussed further in Section 4.8.2b. Four specimens of the invasive non-native slipper limpet, *Crepidula fornicata*, were identified at stations OWF_T3 and OWF_T5. Slipper limpets can form dense aggregations, which can compete for space and smother native benthic fauna (see Section 4.8.1i).

The consistent accumulation of taxa with each trawl was demonstrated by a species accumulation curve as shown in Figure 36. The minimum curve in this figure demonstrates the incremental increase in recorded species as additional samples were acquired. This suggests that the population was diverse with a relatively high species richness being recorded in every new sample. This analysis estimated the maximum species accumulation (Chao-1 curve) for the survey area to be 131 species, compared to the actual 91 species recorded during the survey. The number of species recorded matches the representative portion of the population (i.e. 67% or 88 species) meaning no additional trawls were required to adequately sample the epibenthic fauna.

Figure 36 Species Accumulation Curve of OWF Epibenthic Trawls

a Primary and Univariate Parameters

The primary and univariate parameters for all trawls are listed in Table 30. The highest species numbers were identified in areas of mixed sediment made up of between 33.77% to 63.36% gravel (Table 14). For example, a maximum of 46 species were recovered from OWF_T9 (coarse sediment), and a minimum of 15 were recovered from OWF_T1 (sand). The number of individuals per 500m were more variable, evidenced by a relatively high coefficient of variation (54.7%; Table 30) across the OWF survey area, ranging between 171 per 500m at station OWF_T7 to 1,033 per 500m at station OWF_T9 (Table 30). The higher number of individuals and species at OWF_T9 could potentially be attributed to the underlying mixed sediment and the *S. spinulosa* located within the same sediment boundary 'Sandy CLAY' at station OWF_76.

Margalef's Index is a measure of species richness. The maximum Margalef's index was identified at station OWF_T9 (6.48), while the minimum was identified at station OWF_T1 (2.33) (Table 30). Stations with sand proportions of >90% had the lowest species richness, while areas of mixed and coarse sediments, cobbles and pebbles had the highest.

UK4855H-824-RR-01

The Simpson's diversity varied from a maximum of 0.900 at station OWF_T3 to a minimum of 0.555 at station OWF_T1, with low overall variability of 15.6% (Table 30). Whereas, the Shannon-Wiener Diversity index was more variable (CV 27.2%), with a maximum recorded at trawl OWF_T3 (3.94) and the minimum at trawl OWF_T1 (1.73). This is due to the difference in the way that the Simpsons and Shannon-Wiener diversity indices are calculated; the Shannon-Wiener diversity index gives more weight to species found in low abundances, while the Simpsons Diversity index gives more weight to abundant species. As such, rare species have less influence over the Simpson's diversity value. For instance, many species were only represented by a few individuals, with only a few highly abundant species (For example, brown shrimp *Crangon crangon*). Therefore, the diversity indices revealed trawls with coarse and mixed sediments had higher diversity than those sand-dominated trawls.

Pielou's Equitability displayed a similar pattern, with coarse and mixed sediment areas having a more evenly represented epibenthic community, with a maximum of 0.756 at OWF_T3 and a minimum of 0.442 at OWF_T1 (Table 30). Therefore, sand dominated sites had a more uneven community due to a small number of representative species when compared to the coarser sediments. Furthermore, the higher diversity found in areas of coarse and mixed sediment can be attributed both to the availability of attachment sites for colonial species, and greater availability and heterogeneity in interstitial space providing refuge sites for a greater range of species.

Table 30 Univariate Faunal Parameters per Epibenthic Trawl (Standardised to 500m)

Station	Depth Range (m)	Distance to Nearest Well (km)	Number of Species (S)	Number of Individuals (N)	Richness (Margalef)	Evenness (Pielou's Evenness)	Shannon- Wiener Diversity	Simpsons Diversity (1-Lambda')
OWF_T1	10 - 11	3.06	15	405	2.33	0.442	1.73	0.555
OWF_T2_A	16 - 17	0.75	16	480	2.43	0.519	2.08	0.668
OWF_T3	40 - 43	1.43	37	342	6.17	0.756	3.94	0.900
OWF_T4	18 - 20	2.17	31	428	4.95	0.661	3.27	0.790
OWF_T5	20 - 21	1.67	39	733	5.76	0.665	3.52	0.862
OWF_T6_A	20 - 21	1.06	35	348	5.81	0.662	3.40	0.849
OWF_T7	21 -22	3.29	18	171	3.31	0.561	2.34	0.687
OWF_T9	22 - 23	4.78	46	1033	6.48	0.648	3.58	0.835
Mean			30	493	4.66	0.614	2.98	0.768
SD			12	269	1.71	0.100	0.81	0.120
CV (%)			39.9	54.7	36.7	16.2	27.2	15.6

UK4855H-824-RR-01

b Multivariate Analysis

To provide a more thorough examination of the macrofaunal community, multivariate analysis was performed upon the epibenthic trawl data using PRIMER software (PRIMER 7.0.17; Clarke, K.R. *et al.*, 2014) to illustrate data trends. All data was squared-root transformed prior to analysis to down-weight the influence of any overriding species dominance between sample similarities/dissimilarities.

Hierarchical Agglomerative Clustering – Group Average Method

A similarity dendrogram was created using hierarchical agglomerative clustering (CLUSTER) and is presented for all trawls in Figure 37. SIMPROF analysis highlighted the presence of three significantly different (p<0.05) clusters which were differentiated by black branches and the different structural groups are interpreted below in Table 31. The dendrogram revealed little intra-cluster variability as the stations differentiated at a similar similarity level within each cluster group, indicating that the clusters had a high degree of similar epifaunal assemblages present.

Table 31 Summary of SIMPROF Trawl Groupings (500m)

SIMPROF Group	Similarity (%)	Stations	Interpretation
ʻa'	57.47%	OWF_T6_A, OWF_T5, OWF_T9	The first cluster of stations were comprised of coarse to mixed sediments between 20m to 23m of depth. These stations were moderately species rich with high diversity values, and were defined by the presence cobbles, pebbles and the reef building worm, <i>Sabellaria spinulosa</i> . This cluster can be considered to represent a variable coarse sediment epibenthic assemblage.
'b'	59.81%	OWF_T7, OWF_T1, OWF_T2_A	Stations in this cluster were characterised by well sorted sediments composed of over 99% sand, between 10 to 22m in depth. These stations had the lowest diversity. This cluster could be considered to represent the sand dominated, species poor epibenthic assemblages.
'c'	39.56%	OWF_T3, OWF_T4	These stations were both characterised by coarse sediment with high proportions of sand, gravel and shell gravel. High numbers Mollusca, especially of <i>Spisula solida</i> characterised the epibenthic fauna at these stations when compared to other clusters. This cluster can be considered to represent coarse sediment epibenthic assemblages lacking in <i>Sabellaria spinulosa</i> across the OWF survey area.

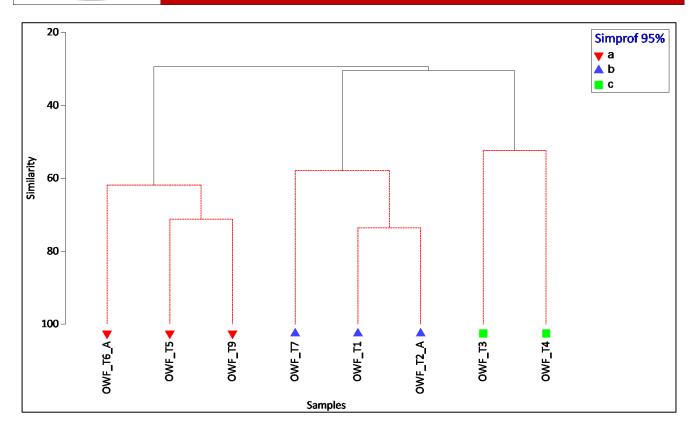


Figure 37 Dendrogram of epibenthic trawls (500m)

Non-metric Multi-dimensional Scaling (nMDS) Ordination

Similarities in the epifaunal communities recorded across the OWF survey area are presented in Figure 38 by trawls, as a 2D nMDS plot. The nMDS plot revealed three different SIMPROF groupings with a low stress value of 0.01 (Figure 38). The low stress value indicates that the complexity of the epibenthic trawl data has been adequately captured by the 2D nMDS. The plotted stations were consistent with the clusters identified in the dendrogram (Figure 37) and further indicate the inter-cluster variability as all stations within each cluster grouped tightly together with no overlap.

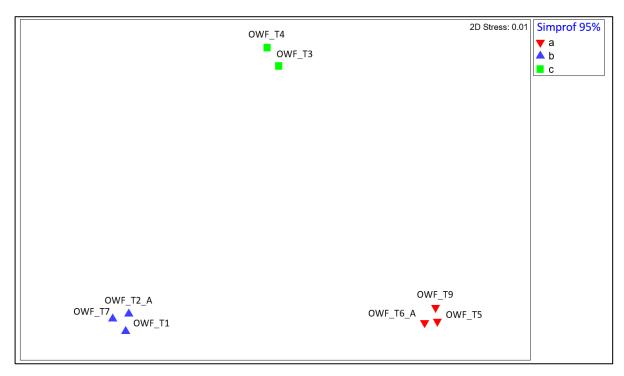


Figure 38 nMDS Ordination Plot of trawls (500m)

Inter-cluster Variation in Community Composition

To investigate the differing macrofaunal communities described by the identified multivariate clusters, the range in univariate diversity indices for the trawl clusters are summarised in Table 32. Stations within cluster 'a' and 'c' had the highest overall species richness, diversity and evenness, while cluster 'b' displayed much lower overall values. Number of individuals displays greater variability and overlap between clusters. This is as a result of a few species in cluster 'b' being present in very high abundances. Overlaps in diversity indices indicate the subtle difference in epifaunal community structure between the clusters; therefore, further review of the epifaunal dataset is required to describe the differences between each cluster.

Table 32 Overview of Univariate Parameters per SIMPROF Cluster

SIMPROF Cluster		per of es (S)		ber of uals (N)		ness galef)	Even (Piel Even	ou's	Simp Dive (1-Lan	rsity	Shannon Dive	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
а	35	46	348	1,033	5.76	6.48	0.648	0.665	3.397	3.581	0.84	0.86
b	15	18	171	480	2.33	3.31	0.442	0.561	1.728	2.341	0.56	0.69
С	31	37	342	428	4.95	6.17	0.661	0.756	3.274	3.939	0.79	0.90

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

Differences in the macrofaunal communities at a phyla level was explored by plotting the average percentage contribution of the major phyla to the overall number of individuals and number of species within each station, which have been ordered by cluster for visual clarity, and by cluster (Figure 39 and Figure 40).

There was a notable difference in the abundance of Chordata, particularly for cluster 'b' where Chordata accounted for a large proportion of the overall species abundance compared to the other clusters. The dominance of Chordata to the overall abundance of phyla for trawls within cluster 'b' was due to the high abundance of weaver fish (Echiichthys vipera), which could be attributed to the higher proportion of sand at these trawl stations. Mollusca were more prevalent within cluster 'c', most notably the surf clam, Spisula solida, and razor shell, Ensis magnus. The greater abundance of Mollusca within cluster 'c' was potentially attributed to the coarse sediment at these trawl locations when compared to the mixed sediment within cluster 'a' and the fine sand dominated sediments of cluster 'b' (Martins et al., 2013). Arthropoda abundance was relatively consistent across the cluster groups, with the brown shrimp (Crangon crangon) the most ubiquitous arthropod sampled by the epibenthic trawls. Echinodermata were more significant in cluster 'a', notably the predatory common starfish, Asterias rubens, when compared to the other clusters. The higher abundance of echinoderms, especially A. rubens was likely due to the presence of S. spinulosa at these trawl locations, as A. rubens predates S. spinulosa. Although Cnidaria were the least abundant phyla represented by the epifaunal trawl, a higher abundance occurred within clusters 'a' and 'c' due to the greater availability of cobbles and pebbles for sessile epifauna colonisation. Annelida and Platyhelminthes were also underrepresented by the epibenthic trawl dataset. Epifaunal trawls retained epifauna greater or equal to 5cm in length and skimmed across the superficial surface layer of the sediment; therefore, the trawls are likely, by design, to under present infaunal assemblages.

In terms of the contribution of phyla to the numbers of species, the clusters were fairly similar, suggesting that the differing abundances of phyla were more important for the separation of clusters. All clusters were characterised by similar compositions of phyla, with Arthropoda accounting for the greatest proportion of the overall species richness within clusters 'a'. In contrast, molluscs accounted for the greatest proportion of the overall species within cluster 'c'. Chordata had the greatest diversity within cluster 'b', but the species richness was slightly less dominant than the species abundance due to the high abundance of weaver fish (E. vipera) within this cluster grouping. Cnidaria, Platyhelminthes and Annelida had the lowest species richness of any phyla recorded, which was unsurprising given the low abundances and the typical underrepresentation of these phyla within epibenthic trawl datasets.

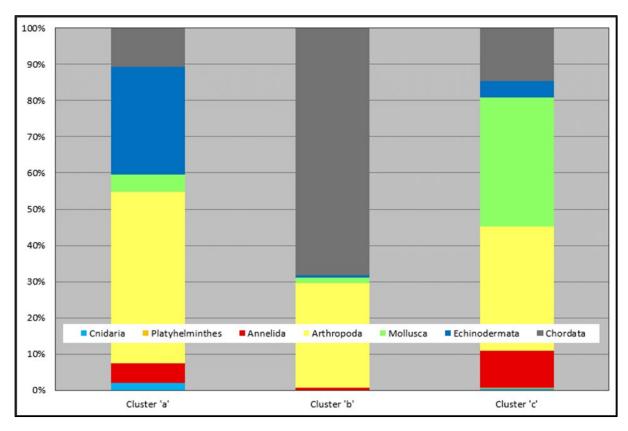


Figure 39 Average Contribution of Each Phyla to Total Epifaunal Abundance for Each Cluster

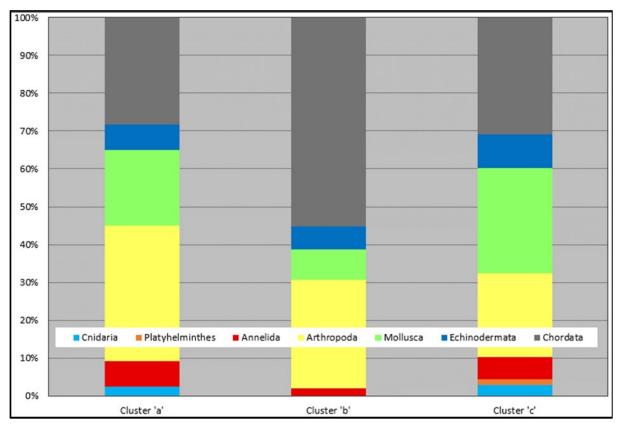


Figure 40 Average Contribution of Each Phyla to Total Number of Species for Each Cluster

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

To determine the species driving the differences between the three SIMPROF clusters identified from the epifauna data, Table 33 presents the top ten species in each cluster together with their percentage contribution to the overall similarity within the cluster. Whereas Table 34 shows the top five species responsible for differences between clusters.

Table 33 highlights the similarities in the species assemblages represented by clusters 'a', 'b' and 'c'. All three clusters were characterised by the brown shrimp (*Crangon crangon*) within the top three characterising species and common dab (*Limanda limanda*) within the top five. The similarity between clusters 'a' and 'b' were due to the common starfish (*A. rubens*) and the harbour crab (*Liocarcinus depurator*) representing the top characterising species for both clusters. Despite the similarities in epifauna between the clusters, the top characterising species for all three clusters was different. For example, *A. rubens* was the most abundant species within cluster 'a' (206.80 individuals) when compared to *E. vipera* (187.43 individuals) for cluster 'b' and *S. solida* (108.99 individuals) for cluster 'c'.

Further review of the taxa most responsible for differentiating the six clusters (Table 34) included all three dominating taxa (*A. rubens, E. vipera* and *S. solida*), previously highlighted as characteristic for all three clusters, again suggesting that some differentiation was due to variability in the abundance of consistently dominant taxa. The differences in species between the clusters are likely attributed to differences in sediment composition. For example, *E. vipera* are an indicator species of sandbank habitats with high proportions of sand, which coincides with trawls OWF_T7 and OWF_T1 (Kaiser *et al.*, 2004). Whereas clusters 'a' and 'c' were differentiated based on the higher abundance of *A. rubens* (206.80 individuals) within cluster 'a' compared to 15.42 individuals for cluster 'c', due to the higher abundance of *S. spinulosa* within cluster 'a' (38.35 individuals) compared to cluster 'c' (0 individuals). Therefore, the presence of *S. spinulosa* differentiated the coarser sediment clusters 'a' and 'c', whereas cluster 'b' was differentiated from the other clusters due to the sampling of sand dominated sandbank habitats.

Table 33 Top 10 Species Abundances for Trawl Clusters 'a', 'b' and 'c'

	Cluster	ʻa'		Cluster '	b'		Cluster '	c'	
Top 10 Species	Species	Av. Abundance	Contribution (%)	Species	Av. Abundance	Contribution (%)	Species	Av. Abundance	Contribution (%)
1	Asterias rubens	206.80	27.79	Echiichthys vipera	187.43	57.92	Spisula solida	108.99	25.87
2	Pandalus montagui	129.99	23.88	Crangon	95.66	29.52	Crangon	45.06	20.59
3	Crangon	88.85	18.83	Limanda	20.47	3.43	Asterias rubens	15.42	8.62
4	Pandalina brevirostris	30.26	5.47	Ammodytes marinus	18.49	3.19	Pagurus bernhardus	14.27	7.39
5	Limanda	21.54	3.20	Sepiola atlantica	5.14	2.27	Limanda	12.20	7.39
6	Necora puber	14.94	2.81	-	-	-	Nephtys caeca	37.88	5.90
7	Taurulus bubalis	14.31	2.74	-	-	-	Balanus crenatus	38.58	5.28
8	Sabellaria spinulosa	38.35	2.00	-	-	-	Liocarcinus depurator	7.65	3.70
9	Ascidiella aspersa	14.37	1.66	-	-	-	Sepiola atlantica	6.44	3.18
10	Liocarcinus depurator	7.26	1.33	-	-	-	Branchiostoma lanceolatum	12.73	2.64
Light b	olue shading = sharded taxa	across 3 clu	usters	Orange shading = shared t	axa across :	2 clusters			

Table 34 Dissimilarity Percentages (SIMPER) for Epifaunal Trawl Dataset

	Cluster a		Cluster <i>b</i>	
	Average dissimilarity 79.95%	6	Average dissimilarity 79.97	<u>'%</u>
	Asterias rubens	16.06	Echiichthys vipera	24.40
Cluster c	Pandalus montagui	11.44	Spisula solida	14.73
Cluster C	Spisula solida	1.33	Crangon sp.	6.49
	Crangon sp.	2.47	Balanus crenatus	5.60
	Nephtys caeca	1.11	Nephtys caeca	5.09
			Average dissimilarity 79.63	<u>1%</u>
			Echiichthys vipera	18.46
	Cluster a		Asterias rubens	18.17
	Ciustei a		Pandalus montagui	12.25
			Crangon crangon	3.76
			Sabellaria spinulosa	3.65

UK4855H-824-RR-01

c Biomass

The biomass (blotted wet weight) of the epifaunal trawl data from the OWF survey area is displayed by phylum in Table 35, and by taxa in Appendix I The total biomass for the epibenthic trawls conducted in the OWF survey area was 179,351g/500m. Bryozoa comprised 68,820g/500m, which was the largest proportional biomass of any group (38.37% of total biomass). Surprisingly, Bryozoa comprised of just three species; *Alcyonidium diaphanum*, *Alcyonidium parasiticum* and *Flustra foliacea*. The next major contributor to total biomass was Cnidaria, which accounted for 60,919 (33.80%), made up of the dead man's finger *Alcyonium digitatum*, Edwardsiidae anemones and other Actiniaria.

The group 'Hydrozoa and Bryozoa assemblages' contained mixed Bryozoa and Cnidaria that could not be identified to a lower taxonomic level in the field. This group comprised only 4,504g/500m (2.51% total biomass). Echinodermata followed, accounting for 15,280g/500m (8.52%). Chordata made up 11,361g/500m (6.33%). The majority of this was from bony fish (Actinopterygii), with a small proportion of Ascidiacea and one species of Leptocardii.

Mollusca only made up 1,757g/500m (0.98%) of the total biomass; however, was the most species rich group; 27.10% of the total species found in the OWF survey area were Mollusca. Similarly, Arthropoda contributed to 11,091g/500m (6.18%) of total biomass in the OWF survey area, however, was species rich (25.23% of species) and highly abundant (1,807 individuals). This can be attributed to the relatively small body sizes of most of the Arthropoda species. Porifera (5,647g/500m, 3.15%), Annelida (256g/500m, 0.14%) and 'Other' (Ctenophora & Platyhelminthes) (19g/500m, 0.01%) represented the smallest proportion of the total epibenthic trawl biomass in the OWF survey area.

Table 35 Blotted Wet Weight Biomass (g/500m) of Major Groups Within the OWF Survey Area

Station	Depth (m)	Distance to Nearest Well (km)	Cnidaria	Porifera	Annelida	Arthropoda	Mollusca	Bryozoa	Echinodermata	Chordata	Hydrozoa and Bryozoa assemblages	Other	Total
OWF_T1	10 -11	3.06	0	0	0	142	9	1,772	0	1,188	381	0	3,492
OWF_T2_A	16 - 17	0.75	0	0	0	383	19	812	246	1,357	37	4	2,857
OWF_T3	40 - 43	1.43	59	45	32	638	98	2,193	597	1,777	145	0	5,583
OWF_T4	18 - 20	2.17	4	84	213	438	1,392	24,687	563	752	2,043	12	30,190
OWF_T5	20 - 21	1.67	21052	2,270	2	5,111	65	18,458	6608	2,132	255	0	55,954
OWF_T6_A	20 - 21	1.06	16,820	968	4	2,098	53	9,893	2250	950	249	0	33,283
OWF_T7	21 -22	3.29	74	0	0	234	19	3,254	63	786	89	3	4,521
OWF_T9	22 - 23	4.78	22,607	2,280	6	2,047	102	7,752	4953	2,420	1,304	0	43,470
Total Biomass (g/500m) by group		60616	5,647	256	11,091	1,757	68,820	15280	11,361	4,504	19	179,351	
Proportional Contribution (%)		34	3	0	6	1	38	9	6	3	0	-	

Document No. UK4855H-824-RR-01 Page 138 of 292

UK4855H-824-RR-01

4.8 ENVIRONMENTAL HABITATS

Video and still photographic ground-truthing from the 31 transects across the OWF survey area confirmed the presence of heterogeneous environment, consisting of sand-dominated habitats with areas of shell debris, pebbles and cobbles, and intermediate habitats of coarse and mixed sediments across the survey area with occasional patches of pebbles and cobbles.

Habitats were identified using a combination of field observations, a detailed review of video footage, still images, infaunal macrofauna and epibenthic trawl datasets in accordance with the guidelines outlined by Parry (2019). SSS data showed areas of high reflectivity sediment across the majority of the survey, with an increased presence to the west of the survey area, indicating an area dominated by coarse sediments with patches of mixed sediments with variable densities of shell debris, cobbles and pebbles. Notable clusters of pebbles and cobbles, colonised by epifauna, were present in the coarse and mixed transitory sediments within the centre of the survey area at stations OWF_23, OWF_31, OWF_32, OWF_45, OWF_50, OWF_57, OWF_65, OWF_76 and OWF_79A. In the eastern extent of the OWF survey area lighter reflective sediment indicated areas of fine sand with variable densities of shell fragments. Two canyons had a similar sediment composition to the surrounding sediments but were classified as deeper variants, while those sediments situated on top of sandbank crests (<15m LAT) were classified as shallower variants to capture the heterogeneity of the OWF survey area.

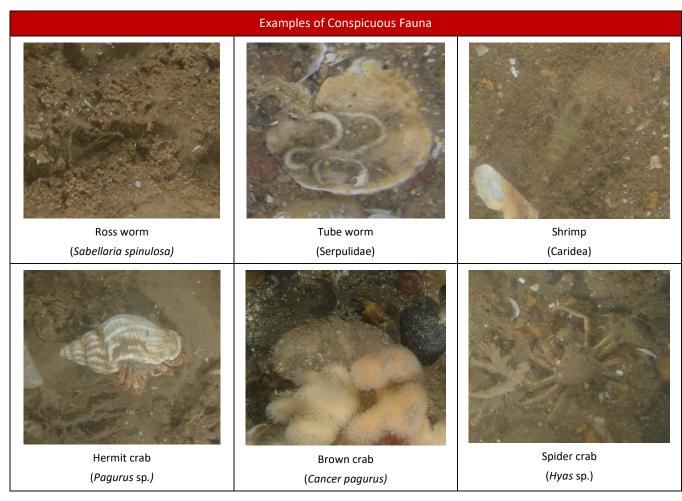
Based on the ground-truthing data obtained from the OWF survey area a total of seven JNCC/EUNIS habitats were assigned (Table 36). Several habitats were present across all extents of the OWF survey area: "Circalittoral coarse sediment" (SS.SCS.OCS/MD3), "Circalittoral mixed sediment" (SS.SMx.CMx/MC42) and "Circalittoral fine sand" (SS.SSa.CFiSa/MC5). Additionally, the centre of the survey area was characterised by "Infralittoral fine sand" (SS.SSa.IFiSa/MB5) and "Offshore circalittoral sand" (SS.SSa.OSa/MD5). In the west of the survey area patches of "Infralittoral coarse sediment" (SS.SCS.ICS/MB3) and "Circalittoral coarse sediment" (SS.SCS.CCS/MC32) was also present.

It is important to note that habitat classifications will differ from the seabed features identified for the geophysical aspect, as they are required for different purposes and use different sediment classification nomenclature. As such, the current survey re-defined some of the boundaries based on the added information gathered from trawl, video and grab analysis. The 'Infralittoral fine sand', 'Circalittoral fine sand' and 'Infralittoral coarse sediment' habitats generally relate to the geophysical classification of 'Sand'. Whereas the 'Offshore circalittoral sand', 'Offshore circalittoral coarse sediment' and 'Circalittoral coarse sediment' habitats generally relate to the 'Gravelly SAND' and 'GRAVEL' classifications. The intermediate habitat classification of 'Circalittoral coarse and mixed sediment' generally relate to the 'Sandy CLAY' classification (Figure 5).

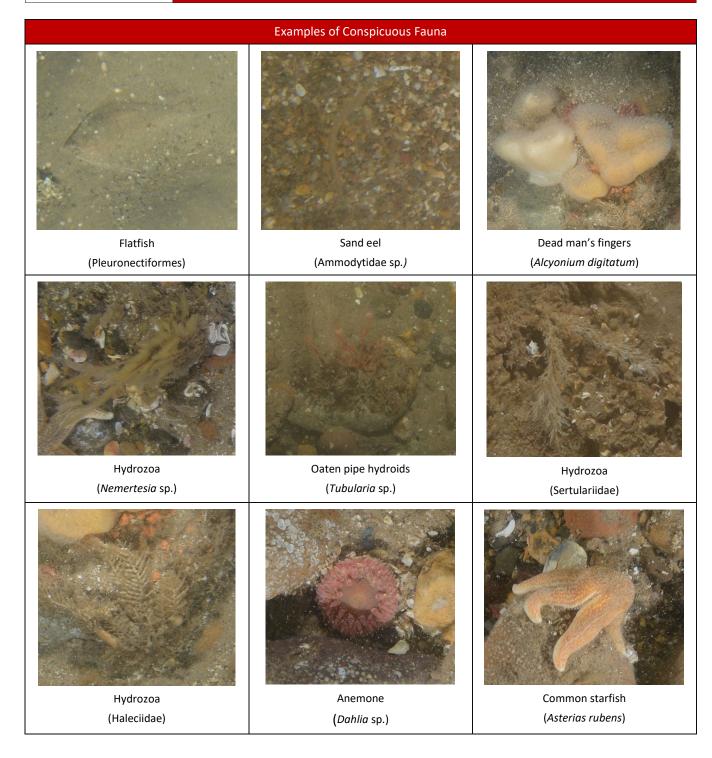
Table 36 Summarised Habitat Classification

BGS Modified Folk Classification of Particle Size Analysis	JNCC Classification	2012 EUNIS Classification	2019 EUNIS Classification		
Slightly gravelly sand	SS.SSa.OSa Offshore circalittoral sand	A5.27 Deep circalittoral sand	MD52 Atlantic offshore circalittoral sand		
Sand, Slightly gravelly sand	SS.SSa.CfiSa	A5.25	MC52		
	Circalittoral fine sand	Circalittoral fine sand	Atlantic circalittoral sand		
Sand, Slightly gravelly sand	SS.SSa.IfiSa	A5.23	MB52		
	Infralittoral fine sand	Infralittoral fine sand	Atlantic infralittoral sand		
Muddy sandy gravel, Gravelly muddy sand,	SS.SMx.CMx Circalittoral mixed sediment	A5.44 Circalittoral mixed sediments	MC42 Atlantic circalittoral mixed sediment		
Sandy gravel	SS.SCS.OCS	A5.15	MD32		
	Offshore circalittoral coarse	Deep circalittoral coarse	Atlantic offshore circalittoral		
	sediment	sediment	coarse sediment		
Sandy gravel, gravelly sand, gravel	SS.SCS.CCS Circalittoral coarse sediment	A5.14 Circalittoral coarse sediment	MC32 Atlantic circalittoral coarse sediment		
Gravelly sand	SS.SCS.ICS	A5.13	MB32		
	Infralittoral coarse sediment	Infralittoral coarse sediment	Infralittoral coarse sediment		

Conspicuous fauna within the OWF survey area showed relatively high diversity and density, with a total of 36 epifaunal species recorded reflecting the broad range of habitats identified. Mobile Arthropoda such as shrimp (Caridea), brown crab (*Cancer pagurus*), spider crab (*Hyas* sp.), velvet swimming crab (*Necora puber*), harbour crab (*Liocarcinus* sp.) and unidentifiable crabs (Bachyura sp.) were generally restricted to areas of coarse and mixed sediment, while hermit crabs (*Pagurus* sp.) were more widespread across a range of sediment types. Other mobile fauna included a limited variety of Echinodermata, including the common starfish (*Asterias rubens*) observed at the majority of sand dominated stations and brittle stars (Opiuroidea sp.) which were associated with finer material. Chordata species were also observed at the more sand dominated stations and came in the form of sandeels (*Ammodytes* sp.), plaice (*Pleuronectes platessa*), flatfish (Pleuronectiformes sp.), dragonet (*Callionymus lyra*), pogge (*Agonus cataphractus*), lesser weaver fish (*Echiichthys vipera*) and unidentified fish (Actinopterygii sp.). Sandeels (*Ammodytes* sp.) were the most prominently identified Chordata, with higher abundances noticed at sand dominated stations with minimal surface shell fragments. The presence of sandeels warranted further investigation due to the potential for sandeel spawning and nursery ground to occur within the survey area (discussed further in Section 4.8.2d).


Anthozoa were also present within the survey area, including the dahlia anemone (*Urticina felina*) and dead man's fingers (*Alcyonium digitatum*), with unidentified anemones (Actiniaria sp.) were also observed along multiple transects. Mobile Mollusca were also observed but were limited to the common whelk (*Buccinum undatum*). Other sessile fauna such as razor clams (*Ensis* sp.), barnacles (Cirripedia sp.), Serpulidae, Haleciidae, encrusting sponge (Porifera), antenna hydroid (*Nemertesia* sp.), Sertulariidae, pipe hydroid (*Tubularia* sp.), hornwrack (*Flustra foliacea*), the Bryozoa (*Vesicularia spinosa*), *Cheilostomatida*, sea chervil (*Alcyonidium diaphanum*), sand mason worm (*Lanice conchilega*) and hydrozoan/bryozoan turf were sporadically distributed across the survey area based on hard substrate availability. The invasive non-native slipper limpet (*Crepidula fornicata*) and the Annex 1 habitat forming ross worm (*Sabellaria spinulosa*) were also observed within the OWF survey area and will be further discussed in Sections 4.8i and 4.8.2b.

Habitats comprised of mixed and coarse sediments, more prevalent to the west of the survey area, supported higher diversities and abundance of conspicuous fauna when compared to the sand dominated habitats. The sediment heterogeneity resulted in greater hard surface availability and lead to increased colonisation by a range of epibenthic species. The higher diversity and abundance of epifaunal species was especially apparent at station OWF_76 which had aggregations of ross worm (*S. spinulosa*) and recorded the highest diversity of epifaunal species, with a total of 24 out of 36 species observed. However, Chordata species were more commonly observed across areas of sand dominated sediments as (*Ammodytes* sp.), plaice (*P. platessa*), flatfish (Pleuronectiformes sp.), dragonet (*C. Lyra*), pogge (*A. cataphractus*) and lesser weaver fish (*E. vipera*) appeared to be more reliant on sand burial as a refuge rather than the presence of hard substrates.


Example images of conspicuous fauna within the OWF survey area are presented below in Figure 41, while example seabed images for each transect are provided in Appendix P.

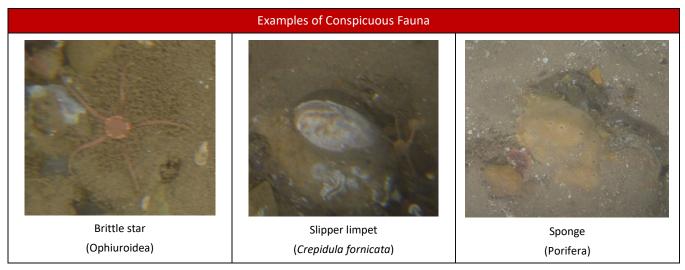


Figure 41 Species Examples from Seabed Photographs

4.8.1 Habitat Classification

a Infralittoral Fine Sand (SS.SSa.IfiSa / MB52)

Habitats dominated by rippled homogeneous medium to very coarse sands with minimal shell fragments were associated with the crests of sandbanks (<15m LAT) to the east and north of the survey area. Given the elevation, the infralittoral fine sand dominated habitats were influenced by megaripples and sand waves orientated east-northeast to west-southwest. Described by the JNCC as "clean sands which occur in shallow water, either on the open coast or in tide-swept channels of marine inlets. The habitat typically lacks a significant seaweed component and is characterised by robust fauna, particularly amphipods and robust polychaetes".

Due to the homogeneous sand with negligible hard substrate, fauna observed on the seabed photographs and video were limited to sporadic sightings of Chordata such as dragonet (*C. lyra*), Lesser weaver fish (*E. vipera*) and unidentified fish (Actinopterygii), with a greater abundance of sandeels (Ammodytidae sp.) observed in relation to the other Chordata species. Other mobile fauna were limited to sporadic observations of hermit crabs (*Pagurus* sp.). The presence of medium to very coarse sand, low abundance and diversity of observed epifauna is consistent with the level four EUNIS habitat classification MB52 describing 'Atlantic infralittoral sand', corresponding with the JNCC classification SS.SSa.IfiSa, 'Infralittoral fine sand', which is within the expected depth range (0 – 20m) for this biotope. The presence of sandeels on the underwater video transects warranted further investigation into this habitat type's suitability for sandeel spawning and nursery grounds (see Section 4.8.2d).

Four level five biotopes exist within the 'Infralittoral fine sand' habitat; but only two had strong similarities to the survey area, these were: SS.SSa.IfiSa.NcirBat 'Nephtys cirrose and Bathyporeia sp. In infralittoral sand' and SS.SSa.IfiSa.ImoSa 'Infralittoral mobile clean sand with sparse fauna'. Due to the generally impoverished fauna observed at stations OWF_01, OWF_03, OWF_42 and OWF_55 the SS.SSa.IfiSa.ImoSa biotope shows the strongest resemblance to the dataset.

The SACFOR scale results based on the video and stills analysis further evidenced the impoverished environment with species observed during video and stills analysis of OWF_01 and OWF_03 limited to Actinopterygii and Ammodytidae fish, with SACFOR scales ranging between 'occasional' and 'frequent' (Table 37 and Figure 40). The limited epifauna is to be expected from 'Infralittoral fine sand', as fauna present in this biotope is robust and often infaunal, giving the sand a 'clean' and impoverished appearance. The SS.SSa.IfiSa.IMoSa habitat, based on the

UK4855H-824-RR-01

stills and video SACFOR review, was more likely to occur within the infralittoral fine sand areas as the presence of Ammodytidae had a SACFOR abundance and frequency of occurrence of 'frequent' which was in line with the definition established by the JNCC (JNCC, 2020).

The shallow (<15m) sand-dominated habitats were classified and mapped as the overarching 'Infralittoral fine sand' habitat but could be considered to reflect the level 5 'Infralittoral mobile clean sand with sparse fauna' habitat. Example images are given in Figure 42 and the expected extent of the habitat to JNCC level 4 is mapped in Figure 50, while a level 5 map with the SS.SSa.IfiSa.IMoSa habitat applied is displayed in Figure 51.

Table 37 SACFOR Scale from Video Analysis of SS.SSa.IfiSa Habitat

Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus		нуаз sp.	Liocarcinus sp.	Cirripedia		Aicyomaiam arapnanam		רומצנות לסוומנפט		vesicularia spiriosa	Actinopterygii	Pleuronectiformes		Ammodytidae sp.	7 7 7 7	Alcyonium digitatum		Sertulariidae	0.00	паїесії дае	Actinaria sp.	Urticina felina	40	Asterius ruberis	Sabellaria spinulosa	Serpulidae	Porifera
Size Class	(%)	(%)	3 – 15cm	3 – 15cm	>15cm	3 – 15cm	>15cm	3 – 15cm	(%)	3 – 15cm	>15cm	3 – 15cm	>15cm	3 – 15cm	>15cm	3 – 15cm	3 – 15cm	3 – 15cm	>15cm	3 – 15cm	>15cm	3 – 15cm	>15cm	3 – 15cm	>15cm	3 – 15cm	3 – 15cm	3 – 15cm	>15cm	(%)	(%)	(%)
SACFOR Scale*																																
OWF_VID_01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	С	0	0	0	0	0	0	0	0	0	0	0	0	0
Percentage Fre	quenc	y of O	ccurre	nce (%)																												
OWF_VID_01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0
*Superabundar	t = (S)	, Abun	dant =	= (A), Co	mmor	= (C),	Frequ	ient = (F), Occ	casion	al = (C	D), <mark>Rar</mark>	e = ® c	and <mark>Le</mark>	ss tha	n Rare	= (L)	-		-			-				-	-	•			

Document No. UK4855H-824-RR-01 Page 146 of 292

UK4855H-824-RR-01

Table 38 SACFOR Scale from Stills Analysis of SS.SSa.IFiSa Habitat

Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp.	Cancer pagurus	Hyas sp.	Liocarcinus sp.	Necora puber	Cirripedia		Alcyoniaium alapnanum	Eluctor foliocon	יומפנות לסוומככת		Vesicularia spiriosa	Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes	1 to 200	Allinodytidae sp.		Alcyonium aigitatum	Nemertesia sp.	Tubularia sp.	1	sertularildae	Haleciidae	Actinaria sp.	Urticina felina		Asterias rubens	Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
Size Class	(%)	(%)–3 -	>15cm	>15cm-3	(%)–3 -	>15cm-3	>15cm-3	>15cm	(%)–3 -	>15cm-3			>15cm-3	(%)																										
SACFOR Scale	*																																							
OWF_VID_01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percentage Fr	eque	псу ој	f Occ	urren	ce (%	6)																																		
OWF_VID_01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*Superabundar	nt = (.	S), Ab	unda	nt =	(A), C	omm	non =	(C), F	requ	ent =	(F),	Occas	sional	= (0), Rai	re = (<mark>R)</mark> an	d <mark>Les</mark>	s tha	ın Ra	re = (I	<u>'</u>)																		

UK4855H-824-RR-01

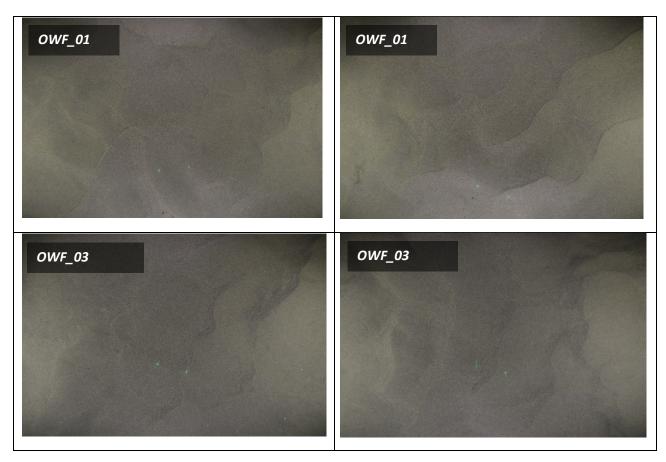


Figure 42 Example Images of Atlantic Infralittoral Sand Habitats

UK4855H-824-RR-01

b Circalittoral Fine Sand (SS.SSa.CFiSa / MC52)

Similarly to the infralittoral fine sand habitats, the deeper (>15m) habitats, associated with the flanks of sandbanks and troughs of sand waves to the north and east of the survey area, were dominated by rippled homogeneous fine to coarse sands with minimal shell fragments. Described by the JNCC as "Clean fine sands with less than 5% silt/clay in deeper water, either on the open coast or in tide-swept channels of marine inlets in depths of over 15-20m. The habitat may also extend offshore and is characterised by a wide range of echinoderms, polychaetes and bivalves. This habitat is generally more stable than shallower, infralittoral sands and consequently supports a more diverse community".

Due to the homogeneous sand with negligible hard substrate, fauna observed on the seabed photographs and video were limited to sporadic sightings of Chordata such as dragonet (*C. lyra*) and unidentified fish (Actinopterygii), with a greater abundance of sandeels (Ammodytidae sp.) observed in relation to the other Chordata species. Other mobile fauna were limited to sporadic observations of hermit crabs (*Pagurus* sp.), common starfish (*A. rubens*) and unidentified crabs (Brachyura sp.). Sub-surface availability of hard substrate resulted in the colonization of sessile epifauna such as *Vesicularia spinosa*, Sertulariidae and sand mason worms (*L. conchilega*). The presence of fine to coarse sand, moderate abundance and diversity observed epifauna is consistent with the level four EUNIS habitat classification MC52 describing 'Atlantic circalittoral sand', corresponding with the JNCC classification SS.SSa.CFiSa which is within the expected depth range (10 – 50m) for this biotope. Similarly to the infralittoral fine sand, the presence of sandeels on the underwater video transects warranted further investigation into this habitat type's suitability for sandeel spawning and nursery grounds (Section 4.8.2d).

Three level five biotopes exist within the 'Circalittoral fine sand' habitat; however, none of these level five habitats could be confidentially assigned due to the absence of *Echinocyamus pusillus*, *Abra prismatica*, *Siphonoecetes* sp. and low abundances of venerid bivalves. The presence of *N. cirrose* and *Bathyporeia* sp. could indicate some level of conformance and hence a deeper variant of the '*N. cirrose* and *Bathyporeia* sp. in infralittoral sand' (SS.SSa.IFiSa.NcirBat / MB5233) habitat. However, the application of this level 5 biotope must be caveated as some characterising species such as *Bathyporeia* were not present at all stations in the SS.SSa.CFiSa habitat.

Similarly, the SACFOR scale based on the stills and video analysis revealed the area to be generally impoverished in regards to conspicuous epibenthic fauna (Table 39 and Table 40). Species observed during video analysis were limited to 'frequent' and 'common' Ammodytidae fish at two stations (OWF_17 and OWF_73). Whereas, the stills analysis revealed 'frequent' abundance of characteristic SS.SSa.CFiSa species such as *Pagurus* sp. However, similar to 'Infralittoral fine sand', fauna present in this biotope is robust and often infaunal, giving the sand a 'clean' impoverished appearance. The limited epifauna was further highlighted by the low frequency of occurrence, ranging between 0% to 9% for species other than Ammodytidae, which had a 50% frequency of occurrence.

A greater number of species were recovered from trawls in areas of 'Circalittoral fine sand' than 'Infralittoral fine sand'. The slightly deeper, more stable nature of the circalittoral provides opportunities for a greater number of species, allowing for greater species diversity. This is evidenced by a higher Shannon-Wiener and Simpson's diversity index at SS.SSa.CFiSa trawl stations when compared to the SS.Sa.IFiSa trawl stations (Section 4.7.2).

Example images are given in Figure 43 and the expected extent of the habitat 'Infralittoral fine sand' (EUNIS: 'Atlantic circalittoral sand', MC52) is mapped in Figure 50. The potential level 5 biotope present (SSa.IFiSa.NcirBat / MB5233) is mapped in Figure 51.

Table 39 SACFOR Scale from Video Analysis of SS.SSa.CFiSa Habitat

Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus		луаз sp.	Liocarcinus sp.	Cirripedia	1	Aicyonialum alapnanum		riustra jonacea		Vesicularia spinosa	Actinopterygii	Pleuronectiformes		Ammodytidae sp.		Alcyonium aigitatum		sertulariidae		паїесії (дае	Actinaria sp.	Urticina felina		Astenas rubens	Sabellaria spinulosa	Serpulidae	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	>15cm		3 - 15cm	>15cm	3 - 15cm		(%)		3 - 15cm		>15cm	3 - 15cm	>15cm	!	3 - 15cm		>15cm	,	3 - 15CM	,	3 - 15cm	3 - 15cm	>15cm	i,	3 - 15cm	>15cm	3 - 15cm	>15cm
SACFOR Scale*																																
															0	0																
OWF_VID_17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percentage Freque	ncy of	Occu	rrence	e (%)																												
OWF_VID_15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*Superabundant =	(S), AI	bunda	nt = (A	4), Coi	mmon	=(C),	Frequ	ient =	(F), O	ccasic	nal =	(O), R	are =	(R) an	d <mark>Less</mark>	than	Rare =	: (L)							1		1					

Table 40 SACFOR Scale From Stills Analysis of SS.SSa.CFiSa Habitat

												Tabl	- 40	JACI	OK.	care	1101	1 Jth	IS AI	lalys	3 01	33.30	Ja.Ci	·ISa F	labit	iat														
Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp.	Cancer pagurus	Hyas sp.	Liocarcinus sp.	Necora puber	Cirripedia		Асублашт анарлапат		riustra joiiacea		Vesicularia spinosa	Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes		Ammodytidae sp.		Alcyonium digitatum	Nemertesia sp.	Tubularia sp.	0 P :: 0 P :: 0 P	sertulariidae	Haleciidae	Actinaria sp.	Urticina felina	Actoriae gubone	Asterius ruberis	Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	>15cm	3 - 15cm	3 - 15cm	(%)	7 15000	3 - TOCIII	į	>T5cm	;	3 - 15cm	>15cm	3 - 15cm	>15cm	(%)	3 - 15cm	3 - 15cm	Ļ	3 - 15cm	;	3 - 15cm	3 - 15cm	3 - 15cm		>Tecm	3 - 15cm	>15cm	3 - 15cm		3 - 13CIII	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm
SACFOR Scale*																																								
OWF_VID_15	0	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percentage Freq	uency	of O	ccurr	ence	(%)																																			
OWF_VID_15	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*Superabundant	=(S),	Abur	ndant	· = (A), Cor	nmoi	n = (C), Fre		nt = (F		casio	nal =	- = (O),		$r = (R_i)$		Less		Rare	= (L)		<u> </u>	1	1	1	<u> </u>			<u> </u>	1	<u> </u>	1						1	
																	_																							

Document No. UK4855H-824-RR-01 Page 151 of 292

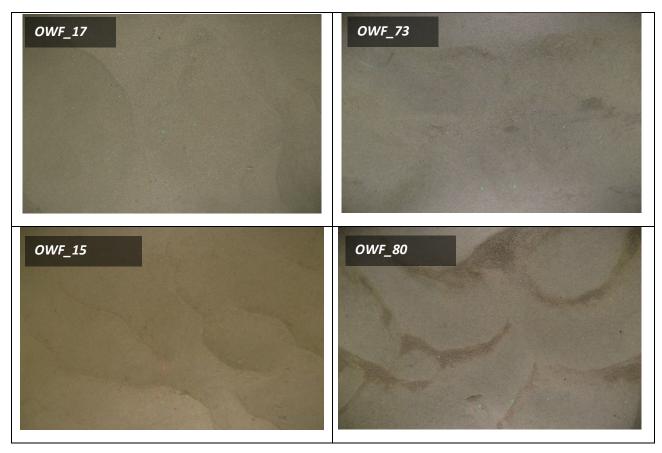


Figure 43 Example Images of Atlantic Circalittoral Sand Habitats

c Offshore Circalittoral Sand (SS.SSa.OSa / MD52)

The deeper (>30m) habitat was limited to the spatial extent of the eastern canyon, which was dominated by rippled heterogeneous coarse sands with variable shell fragments. The sand dominated sediment of the canyon was scoured by bottom currents given the presence of megaripples and sand waves. Described by the JNCC as "Offshore (deep) circalittoral habitats with fine sands or non-cohesive muddy sands. Very little data is available on these habitats however they are likely to be more stable than their shallower counterparts and characterised by a diverse range of polychaetes, amphipods, bivalves and echinoderms".

The fauna observed on the seabed photographs and video were similar to those observed for the infralittoral and circalittoral fine sand habitat, with mobile epifauna such as Pogge (*A. cataphractus*), unidentified flatfish (Pleuronectiformes sp.), common starfish (*A. rubens*), shrimp (Caridea sp.), brittle stars (Ophiuroidea sp.) and hermit crabs (*Pagurus* sp.). Sessile epifauna were also observed and included sea chervil (*A. diaphanum*), hornwrack (*F. foliacea*), Sertulariidae and *V. spinosa*. However, unlike the infralittoral and circalittoral habitats, sandeels were absent from this deeper (>30m) sand dominated habitat, potentially indicating a depth preference to the spatial distribution of sandeels across the OWF survey area. The presence of coarse sand and moderate abundance and diversity of observed epifauna is consistent with the level four EUNIS habitat classification MD52 describing 'Atlantic offshore circalittoral sand', corresponding with the JNCC classification SS.SSa.OSa which is within the expected depth range (20-100m) for this biotope.

Two level five biotopes exist within the 'Offshore circalittoral sand' habitat'; however, three of the four characterising taxa (Maldanid polychaetes, *Eudorellopsis deformis* and *Amphiura filiform*) of these biotopes were absent from grab sampling at these stations. A single individual of *Owenia fusiformis* was present at station

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

OWF_39 in the delineated SS.SSa.OSa habitat type which could indicate a very impoverished version of the JNCC level 5 habitat 'Owenia fusiformis and Amphiura filiformis in offshore circalittoral sand or muddy sand' (SS.SSa.OSa.OfusAfil/MD5212).

The SACFOR scale based on the stills and video analysis confirmed the generally impoverished with species observed during video analysis of station OWF_47 limited to *A. diaphanum* and *A. rubens* (Table 41). The stills analysis captured a greater species diversity, including occasional *Pagurus* sp. and frequent *A. rubens*, in keeping with the expected abundance and occurrence of these species within circalittoral fine sand habitats. Although only one camera transect, OWF_VID_47, characterised this habitat, there was a higher species diversity, which is expected from deeper, more stable biotopes (Table 42). No trawls were carried out at station OWF_47 and hence no trawl data could be compared for the 'Offshore circalittoral sand' habitat.

Example images are given in Figure 44 and the expected extent of the habitat 'Offshore circalittoral sand' (EUNIS: 'Atlantic offshore circalittoral sand', MD52) is mapped Figure 50. The potential level 5 biotope present (SS.SSa.OSa.OfusAfil/MD5212) is mapped in Figure 51.

Table 41 SACFOR Scale from Video Analysis of SS.SSa.Osa Habitat

Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus		Hyas sp.	Liocarcinus sp.	Cirripedia	Alcyonidium	diaphanum		riustra jonacea		Vesicularia spinosa	Actinopterygii	Pleuronectiformes	S C C P : + 1 P C C C C C	Ammodytidae sp.		Акуотит авласит	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sertularındae		наїесіі дае	Actinaria sp.	Urticina felina	o wood is a six of a	אובנותף ותחבונה	Sabellaria spinulosa	Serpulidae	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	(%)	(%)	(%)
SACFOR Scale*																																
OWF_VID_47	0	0	0	0	0	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0
Percentage Frequ	ency o	of Occu	irrence	e (%)																												
OWF_VID_47	0	0	0	0	0	0	0	0	0	0	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	33	0	0	0	0
*Superabundant =	= (S), A	bunda	nt = (A	N), Con	nmon =	= (C), F	reque	nt = (F)	, Occa	sional	= (0),	Rare =	(R) ar	nd <mark>Less</mark>	than I	Rare =	(L)															

Table 42 SACFOR Scale from Stills Analysis of SS.SSa.Osa Habitat

Таха	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp.	Cancer pagurus	Hyas sp.	Liocarcinus sp.	Necora puber	Cirripedia	Alcyonidium	diaphanum	Eluctra foliacea	riastia jonacca	Vesicularia sninosa		Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes	1 - PO 500 W	Aiiiiodyddae sp.	Alexander distratum	Aicyomann aignatain	Nemertesia sp.	Tubularia sp.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Haleciidae	Actinaria sp.	Urticina felina	Actorior Proposition	_	Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	>15cm	3 - 15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	(%)	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	(%)
SACFOR Scale*																																								
OWF_VID_47	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0
Percentage Fre	quen	cy of	Occui	rrenc	e (%)																																			
OWF_VID_47	0	0	3	3	0	0	0	0	0	0	9	0	0	0	3	0	0	0	3	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	3	0	0	0	0
*Superabundar	nt = (S), Abi	undai	nt = (.	A), Co	ommo	on = ('C), F <mark>r</mark>	reque	nt = ((F), O	ccasio	onal =	(0),	Rare	= (R)	and l	Less t	han I	Rare :	= (L)																			

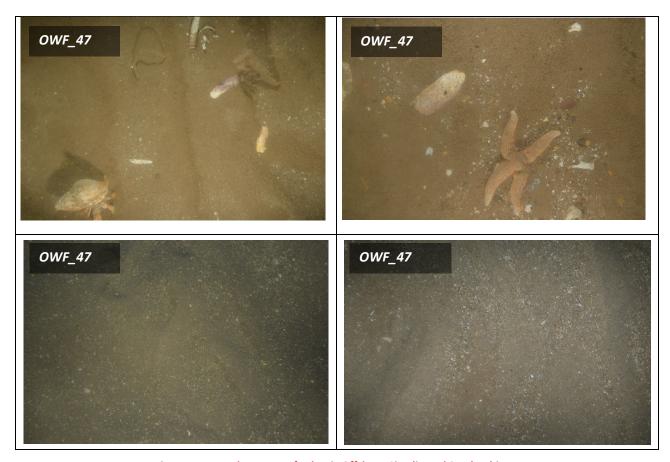


Figure 44 Example Images of Atlantic Offshore Circalittoral Sand Habitats

d Infralittoral Coarse Sediments (SS.SCS.ICS / MB32)

Similarly to the infralittoral fine sand habitats (Section 4.8.1a), habitats dominated by rippled homogeneous coarse sands with minimal shell fragments were associated with the crests of a sandbank (<15m LAT) to the south of the survey area. The infralittoral coarse sediment dominated habitat was influenced by megaripples and sand waves orientated northeast to the west-southwest. Described by the JNCC as "Moderately exposed habitats with coarse sand, gravelly sand, shingle and gravel in the infralittoral, are subject to disturbance by tidal streams and wave action. Such habitats found on the open coast or in tide-swept marine inlets are characterised by a robust fauna of infaunal polychaetes and venerid bivalves".

In the absence of video ground-truthing, the macrofauna grab sample acquired at station OWF_21 indicates a sparse faunal assemblage across this habitat type, with fauna limited to low abundances and diversities of Annelida, Nemertea, Nematoda and Mollusca. The presence of coarse sand and the limited abundance and diversity of infauna is consistent with the level four EUNIS habitat classification MB32 describing 'Atlantic infralittoral coarse sediment', corresponding with the JNCC classification SS.SCS.ICS which is within the expected depth range (10 - 20m) for this biotope. However, only one grab sample was taken from this habitat type, so classification is predominantly based on water depth and sediment composition from PSA and grab photographs.

Seven level five biotopes exist within the 'Infralittoral coarse sediment' habitat; but only two had strong similarities to the survey area, these were: SS.SCS.ICS.SSh 'Sparse fauna on a highly mobile sublittoral shingle (cobbles and pebbles)' and SS.SCS.ICS.Glap 'G. lapidum in impoverished infralittoral mobile gravel and sand'.

The presence of *G. lapidum* and impoverished fauna recorded supports the assignment of either level five biotope; however, the JNCC state that "[*G. lapidum*] is rarely considered a characteristic species and where this is the case it is normally due to the exclusion of other species". It is possible that 'SS.SCS.ICS.Glap' is not a true biotope, but rather an impoverished, transitional community, which in more settled conditions develops into other more stable communities. The lack of camera data to confirm the presence of *Liocarcinus* sp., *Pagurus* sp. and *U. felina* limit the confident assignment of either level 5 biotopes, however, given the impoverished nature of the sediment the SS.SCS.ICS.SSh could be considered the most likely to be present.

Example grab images are given in Figure 45 and the expected extent of the habitat 'Infralittoral coarse sediment' (EUNIS: 'Atlantic infralittoral coarse sediment, MB32) is mapped Figure 50. Mapping of the possible level 5 biotope SS.SCS.ICS.SSh occurring in the area is displayed in Figure 51.

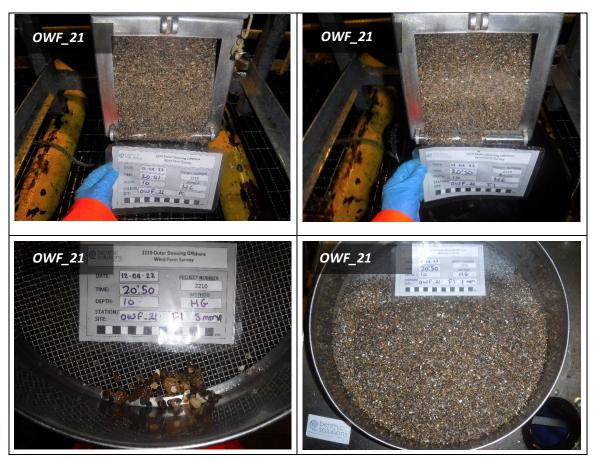


Figure 45 Example images of Atlantic infralittoral coarse sediment habitats

e Circalittoral Coarse Sediments (SS.SCS.CCS / MC32)

Habitats comprised of variable densities of boulders, cobbles, pebbles and shell fragments overlaying sand at water depths greater than 15m were predominantly observed to the east of the survey area. Similarly to the sand dominated habitats, the mobile circalittoral coarse sediment formed megaripples and sand wave bedforms that were orientated northeast to the west-southwest. Relatively smaller patches of shell gravel, pebbles and cobbles were also present in the centre and to the west of the survey area interspersed between the mixed sediment and sand matrices. Described by the JNCC as "Tide-swept circalittoral coarse sands, gravel and shingle generally in depths of over 15-20 m. This habitat may be found in tidal channels of marine inlets, along exposed coasts and

UK4855H-824-RR-01

offshore. This habitat, as with shallower coarse sediments, may be characterised by robust infaunal polychaetes, mobile crustacea and bivalves".

Fauna observed on the seabed photographs and video were similar to the assemblages observed in the sand dominated habitats but were of slightly higher diversity and abundance given the greater availability of hard substrate for colonisation. Echinoderms were limited to the common starfish (*A. rubens*). Mobile Arthropoda were also observed and included spider crabs (*Hyas* sp.), unidentifiable crabs (Bachyura sp.) and hermit crabs (*Pagurus* sp.). Mobile Chordata were occasionally observed and included sandeel (*Ammodytes* sp.) and dragonet (*C. lyra*). Sessile organisms were largely limited to the sporadic boulders, cobbles and pebbles found throughout the coarse habitats and included antenna hydroid (*Nemertesia* sp.), Oaten pipe hydroid (*Tubularia* sp.), hydrozoan/bryozoan turf, dead man's fingers (*A. digitatum*), hornwrack (*F. foliacea*), dahlia anemone (*U. felina*), sea chervil (*A. diaphanum*), porifera, barnacles (Cirripedia sp.), Haleciidae, Sertulariidae and *V. spinosa*.

The presence of these species is relatively consistent with the level four EUNIS habitat classification MC32 describing 'Circalittoral coarse sediment', corresponding with the JNCC classification SS.SCS.CCS which is within the expected depth range (10-50m) for this biotope. The observation of sandeels and cobble and pebbles on the underwater video transects warranted further investigation into this habitat type's suitability for sandeel spawning and grounds and the possible presence of Annex I geogenic stony reef habitats (discussed further in Sections 4.8.2d and 4.8.2a).

Five level five biotopes exist within the 'Circalittoral coarse sediment' habitat; but only three had strong similarities to the survey area, these were: SS.SCS.CCS.SpiB 'Spirobranchus triqueter with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles', SS.SCS.CCS.Pkef 'P. kefersteini and other polychaetes in impoverished circalittoral mixed gravelly sand' and SS.SCS.CCS.MedLumVen 'M. fragilis, Lumbrineris sp. and venerid bivalves in circalittoral coarse sand or gravel'.

The presence of *M. fragilis, G. lapidum, P. kefersteini, S. bombyx, A. squamata, S. spinulosa*, Nemertea, *S. triqueter, B. crenatus*, bryozoans, *H. falcata, Pagurus* sp., and *A. digitatum* could support the assignment of either level five biotope. However, the impoverished species abundances across all the coarse sediment stations could indicate an impoverished occurrence of all three level biotopes.

Similarly, the SACFOR review of the stills and video revealed the presence of 'common' and 'frequent' abundances of *Pagurus* sp. and *Alcyonium digitatum* with frequencies of occurrence ranging between 11% and 29%, respectively, which corresponded with the SS.SCS.CCS.SpiB biotope. Additionally, the epibenthic trawl OWF_T5 retained *A. digitatum and Pagurus bernhardus*, which further corroborates the potential for the SS.SCS.CCS.SpiB biotope to occur within the areas of 'Circalittoral coarse sediment'. However, the SS.SCS.CCS.Pkef and SS.SCS.CCS.MedLumVen could not be determined through video, stills and trawl data review due to the infaunal characterising species, which are not accurately assessed by these survey methods (Table 43 and Table 44). Therefore, cautiously the SS.SCS.CCS.SpiB is considered to be present within areas of 'Circalittoral coarse sediment'.

Example images are given in Figure 46 and the expected extent of the habitat 'Circalittoral coarse sediment' (EUNIS: 'Atlantic circalittoral coarse sediment', MC32) is mapped in Figure 50. The habitat extent to a JNNC level 5 biotope, is mapped in Figure 51, with SS.SCS.CCS.SpiB applied as the most appropriate habitat.

UK4855H-824-RR-01

Table 43 SACFOR Scale from Video Analysis of SS.SCS.CCS Habitat

Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus		Hyas sp.	Liocarcinus sp.	Cirripedia	Alcyonidium	diaphanum		riustra jonacea		vesicularia spinosa	Actinopterygii	Pleuronectiformes	:	Ammodytidae sp.	Alcyonium	digitatum	:	Sertulariidae	:	наїеспдае	Actinaria sp.	Urticina felina		Asterias rubens	Sabellaria spinulosa	Serpulidae	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	(%)	(%)	(%)
SACFOR Scale*	I	ı	İ			ı	I	ı		İ			l	İ		I		ı	I	I	I	I	ı	ı	ı		İ	İ	ı			
OWF_VID_14	0	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_50	0	0	0	0	0	0	0	0	R	С	Α	0	С	0	0	0	0	0	0	F	С	F	0	0	0	0	F	0	F	0	0	0
OWF_VID_11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_26	0	0	0	0	0	0	0	0	0	0	С	0	0	F	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С	0	0	0
OWF_VID_56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percentage Frequency	uency	of Occi	urrenc	e (%)	ı	ı	ı	ı		ı			ı	ı		ı		ı	ı		T	ı	ı	ı	ı		ı	ı	ı			
OWF_VID_14	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_50	0	0	0	0	0	0	0	0	100	100	100	0	43	0	0	0	0	0	0	29	29	43	0	0	0	0	29	14	14	0	0	0
OWF_VID_11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_26	0	0	0	0	0	0	0	0	0	0	50	0	0	100	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	33	0	0	0
OWF_VID_56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*Superabundant	= (S), A	Abunda	nnt = (A	4), Con	nmon	= (C), F	reque	nt = (F)	, Occa	sional	= (0),	Rare =	(R) ar	nd <mark>Less</mark>	than	Rare =	(L)															

UK4855H-824-RR-01

Table 44 SACFOR Scale from Stills Analysis of SS.SCS.CCS Habitat

Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp.	Cancer pagurus	Hyas sp.	Liocarcinus sp.	Necora puber	Cirripedia	Alcyonidium	diaphanum		riustra foliacea		Vesicularia spinosa	Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes	1	Ammodytidae sp.		Aicyonium aigitatum	Nemertesia sp.	Tubularia sp.	0.00	oei tulai iluae	Haleciidae	Actinaria sp.	Urticina felina		Asterias rubens	Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	>15cm	3 - 15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	(%)	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	(%)
SACFOR Scale*	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	_	-	0	0	0	0	0	0	0	_	0	0	0	0				
OWF_VID_14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_50	+																																						0	0
OWF_VID_11	+	-				-											-							1											-		1	1	0	0
OWF_VID_26	/ID_30													0	0																									
OWF_VID_30	D_50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														0	0																								
OWF_VID_37															1	0	0																							
OWF_VID_56	D_30														0	0	0																							
OWF_VID_14						0	0	0	0	Ο	1	0	0	0	0	0	0	0	0	0	Λ	0	0	1	0	0	Ο	0	0	0	0	0	0	0	0	0	0	0	0	0
	+						1																													1		1	0	0
OWF_VID_50	+	-																															-							
OWF_VID_11	+						1								1									1														1	0	0
OWF_VID_26																1	 							1														1	0	0
	+		1																																	1		0	0	0
	DWF_VID_37														0	0	0																							
OWF_VID_56			<u> </u>				l								<u> </u>	<u> </u>	<u> </u>	l				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*Superabundant = ((S), Al	bund	ant =	(A), (Comn	non =	= (C),	Frequ	ıent =	= (F),	Осса	siona	al = (0	0), <mark>R</mark> a	are =	(R) a	nd <mark>Le</mark>	ss the	an Ro	ire = (L)																			

Document No. UK4855H-824-RR-01 Page 159 of 292

Figure 46 Example Images of Circalittoral Coarse Sediment Habitats

UK4855H-824-RR-01

f Offshore Circalittoral Coarse Sediments (SS.SCS.OCS / MD32)

Similarly to the offshore circalittoral sand habitat, the offshore circalittoral coarse sediment was limited to the deeper (>30m) extents of the westernmost canyon feature. The habitat consisted of rippled sand with variable densities of shell fragments, which formed megaripples and sand waves due to the scouring of bottom currents funnelling through the canyon. Described by the JNCC as "Offshore (deep) circalittoral habitats with coarse sands and gravel or shell. This habitat may cover large areas of the offshore continental shelf although there is relatively little quantitative data available. Such habitats are quite diverse compared to shallower versions of this habitat and are generally characterised by robust infaunal polychaetes and bivalve species.

Fauna observed on the seabed photographs and video were impoverished when compared to the assemblages observed in the circalittoral coarse sediment habitats due to the reduced availability of hard substrate in the form of cobbles and pebbles. As such, visible fauna were limited to unidentified fish (Actinopterygii), common starfish (A. rubens), spider crabs (Hyas sp.) and hermit crabs (Pagurus sp.). The presence of these species is relatively consistent with the level four EUNIS habitat classification MD32 describing 'Atlantic offshore circalittoral coarse sediment', corresponding with the JNCC classification SS.SCS.OCS which is within the expected depth range (20-100m) for this biotope.

Two level five biotopes exist within the 'Offshore circalittoral coarse sediment' habitat; however, none of the habitats had strong similarities to the survey area due to the impoverished fauna, which could be attributed to only a single grab sample acquired within this habitat classification. The impoverished fauna further limited potential assignment to the level five circalittoral coarse sediment biotopes. Similarly, SACFOR stills and video reviews revealed impoverished epifauna, with only spider crabs (*Hyas* sp.) commonly observed with a percentage frequency of 33% (Figure 48 and Figure 49).

Furthermore, the epibenthic trawl macrofauna data revealed diverse epibenthic assemblages in areas of SS.SCS.OCS, however, the abundance of individuals recovered was low (Section 4.7.2). The nature of the sediments at this location lead to low grab recovery, therefore, trawl data may be more representative of the benthic community at this station. No characteristic infauna or epifauna species indicative of the level five biotopes highlighted above were recovered, therefore, the overarching classification was kept at 'Offshore circalittoral coarse sediment' based on the water depth (20-100m) and the epifauna observed during video analysis. However, for the purpose of classifying and mapping biotopes to JNCC level 5 (Figure 51), eDNA analysis was utilised (See Doc Ref: UK4855H-824-RR-07). In the areas of SS.SCS.OCS, *Hesionura elongata* eDNA was recorded but *Protodorvillea kefersteini* was not, suggesting an impoverished versin of the JNCC level 5 biotope *Hesionura elongata* and *Protodorvillea kefersteini* in offshore coarse sand' (SS.SCS.OCS.HeloPkef) being present.

Example images are given in Figure 47 and the expected extent of the habitat 'Offshore circalittoral coarse sediment' (EUNIS: 'Atlantic offshore circalittoral coarse sediment', MD32) is mapped in Figure 50 with the impoverished level 5 habitat (SS.SCS.OCS.HeloPkef) mapped in Figure 51.

UK4855H-824-RR-01

Table 45 SACFOR Scale from Video Analysis of SS.SCS.OCS Habitat

Таха	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus	Hvas sn	. de obt.	Liocarcinus sp.	Cirripedia	Alcyonidium	diaphanum	Fluctra foliacea		Vesicularia sninosa	א כטובמומיות פאוויספע	Actinopterygii	Pleuronectiformes	A month of the state of the sta	Allinodyddae sp.	militarism of single	Alcyonian agracan	Och iivel 14000	סבונתומוותמב	ochiioole L	מפברותמפ	Actinaria sp.	Urticina felina	Actorias rubons	sterius	Sabellaria spinulosa	Serpulidae	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	(%)	(%)	(%)
SACFOR Scale*																																
OWF_VID_19	0	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percentage Fred	quency	of Occ	urrenc	e (%)					·	·	•				•	•	•	•	•	•	•		·			·	·		·			
OWF_VID_19	0	0	0	0	0	0	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*Superabundan	it = (S),	Abuna	lant = (A), Coi	mmon	= (C), Fi	requen	t = (F),	Occasi	onal =	(O), <mark>Ra</mark>	re = (R)	and L	ess tha	n Rare	= (L)						•										

Table 46 SACFOR Scale from Stills Analysis of SS.SCS.OCS Habitat

Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp.	Cancer pagurus	Нуаз sp.	<i>Liocarcinus</i> sp.	Necora puber	Cirripedia	Alcyonidium	diaphanum		ымги Јонасеа		vesicularia spinosa	Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes	1.1	Ammodytidae sp.	Alexander distratum	Aicyonium aigitatum	Nemertesia sp.	Tubularia sp.	::	Sertulariidae	Haleciidae	Actinaria sp.	Urticina felina		Asterias rubens	Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	>15cm	3 - 15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	(%)	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	(%)
SACFOR Scale*																																								
OWF_VID_19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Percentage Freq	uency	of O	ccurre	ence ((%)																																			
OWF_VID_19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*Superabundant	= (S),	Abur	ndant	= (A)	, Com	nmon	= (C),	. Freq	uent :	= (F), (Occas	ional	= (0),	Rare	= (R)	and	Less tl	nan R	are =	<u>(L)</u>																				

Document No. UK4855H-824-RR-01 Page 162 of 292

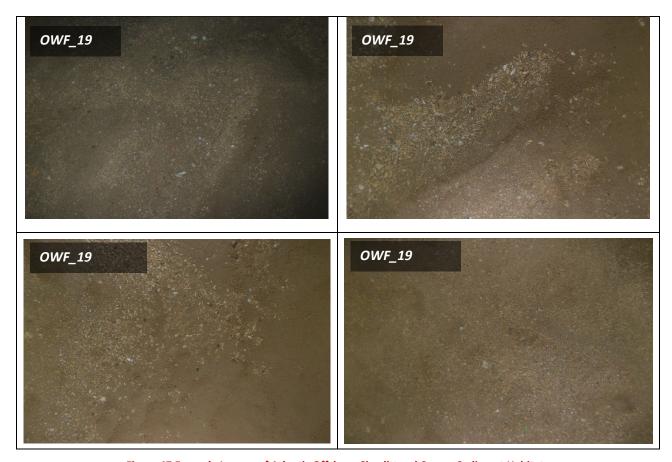


Figure 47 Example Images of Atlantic Offshore Circalittoral Coarse Sediment Habitats

UK4855H-824-RR-01

g Circalittoral Mixed Sediments (SS.SMx.CMx / MC42)

This habitat did not occur in isolation and instead formed intermediate habitats within overarching coarse sediments. Intermediate areas of coarse and mixed sediments were ubiquitous to the east, centre and west of the survey area and were less mobile than their purely coarse sediment or sand dominated counterparts, with a general absence of megaripples and sand waves. Similarly to the circalittoral coarse sediments, circalittoral mixed sediments were comprised of variable abundances of cobbles, pebbles and shell gravel overlaying coarse sediments with variable proportions of clay/silt. Circalittoral mixed sediments are described by the JNCC as "Mixed (heterogeneous) sediment habitats in the circalittoral zone (generally below 15-20 m) including well mixed muddy gravelly sands or very poorly sorted mosaics of shell, cobbles and pebbles embedded in or lying upon the mud, sand or gravel".

Similarly, to the overarching coarse sediment, fauna observed on the seabed photographs and video included a variety of mobile fauna, including several echinoderms such as common starfish (*A. rubens*) and brittle stars (Ophiuroidea sp.). Mobile Arthropoda were also observed such as hermit crabs (*Pagurus* sp.), brown crab (*C. pagurus*), spider crab (*Hyas* sp.), velvet swimming crab (*N. puber*), harbour crabs (*L. depurator*), and unidentified crabs (Brachyura sp.). Mobile Chordata were occasionally observed including dragonet (*C.* lyra.), plaice (*P. platessa*), flatfish (Pleuronectiformes sp.), lesser weaver fish (*E. vipera*), Pogge (*A. cataphractus*), sandeels (*Ammodytidae* sp.) and unidentified fish (Actinopterygii). Sessile organisms which settled onto the boulders, cobbles and pebbles included antenna hydroid (*Nemertesia* sp.), oaten pipe hydroid (*Tubularia* sp.), hydrozoan/bryozoan turf, unidentified anemones (Actinaria sp.), dead man's fingers (*A. digitatum*), dahlia anemone (*U. felina*), barnacles (Cirripedia sp.), Serpulidae tubes, hornwrack (*F. foliacea*), Porifera, *V. spinosa*, Haleciidae, cheilostomatida, sea chervil (*A. diaphanum*), sertulariidae, sand mason worm (*L. conchilega*), ross worm (*S. spinulosa*) and slipper limpet (*C. fornicata*). The relatively high species diversity of 34 out of a total of 36 epifaunal species observed was unsurprising given the range of sediment types encompassed in the intermediate coarse and mixed sediment habitat, ranging from variable proportions of fines to matrices of cobbles and pebbles overlaying variable densities of shell gravel.

The presence of these faunal assemblages indicates conformance towards the level four EUNIS habitat classification MC42 describing 'Circalittoral mixed sediment', corresponding with the JNCC classification SS.SMx.CMx, which is within the depth range of (15-20m) for this biotope. The abundance of faunal covered boulders, cobbles, pebbles across the OWF survey area and the presence of *S. spinulosa* aggregations warrants further investigation as potential Annex I geogenic stony and biogenic reef habitats (discussed further in Section 4.8.2a).

The intermediate coarse and mixed sediment habitats to the east, centre and west of the survey area showed strong conformity to the level five biotope SS.SMx.CMx.FluHyd 'F. foliacea and H. falcata on tide-swept circalittoral mixed sediment' with 11 characterising species such as hornwrack (F. foliacea), hydroids (H. falcata; Nemertesia sp.), common starfish (A. rubens), dahlia anemone (U. felina), hermit crab (Pagurus sp.), sea chervil (A. diaphanum), dead man's fingers (A. digitatum), S. triqueter, V. spinosa and Balanus crenatus.

Sabellaria spinulosa aggregations observed forming crusts over pebbles and cobbles at station OWF_76 also indicate areas where Sabellaria is present within the 'Circalittoral coarse sediment' and 'Circalittoral mixed sediment' intermediate habitat conform to the level five SS.SBR.PoR.SspiMx 'S. spinulosa on stable circalittoral mixed sediment'. Station OWF_76 had a presence of 12 out of 17 main characterising species. However, due to the absence of texture differences in the SSS/MBES data, the areas of S. spinulosa at OWF_76 and across the wider survey area could not be accurately mapped. Therefore, the spatial extent of the SS.SBR.PoR.SspiMx

UK4855H-824-RR-01

habitats are not known and were not mapped in Figure 50. Although the only aggregations of *S. spinulosa* were identified at OWF_76, *S. spinulosa* was identified and enumerated at a further 15 stations across the site, with abundances ranging between 1 individual per 0.1m² to 42 individuals per 0.1m², indicating that the habitat has the potential to develop across the wider survey area on available hard substrates.

SACFOR abundances of characterising species were either in keeping or more abundant than their expected JNCC SACFOR abundances and frequency of occurrence for the aforementioned biotopes, with 'superabundant' to 'occasional' abundances of *F. foliacea*, *Pagurus* sp., *A. diaphanum*, *V. spinosa*, *A. digitatum*, *U. feline* and *A. rubens*, supporting an assignment to the SS.SMx.CMx.FluHyd biotope (Table 47 and Table 48). Additionally, the epibenthic trawls, OWF_T6A and OWF_T9 at stations OWF_57 and OWF_79, respectively, recorded a presence of *A. diaphanum*, *F. foliacea*, *A. rubens*, *P. bernhardus*, *A. digitatum* and Actinaria, which could have contained *U. feline* and further indicate the potential for the biotope to occur within areas of intermediate circalittoral mixed and circalittoral coarse sediments.

The epifauna within the OWF survey area showed a conformity to the SS.SMx.CMx.FluHyd biotope with pockets of the SS.SBR.PoR.SspiMx biotope where *Sabellaria* was present. However, the latter biotope could not be mapped due to a lack of clear differentiation in acoustic facies across the circalittoral mixed and coarse sediment areas.

Example images are given in Figure 48 and the expected extent of the level 4 habitat 'Circalittoral mixed sediment' (EUNIS: 'Atlantic circalittoral mixed sediment', MC42) is mapped in Figure 50 as 'SS.SCS.CCS' with patches of 'SS.SMx.CMx'. In Figure 51, the extent of SS.SMx.CMx.FluHyd is mapped with a note that the SS.SBR.PoR.SspiMx is present exclusively at OWF 76.

Table 47 SACFOR Scale from Video Analysis of SS.SCS.CCS Habitat with SS.SMx.CMx Patches

Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus		nyas sp.	Liocarcinus sp.	Cirripedia	100000000000000000000000000000000000000	Alcyoniaium alabnanum		רוטאנו ען טוומכפע		Vesicularia spinosa	Actinopterygii	Pleuronectiformes		Ammodytidae sp.		Alcyonium digitatum	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sertulariidae		паїесії (дае	Actinaria sp.	Urticina felina		Asterius ruberis	Sabellaria spinulosa	Serpulidae	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	(%)	(%)	(%)
SACFOR Scale*																																
OWF_VID_23	0	0	0	0	0	0	0	0	L	0	0	0	0	0	С	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_31	0	L	0	0	0	0	С	0	L	F	Α	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	L	0
OWF_VID_32	0	0	0	0	0	0	0	0	0	0	Α	0	0	0	С	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0
OWF_VID_33	0	L	0	0	0	0	0	0	L	С	S	0	0	F	0	0	0	0	0	0	0	С	0	0	С	0	0	0	0	0	L	0
OWF_VID_45	0	L	0	0	0	0	0	0	L	С	Α	0	0	0	0	0	0	0	0	0	0	0	С	0	0	0	0	0	С	0	L	0
OWF_VID_57	L	0	0	0	С	0	0	0	R	С	Α	С	0	0	0	0	0	0	0	С	Α	F	0	F	0	0	С	0	0	L	0	0
OWF_VID_58	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_64	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_65	0	0	0	0	0	0	0	0	L	С	Α	0	С	F	Α	0	0	0	0	0	С	0	0	0	0	0	F	F	F	0	0	L
OWF_VID_70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_75	0	L	0	0	0	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0	0	0	0	L	0
OWF_VID_76	L	L	0	0	0	0	0	F	0	С	С	0	F	F	С	0	0	0	0	F	С	F	С	0	0	F	F	F	0	L	L	0
OWF_VID_79A	0	L	0	0	0	0	0	0	L	С	Α	0	0	С	С	0	0	0	0	F	С	F	0	0	0	0	F	F	0	0	L	0
Percentage Frequen	cy of (Occurr	ence (%)																												
OWF_VID_23	0	0	0	0	0	0	0	0	50	0	0	0	0	0	50	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_31	0	100	0	0	0	0	50	0	100	50	100	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	100	0

Document No. UK4855H-824-RR-01 Page 166 of 292

UK4855H-824-RR-01

Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Cancer pagurus		nyas sp.	Liocarcinus sp.	Cirripedia		Aicyoniaium aiapnanum		riustra Jonacea		Vesicularia spinosa	Actinopterygii	Pleuronectiformes		Ammodytidae sp.	3	Alcyonium digitatum		Sertulariidae	0 pp	паїеспоае	Actinaria sp.	Urticina felina		Asterias rubens	Sabellaria spinulosa	Serpulidae	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	(%)	(%)	(%)
Percentage Freque	ID_32 O O O O O O O O O																															
OWF_VID_32	NID_32														0																	
OWF_VID_33	0	100	0	0	0	0	0	0	100	50	100	0	0	50	0	0	0	0	0	0	0	100	0	0	50	0	0	0	0	0	100	0
OWF_VID_45	0	100	0	0	0	0	0	0	100	100	100	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	0	0	100	0	100	0
OWF_VID_57	MD_32 0 <td>0</td>														0																	
OWF_VID_58	NID_32														0																	
OWF_VID_64	0	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_65	0	0	0	0	0	0	0	0	100	75	50	0	25	50	75	0	0	0	0	0	25	25	0	0	0	0	75	50	25	0	0	25
OWF_VID_70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_76	0	50	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	0	0	50	0	0	0	0	0	0	0	0	50	0
OWF_VID_79A	0	50	0	0	0	0	0	0	50	50	50	0	0	50	50	0	0	0	0	100	50	50	0	0	0	0	100	50	0	0	50	0

Document No. UK4855H-824-RR-01 Page 167 of 292

Table 48 SACFOR Scale from Video Analysis of SS.SCS.CCS Habitat with SS.SMx.CMx Patches

Taxa	Sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp.	Cancer pagurus	Hyas sp.	Liocarcinus sp.	Necora puber	Cirripedia	Alcyonidium	diaphanum	7 (riustra jonacea		vesicularia spinosa	Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes		Ammodytidae sp.		Aicyonium aigitatum	Nemertesia sp.	Tubularia sp.	1 m	Sertulariidae	Haleciidae	Actinaria sp.	Urticina felina	A ctorion with one	Asterius ruberis	Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
Size Class	(%)	(%)	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	>15cm	3 - 15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	(%)	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	(%)
SACFOR Scale*	0	0	0	0	0	0	0	0	0	0	-	-	0	0	-	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
OWF_VID_23	0		0	0	0	0	0	0	0	0	F	С	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_31	0	R	0	0	0	0	0	0	0	R	С	С	0	0	0	0	R	0	0	0	0	0	0	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_32	0	0	0	0	0	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	F	0	0	0	0	0	0	R
OWF_VID_33	0	R	0	0	0	0	0	0	0	R	Α	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С	0	F	0	F	F	0	0	0	0	0	0
OWF_VID_45	0	R	0	0	0	0	0	0	0	R	С	0	0	0	0	0	L	0	0	0	0	0	0	0	0	0	0	0	С	0	0	0	F	F	0	0	0	0	F	0
OWF_VID_57	R	L	0	0	0	F	0	0	0	R	Α	С	F	0	F	0	L	0	0	0	0	0	0	0	С	С	0	0	С	0	F	0	С	F	0	0	0	0	0	R
OWF_VID_58	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_64	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0	0
OWF_VID_65	0	0	0	0	0	0	0	0	0	R	С	0	F	0	С	С	0	0	0	0	0	0	0	0	F	0	0	0	F	0	0	0	0	F	0	0	0	0	0	L
OWF_VID_70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_75	0	R	0	0	0	0	0	0	0	П	0	0	0	0	F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	F	0	0	0	0	0	0	0
OWF_VID_76	F	R	0	F	0	0	F	F	0	L	F	F	С	F	F	0	0	0	0	0	0	0	0	0	F	С	0	0	С	0	0	F	F	F	0	F	0	0	F	0
OWF_VID_79A	L	L	0	0	0	0	0	0	0	L	F	0	F	0	С	0	0	0	0	0	0	0	0	0	F	С	0	0	F	0	0	0	F	F	0	0	0	0	0	0
Percentage Fred	quenc	y of C	Occur	rence	e (%)												,																							
OWF_VID_23	0	0	0	0	0	0	0	0	0	0	14	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OWF_VID_31	0	100	0	0	0	0	0	0	0	100	75	25	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	55	0	0	0	5	0	0	0	5	0	5	0
OWF_VID_32	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	10	0	0	0	0	0	0	10

UK4855H-824-RR-01

sabellaria spinulosa	Serpulidae	Caridea	Pagurus sp.	Brachyura sp	Cancer pagurus	Hyas sp.	<i>Liocarcinus</i> sp	Necora puber	Cirripedia	Alcyonidium	diaphanum	2100	ыйзыа јонасеа		vesicularia spirio	Cheilostomatida	Actinopterygii	Agonus cataphractus	Callionymus lyra	Echichthys vipera	Pleuronectiformes	4 - Fried St Fr	Allinouytidae sp.		Aicyoniain aigitatain	Nemertesia sp.	Tubularia sp.	Cortulariidae	Sertulariidae	Haleciidae	Actinaria sp.	Urticina felina	Actorize principle	Asterius ruberis	Ophiuroidea	Buccinum undatum	Crepidula fornicata	Ensis sp.	Porifera
(%)	(%)	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	>15cm	3 - 15cm	3 - 15cm	(%)	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	(%)	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	>15cm	3 - 15cm	3 - 15cm	3 - 15cm	3 - 15cm	(%)
ency	of O	ccurr	ence	(%)																																			
0 :	100	0	0	0	0	0	0	0	100	90	14	5	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	62	0	19	0	10	19	0	0	0	0	0	0
0 :	100	0	0	0	0	0	0	0	100	100	0	5	0	5	0	5	0	0	0	0	0	0	0	0	0	0	0	43	0	0	0	10	10	0	0	0	0	10	0
9	4	0	0	0	4	0	0	4	39	83	4	17	0	9	0	4	0	0	4	4	0	0	0	35	17	4	0	74	0	9	0	78	13	0	0	0	0	0	22
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0
0	0	0	3	0	3	0	0	0	21	17	0	10	0	52	17	0	0	0	0	0	0	0	0	14	0	0	0	7	0	0	3	7	14	0	0	0	0	0	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	26	0	0	0	0	0	0	0	4	4	0	0	0	9	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
'2	39	0	17	6	0	6	11	0	6	17	6	33	6	22	0	0	0	0	0	0	0	0	0	39	11	0	6	61	0	0	28	22	39	0	11	0	6	11	0
8	8	3	0	0	0	0	0	0	3	14	0	8	0	59	0	0	0	0	3	0	0	0	0	27	14	0	0	22	0	0	0	19	8	0	0	0	0	0	0
0 0 0 0 0 0 72	ncy 1 1 2	ncy of O 100 100 4 0 0 0 26 2 39 8	100 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S S S S S S S S S S	S S S S S S S S S S	S S S S S S S S S S	S S S S S S S S S S	S S S S S S S S S S	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	Second S	Second S	100 0 0 0 0 0 0 0 0	EXAMPLE 1. S. S. S. S. S. S. S. S. S. S. S. S. S.	ESTABLE STATE OF COCCURRENCE (%) 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ESTANDALE SET OF STREET	E S S S S S S S S S S S S S S S S S S S	E S S S S S S S S S S S S S S S S S S S	E S S S S S S S S S S S S S S S S S S S	S	## B	S	S	ESTRICT OF COCCURRENCE (**) 100	EXAMPLE SET OF S

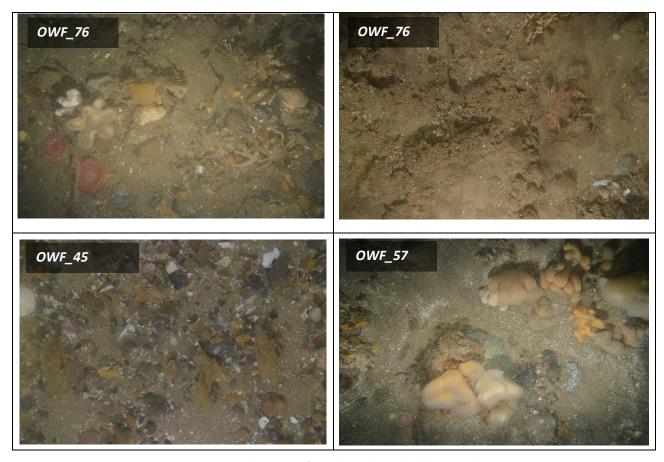


Figure 48 Example Images of Circalittoral Mixed Sediment Habitats

UK4855H-824-RR-01

h Anthropogenic habitats (No corresponding JNCC/EUNIS code)

During the environmental sampling operations, very little anthropogenic habitat was identified, with anthropogenic debris identified by the underwater video limited to fishing gear mooring rope at station OWF_31. The geophysical inspection of the OWF survey also revealed a low abundance of anthropogenic debris, with two wire ropes, three suspected shipwrecks, jack-up footprints, 15 suspected UXO and rock dump. The limited anthropogenic debris were unsurprising as the survey was conducted outside of the platforms 500m exclusion zones.

Not all anthropogenically derived debris have deleterious effects on the underlying benthic communities, as the introduction of additional hard substrates into the marine environment can increase epifaunal biodiversity by providing hard attachment in an otherwise homogeneous soft sediment environment (Leewis *et al.*, 2000; Hiscock *et al.*, 2010). Example images of anthropogenic habitat are provided in Figure 49, while the location of rock dump and pipeline infrastructure habitat is mapped in Figure 50.

Figure 49 Example Images of Anthropogenic Debris

UK4855H-824-RR-01

Non-native Invasive Species

Non-native marine species are of particular concern when they become invasive and thus are detrimental to native species. Invasive species have the potential to displace native species, modify habitats, cause the loss of native genotypes, alter community structure, affect ecosystem processes, disrupt the provision of ecosystem services, negatively impact human health and cause substantial economic losses (Cinar *et al.*, 2014).

The macrofauna data revealed five individuals of a single non-native species, slipper limpet (*Crepidula fornicata*), at station OWF_04, while the underwater video data revealed the presence of *C. fornicata* at station OWF_76. The slipper limpet was unintentionally introduced to the UK with imports of the eastern oyster *Crassostrea virginica* and the Pacific oyster *Crassostrea gigas* in the 1800s (Preston *et al.*, 2020). The depletion of oyster habitat due to overfishing exacerbated the spread and abundance of *C. fornicata* over the years, making this species a well-established invasive species and a major concern across Europe (Blanchard *et al.*, 1997).

C. fornicata has already caused serious ecological and economic impacts across Europe. It has been known to be detrimental to habitat suitability for juvenile fish (Le Pape *et al.*, 2004), as the limpet impacts the survival and shell growth of other commercially important bivalves such as the blue mussel *Mytilus edulis* (Thieltges *et al.*, 2005) and modify habitats by converting predominantly sandy substrata into anoxic mud dominated substrata through the production of mucoidal pseudofaeces (Streftaris *et al.*, 2006). The reduction of suitable substrata means habitats become unsuitable for other species, including oysters that prefer less muddy waters (Barnes *et al.*, 1973). The European oyster (*Ostrea edulis*) is negatively impacted due to the lack of suitable substrate for larval settlement (Blanchard *et al.*, 1997), impeding recruitment and potential restoration efforts on the seabed (Preston *et al.*, 2020). Sea users who find slipper limpets are advised to report to the Marine Biological Association.

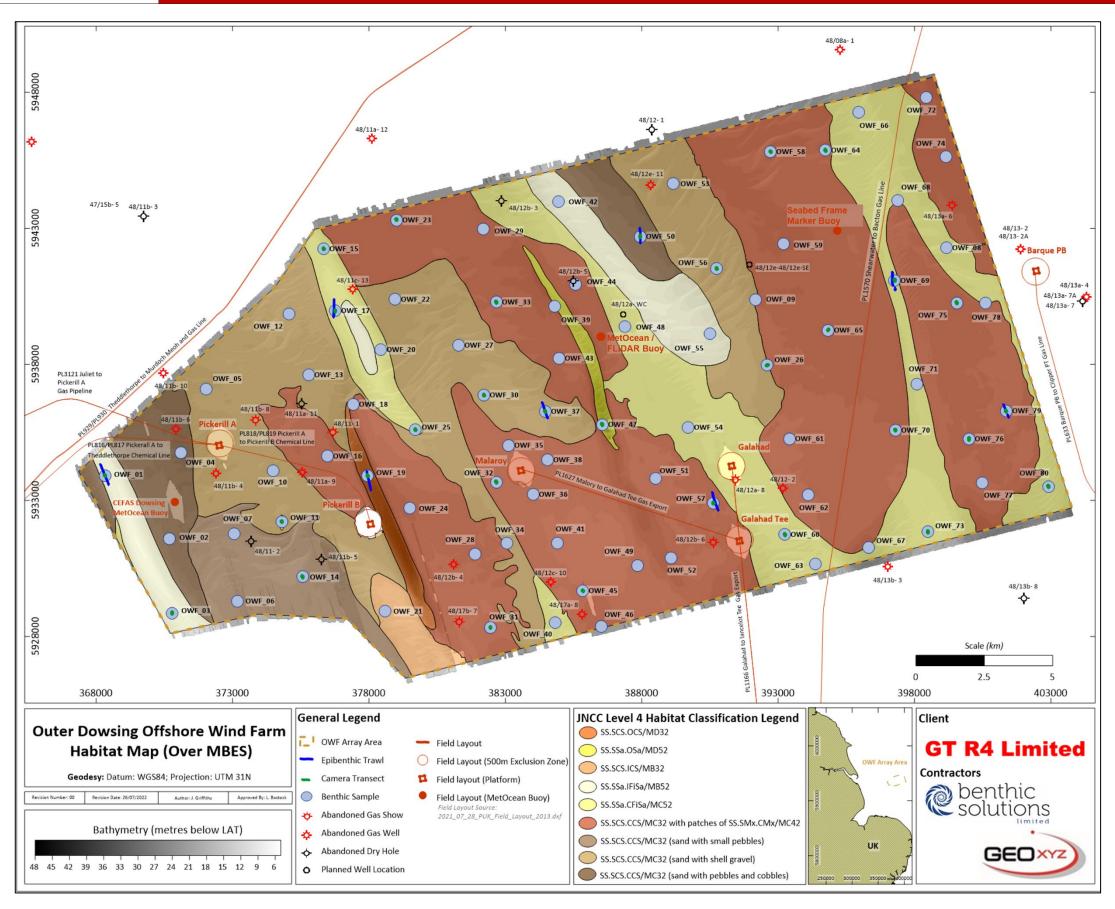


Figure 50 Habitat Distribution (to JNCC Level 4) over MBES Data for the OWF Survey Area

Document No. UK4855H-824-RR-01 Page 173 of 292

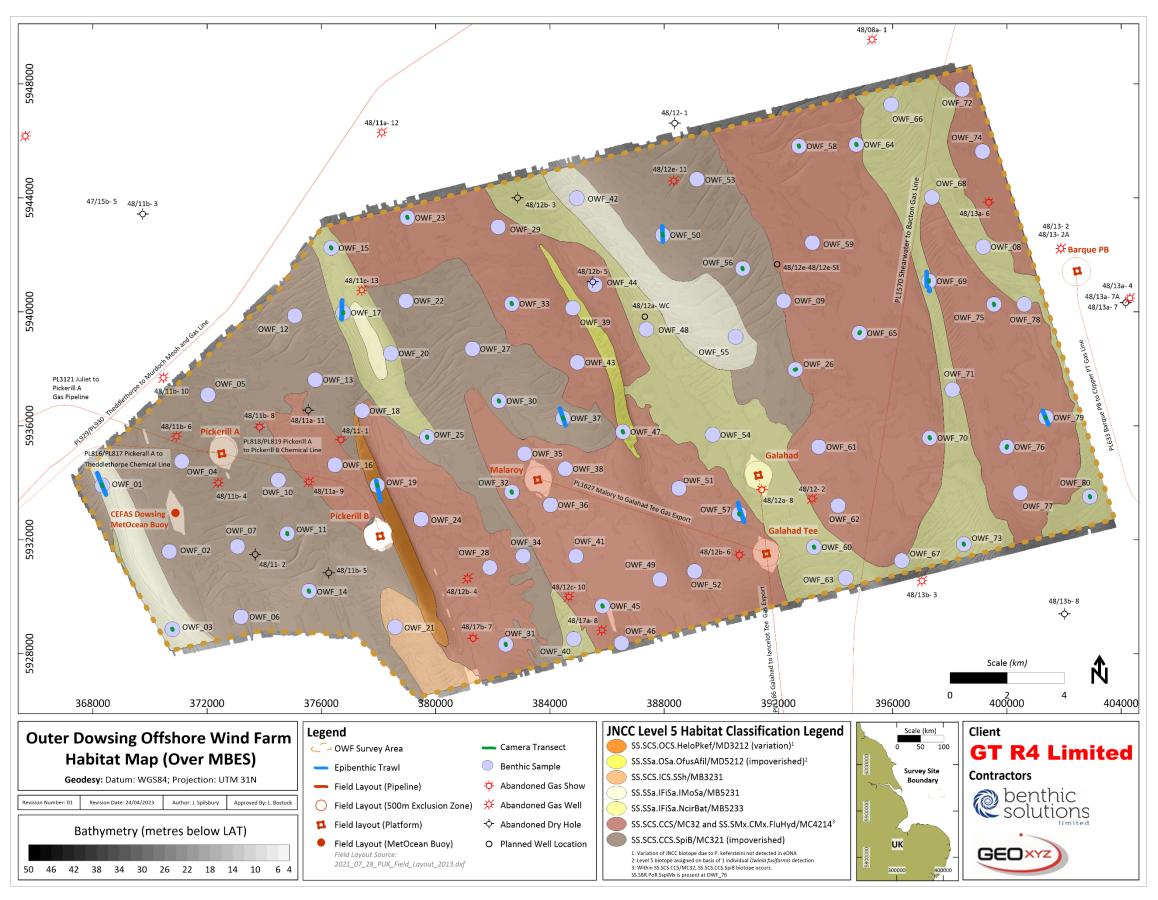


Figure 51 Habitat Distribution (to JNCC Level 5) over MBES Data for the OWF Survey Area

Document No. UK4855H-824-RR-01 Page 174 of 292

UK4855H-824-RR-01

4.8.2 Potential Sensitive Habitats and Species

As previously discussed, there are a number of potentially sensitive habitats and species which are known to occur in the wider region (North Sea), including:

- Stony reefs formed from boulders and cobbles;
- Biogenic reefs formed from Sabellaria spinulosa;
- Ocean quahog (Arctica islandica);
- Lesser sandeel (Ammodytes marinus) spawning and nursery grounds;
- · Herring spawning and nursery grounds;
- Sandbanks which are slightly covered by sea water all the time.

These habitats and species are listed by one or more International Conventions, European Directives or UK Legislation (including devolved UK administrations).

a Annex I Stony Reef

Cobbles and rare boulders were recorded along nine transects (OWF_VID_23, OWF_VID_31, OWF_VID_32, OWF_VID_45, OWF_VID_50, OWF_VID_57, OWF_VID_65, OWF_VID_76 and OWF_VID_79A) within the OWF survey area. Matrices of gravelly sand, sandy gravel and muddy sandy gravel with cobbles and boulders were observed across the site, with these areas classed as 'Circalittoral mixed sediment' and 'Circalittoral coarse sediment'. These transects were investigated further to assess whether any areas have the potential to be classified as EC Habitats Directive Annex I stony reef.

The seabed camera ground-truthing data were assessed for potential stony reefs using the criteria proposed by Irving (2009). This breaks down the assessment criteria measures of 'quality' or 'reefiness' as outlined in Table 49. This is based on a minimum cobble size of 64mm being present and indicating relief above the natural seabed where >10% of the matrix are cobble related and a minimum area of around 25m² is recorded. The stony reef assessment was based on acquired underwater stills taken every 10 seconds along the camera transect. When this produced underwater stills that were out of focus due to environmental conditions (boat movement, seabed slope, turbidity etc) then additional screengrabs were taken in the office (from the HD video footage) as close to the 10-second interval as possible, but which may have varied by a few seconds to enable a clear enough focus on the screengrab. Each still and screengrab was assessed for changes in density, height and cover of cobbles and boulders. Each section of the transects where cobbles or boulders were detected was then analysed and categorised according to its composition, elevation and extent.

UK4855H-824-RR-01

Table 49 Summary of Resemblance to a Stony Reef as Summarised in Irving (2009)

Measure of 'Reefiness'	Not a Reef	Low ^(c)	Medium	High
Composition ^(a)	<10%	10-40%	40-95%	>95%
Elevation ^(b)	Flat seabed	<64mm	64mm-5m	>5m
Extent (m²)	<25m²	>25m²	>25m²	>25m²
Biota	Dominated by infauna			>80% of species are epifauna

⁽a) Diameter of cobbles / boulders being greater than 64mm. Percentage cover relates to a minimum area of 25m². This 'composition' characteristic also includes 'patchiness'.

The Irving (2009) stony reef protocol was split into separate assessments of reef 'structure' and 'overall reefiness' using a method developed by BSL staff (Table 50 and Table 51). This provided a reef structure value that could then be assessed against extent, where applicable, to provide a measure of overall reefiness, as illustrated in Table 51. As separate thresholds for 'Low', 'Medium' and 'High' stony reef extent were not given in Irving (2009), the overall reefiness is determined by reef structure provided that the extent of the stony reef covers a minimum of 25m². Reefiness parameters are colour coded to aid visual assessment of the data.

Table 50 Stony Reef Structure Matrix (after Irving, 2009)

			Elevation										
R	eef Structure Ma	ntrix	Flat	<64mm	64mm-5m	>5m							
			Not a Reef	Low	Medium	High							
	<10%	Not a reef	Not a Reef	Not a Reef	Not a Reef	Not a Reef							
Composition	10-40%	Low	Not a Reef	Low	Low	Low							
Composition	40-95%	Medium	Not a Reef	Low	Medium	Medium							
	>95%	High	Not a Reef	Low	Medium	High							

Table 51 Overall Stony Reefiness Matrix (Structure vs Extent)

Ov	erall Reefiness Ma	triv	Re	Reef Structure (incl. Composition and Elevation)											
OV	eran Keenness Ma	TUTX	Not a Reef	Low	Medium	High									
Fytant (m²)	<25	Not a Reef	Not a Reef	Not a Reef	Not a Reef	Not a Reef									
Extent (m²)	>25	Low - High	Not a Reef	Low	Medium	High									

⁽b) Minimum height (64mm) relates to minimum size of constituent cobbles. This characteristic could also include 'distinctness' from the surrounding seabed.

⁽c) When determining if the seabed is considered as Annex I stony reef, a 'low' scored in any category, would require a strong justification for this area to be considered as contributing to the Marine Natura site network of qualifying reefs in terms of the EC Habitats Directive.

UK4855H-824-RR-01

The stills taken during the survey and additional screengrabs from the video footage analysed for stony reef assessment indicated the intermittent distribution of cobbles and boulders across the camera transects (a complete log of the assessment per still is provided in Appendix N). Out of the 251 images from transects reviewed for stony reef, 151 (60.1%) showed evidence of potential stony reefs due to the presence of cobbles (Table 52). Of the images showing potential stony reef, 127 (84.1%) were classed as 'Not a Reef' and 24 (15.9%) as 'Low Reef' in terms of stony reef composition or percentage cover (Table 52). In terms of elevation, all stills were classed as either 'Low Reef' or 'Medium Reef' as areas of cobbles were either <64mm or >64mm and the rare occurrence of boulders were <5m in height. There were also flat areas of coarse rippled shelly sand between the intermittent aggregations of cobbles across the survey area, mostly appearing to the west and centre of the survey area. When both composition and elevation were taken into account, by examining reef structure, 127 images (84.1%) were classed as 'Not a Reef', 24 (15.9%) as 'Low Reef' and no 'Medium Reef' or 'High Reef' was indicated (Table 52). The low overall reef structure levels are consistent with the review of video footage, with transects within the 'Circalittoral mixed sediment' and 'Circalittoral coarse sediment' characterised by patches of mixed gravelly sand, sand gravel and muddy sandy gravel with varying densities of cobbles and rare boulders (rare = 1–5% occurrence as defined by the SACFOR classification).

No Stony Reef Not a Reef Medium High Low 'Reefiness' of Video Screengrabs % % No. No. % No. No. % No. % Composition (% cover) 127 84.1 24 15.9 0 0 0 0 Elevation 151 60.1 0 0 126 83.4 25 16.6 0 0 Reef Structure 127 84.1 24 15.9 0 0 0

Table 52 Summary of Stony Reef Image Analysis

The results of the reefiness assessment on the nine transects, with a notable presence of cobbles and boulders, showed evidence of isolated patches of stony reef habitat as per the Irving 2009 criteria. Seven transects were classified as 'Not a Reef' in terms of the composition of cobbles/boulders as the percentage cover was less than 10% (Table 53). Whereas, the remaining two transects had instances of cobble compositions classed as 'Low Reef' (Table 53). All instances of 'Low Reef' reflect the variability in cobble density within the 'Circalittoral coarse sediment' and 'Circalittoral mixed sediment' habitats. No estimation of reef extent could be made for areas which could not be delineated as they lacked any distinct side scan sonar signatures and could not be distinguished from the surrounding non-reef seabed. Therefore, no additional areas across the wider survey area could be mapped as potential 'Low Reef' and the mappable extent of the 'Low Reef' was limited to the reef structure overlain across the camera navigation track (Figure 52). A precautionary approach was applied to areas of 'Low Reef' structure by assuming that these areas covered >25m² extent. As per the Irving (2009) guidance, areas of seabed classified as 'Not a Reef', based on reef structure (composition vs elevation), are still 'Not a Reef' regardless of whether the extent was <25m² or >25m² (Table 53). Therefore, a measure of overall reefiness was determined by combining the reef structure level with a reefiness level based on a conservative assumed extent of >25m² for each area of 'Low Reef' structure.

The majority of points of 'Low Reef' structure along the transects were within wider areas of 'Not a Reef' and as such the average of the reef structure for each segment of sediment change was calculated and used with the assumed extent of 25m² to calculate a measure of overall reefiness (Figure 52 and Table 53). Areas of potential 'Low Reef', based on an assumed 25m² extent, were identified along a single transect (OWF_57). The single point

UK4855H-824-RR-01

of 'Low Reef' structure identified at OWF_32 was considered unlikely to cover an area of 25m² as cobbles were only present for a three second section of video footage.

Areas of 'Not a Reef' were classified as circalittoral coarse or mixed sediments, comprising mosaics of gravel, pebbles, occasional cobbles and variable densities of shell debris, while areas of 'Low Reef' were comprised of similar sediments but cobbles were more frequently observed. The 'Low Reef' identified at station OWF_57 has been classified on a precautionary basis as 'potential low reef' and showed some resemblance to the biotopes "SS.SMx.CMx.FluHyd - Flustra foliacea and Hydrallmania falcata on tide-swept circalittoral mixed sediment" and "Spirobranchus triqueter with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles". Although the area of 'Low Reef' had an average elevation of <64mm, the cobbles may still ecologically function as an associated reef community (Table 53; Golding et al., 2020).

Table 53 Summary of Stony Reef Assessment (after Irving, 2009)

			Geodetics: WGS84, UTN	и 31N, CM 3°E				
					Stony Re	efiness (After Irving	g 2009)	
Station	Easting (m)	Northing (m)	Sediment Type	Mean Composition (% Cover of Cobbles/ Boulders)	Mean Elevation (of Cobbles/ Boulders in mm)	Mean Reefiness (Structure)	>25m²	Overall Mean Reefiness (Structure vs Extent)
OWF_VID_23	379 006 379 002	5 943 336 5 943 342	Rippled sand with abundant shell fragments and an increased	2.1	8.5	Not a Reef	>25m²*	Not a Reef
			abundance of pebbles and cobbles					
OWF_VID_31	382 462 382 444	5 928 305 5 928 357	Mosaic of small pebbles and relic shell fragments	1.1	12.2	Not a Reef	>25m²*	Not a Reef
	382 677	5 933 650	Rippled sand with frequent shell	2	42.5	N . 5 . 6	25 2*	
	382 660	5 933 692	fragments, pebbles and occasional cobbles	2	12.5	Not a Reef	>25m ² *	Not a Reef
OWF_VID_32	382 660	5 933 692	Increased abundance of cobbles,	11	200	Low Reef	<25m²**	Not a Reef
OWF_VID_32	382 660	5 933 693	pebbles and shell fragments	11	200	Low Reel	425111	NOT a Reel
	382 660	5 933 693	Rippled sand with frequent shell		10		25 24	
	382 656	5 933 700	fragments, pebbles and occasional cobbles	1	10	Not a Reef	>25m²*	Not a Reef
OWE VID 45	385 833	5 929 702	Mosaic of small pebbles and relic	0.8	5.7	Not a Reef	>25m²*	Not a Reef
OWF_VID_45	385 850	5 929 650	shell fragments	0.8	5.7	NOL a Reel	>25III=+	NOT a Reel
OWE VID TO	387 947	5 942 679	Variable densities of cobbles and	F 4	20.4	Not a Doof	>25m²*	Not a Boof
OWF_VID_50	387 943	5 942 737	pebbles overlaying rippled sand	5.1	30.4	Not a Reef	>25MT**	Not a Reef
	390 615	5 932 929	Abundant cobbles and pebbles and a single boulder surrounded by rippled		42.9	Low Reef	>25m²*	Low Reef
OWF_VID_57	390 625	5 932 902	sand with abundant shell fragments					
	390 625	5 932 902	902 Increased abundance of cobbles,		37	Not a Reef	>25m²*	Not a Reef
	390 635	5 932 878	pebbles and shell fragments	7.6	3,	Not a neer	723111	NOC a NEEL

Document No. UK4855H-824-RR-01 Page 179 of 292

Geodetics: WGS84, UTM 31N, CM 3°E									
					Stony Re	efiness (After Irving	(2009)		
Station	Easting (m)	Northing (m)	Sediment Type	Mean Composition (% Cover of Cobbles/ Boulders)	Mean Elevation (of Cobbles/ Boulders in mm)	Mean Reefiness (Structure)	>25m²	Overall Mean Reefiness (Structure vs Extent)	
	394 855	5 939 296	Rippled sand with frequent cobbles,		10.3		25 2*		
	394 850	5 939 286	pebbles and shell fragments	1.4	19.3	Not a Reef	>25m²*	Not a Reef	
0145 1415 65	394 850	5 939 286	Rippled sand with increased	7.7	42.5	Not a Reef	>25m²*	Not a Reef	
OWF_VID_65	394 847	5 939 280	abundance of cobbles and pebbles	7.7	42.5	Not a Reel	>23111	Not a Reef	
	394 847	5 939 280	Rippled sand with common cobbles,	1.6	14.7	Not a Boof	>25m²*	Not a Doof	
	394 830	5 939 242	pebbles and abundant shell fragments	1.6	14.7	Not a Reef	>25111-1	Not a Reef	
	399 987	5 935 227	Rippled sand with shell fragments	2.3	31.3	Not a Reef	>25m²*	Not a Reef	
	399 988	5 935 230	and occasional cobbles and pebbles	2.3	31.3	Not a Reel	>23111	Not a Neer	
	399 988	5 935 230	Sand with abundant aggregations of Sabellaria overlying frequent	1.8	10	Not a Reef	>25m²*	Not a Reef	
	399 991	5 935 238	cobbles and pebbles	1.8	10	Not a Reel	>23111	Not a Reel	
OWF_VID_76	399 991	5 935 238	Increased abundance of pebbles and cobbles forming a mosaic with	3.6	31.4	Not a Reef	>25m²*	Not a Reef	
	400 000	5 935 279	frequent aggregations of Sabellaria						
	400 000	5 935 279	Decreased abundance of cobbles	0.8	13.6	Not a Reef	>25m²*	Not a Reef	
	400 005	5 935 295	and increased abundance of pebbles	0.0	13.0	NOT a NEET	723111	Not a neer	
OWE VID 70A	401 359	5 936 262	rippled sand with abundant shell fragments and pebbles and	2.6	23.4	Not a Reef	>25m²*	Not a Reef	
OWF_VID_79A	401 340	5 936 311	occasional cobbles.	2.0	25.4	Not a Reel	723111	Not a Reel	

^{*&}gt;25m² was precautionarily applied as the boundary off the feature observed on the camera data could not be distinguished from the SSS/MBES data

^{**&}lt;25m² was applied as the sediment change was only observed for a few seconds and is not likely to represent an area >25m²

UK4855H-824-RR-01

One of the key principles to be considered for an area when assessing its 'resemblance' to Annex I stony reef is stability; areas of consolidated and patchy hard substrate may not fulfil the composition requirements of Annex I stony reef criteria by Irving (i.e. not having the required percentage of cobbles and boulders, as seen along the proposed CA route), but stability allows a diverse and 'reef-like' epifaunal community to develop (Golding *et al.*, 2020). Therefore, the transects where an initial Annex I stony reef assessment was conducted were further investigated to establish whether hard substrate areas still corresponded to reef-like structures based on the epifauna present. This involved the assignment of 'reef biotopes', the identification of key species and the richness of 'reef species' according to the criteria outlined in Golding *et al.*, 2020 (Table 54).

Stage 1 Stage 2 Stage 3 Reef **Reef Biotopes Key Reef Species Count Reef Species Count** Reef Reef biotope ≥3 >20 Possible reef Possible reef biotope >1 and <3 >5 and <20 Not reef Non-reef biotope <5

Table 54 Biota Criteria for Defining 'Low Resemblance' Stony Reef (Golding et al., 2020)

The results of the further stony reef assessment indicated that stations in areas of mixed sediment comprised 'Possible Reef' biotopes due to the potential presence of the level five biotope 'SS.SMx.CMx.FluHyd - Flustra foliacea and Hydrallmania falcata on tide-swept circalittoral mixed sediment'. Characterising species such as hornwrack (Flustra foliacea), dead man's fingers (Alcyonium digitatum), dahlia anemone (Urticina felina), sea chervil (Alcyonium diaphanum) hydroids (Nemertesia sp.; Haleciidae), tube worms (Serpulidae), barnacles (Cirripedia), hermit crabs (Pagurus sp.) and common sea star (Asterias rubens) were present. However, the transects occurred within an intermediate area composed of coarse and mixed sediment and the above epifauna could also be indicative of areas classified as 'not a reef' due to the potential presence of the level five biotope SS.SCS.CCS.SpiB 'Spirobranchus triqueter with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles'. Due to the uncertainty in macrofaunal assemblages and sediment boundaries, all stations were grouped to the level four biotope 'SS.SCS.CCS - Circalittoral coarse sediment' as coarse sediment was the dominant sediment type observed across the stills taken. Consequently, the majority of stations were classified as 'Not a Reef biotope' (Table 55).

Transect OWF_57 was a 'Possible Reef biotope' due to the sediment composition of <10% of bedrock, boulder or cobble larger than 64mm and conspicuous reef associated epifauna. This area was considered unstable due to the substrate present (i.e. areas of mixed or coarse sediment which contained no 'reef biotopes'), meaning they could not be classified as Annex I stony reef. However, by reviewing the epifauna they could be considered a 'possible reef with sand veneer' or 'reef with sand veneer' (Golding *et al.*, 2020). Furthermore, the transect supported <5 'reef species', which would indicate that the transect is 'not a reef'— highlighting the need for further refinement of the Golding *et al.* (2020) criteria. Therefore, in the absence of strong justification due to the low composition (10.7%), elevation (43mm), an assumed threshold extent of 25m² and threshold biota of a single key reef associated species the OWF_57 transect was deemed not to represent Annex I stony reef along with the other transects carried out throughout the survey area.

Although camera ground-truthed areas within the survey area could not be confidently categorised as Annex I stony reef, a Gaussian Kernel interpolation of 205,000 hard contacts, based on the analysis of 205,000 pebble, cobble and boulder contacts identified from SSS, identified several areas of dense hard substrate aggregations (Figure 53). Although pebbles are not classified as reef forming hard substrate, the 16,000 pebble contacts were

UK4855H-824-RR-01

included in the dataset to provide a precautionary approach to hard substrate density mapping, as cobbles, pebbles and boulders rarely occur in isolation. Unsurprisingly the higher densities of pebbles, cobbles and boulders were predominantly found within areas delineated as coarse and mixed sediment, with sand dominated habitats showing either a lower density or an absence of hard substrate. The density map confirms the presence of dense aggregations of hard substrate close to station OWF_57, with dense aggregations of hard substrate also identified close to stations OWF_05, OWF_16, OWF_24, OWF_29, OWF_59, OWF_72 and OWF_74 which were not ground-truthed by camera data (Figure 53). Based on the patchy cobble and boulder composition observed throughout the survey area and the limited reef associated species, it is unlikely these areas of dense aggregations of hard substrate will reflect areas of 'Possible Reef'. However, the Gaussian Kernel interpolation method provides a retrospective justification for the OWF sampling strategy by supporting the results of the stony reef assessment and illustrating the key areas of coarse material were adequately sampled for ground-truthing interpretation.

Table 55 Reef Structure Assessment (Golding et al., 2020)

	Stage 1	Stage 2		Sta		
Reef	Reef Biotopes	Mean Key Reef Species Count	Key Reef Species Category	Mean Reef Species Count	Reef Species Category	Reefiness Value
OWF_VID_23	Not a Reef Biotope	0	0	0	<5	Not a reef
OWF_VID_31	Not a Reef Biotope	0	0	0	<5	Not a reef
OWF_VID_32	Not a Reef Biotope	0	0	0	<5	Not a reef
OWF_VID_45	Not a Reef Biotope	0	0	0	<5	Not a reef
OWF_VID_50	Not a Reef Biotope	0	0	1	<5	Not a reef
OWF_VID_57	Not a Reef Biotope	1	>1 and <3	2	<5	Possible Reef
OWF_VID_65	Not a Reef Biotope	0	0	0	<5	Not a reef
OWF_VID_76	Not a Reef Biotope	0	0	2	<5	Not a reef
OWF_VID_79A	Not a Reef Biotope	0	0	1	<5	Not a reef

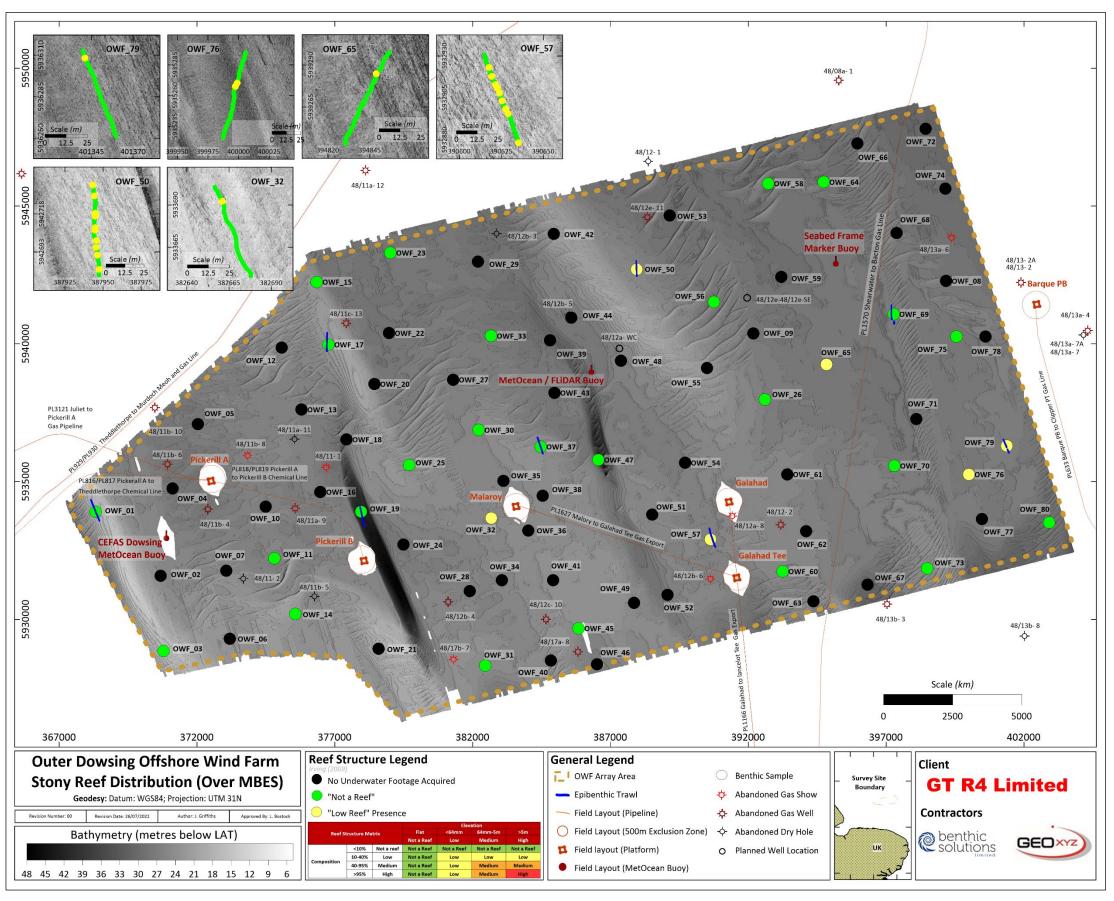


Figure 52 Stony Reef Habitat Assessment for the OWF Survey Area

Document No. UK4855H-824-RR-01

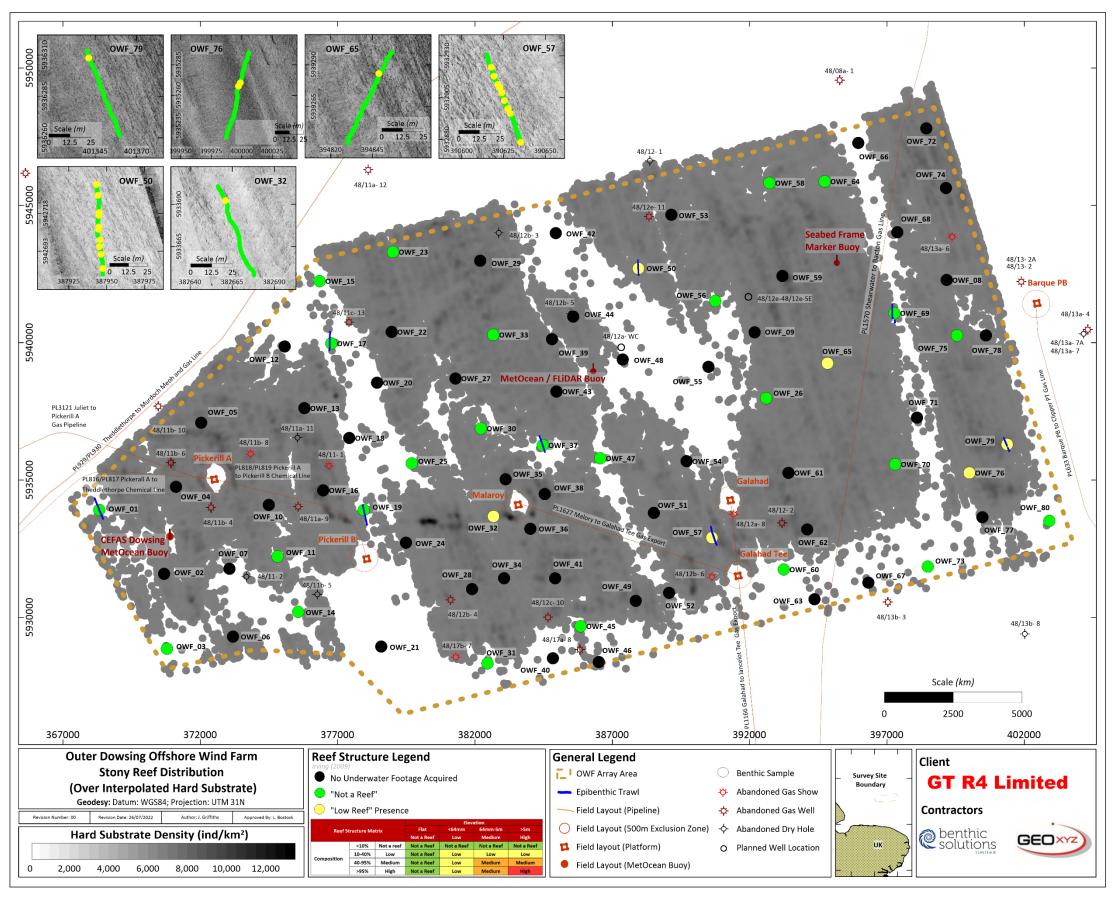


Figure 53 Interpolated Hard Substrate Density Across the OWF Survey Area

Document No. UK4855H-824-RR-01 Page 184 of 292

b Biogenic Reef Formed by Sabellaria spinulosa

Sabellaria spinulosa was present at stations OWF_76 and OWF_79A but was typically limited to encrusting hard substrates such as cobbles and pebbles along the transect. *S. spinulosa* is a tube building polychaete worm and can occur as isolated individuals, small aggregations, thin crust-like veneers, or when in large numbers can form hard reef like structures which can stabilise the surrounding seabed (Gibb *et al.* 2014). As their tubes are built of sand, a high suspended sediment content is essential for the growth of reef like structures and the tidally swept sandy sediments across the survey area could provide adequate habitat conditions.

An assessment of 'reefiness' as described by Gubbay (2007) and presented in Table 56 was performed to describe the habitat, focussing on transects where *S. spinulosa* was recorded during a review of video footage and still photographs (Jenkins *et al.*, 2018). Changes in the coverage and density of *S. spinulosa* tubes were noted during the videos in order to accurately estimate the area covered by *S. spinulosa*. However, this was limited as no texture differences on the SSS/MBES could determine if the changes in density or coverage were part of a larger 'reef' feature or isolated aggregations. A *Sabellaria* assessment was deemed unnecessary for Station OWF_79A due to the fragmented aggregations of *S. spinulosa* present.

Measure of 'Reefiness' Not a Reef Low Medium High Elevation (average tube height, cm) <2 2-5 5-10 25-10,000 10,000 - 1,000,000 Area (m²) <25 >1,000,000 10-20 Patchiness (% Cover) 20-30 >30 <10

Table 56 Sabellaria Reefiness Criteria as Outlined by Gubbay (2007)

To apply the Gubbay (2007) protocol to the acquired data it was further separated into reef 'structure' and overall 'reefiness' (Table 57 and Table 58). The advantage of this method is that the reef 'structure' value, derived from the patchiness (i.e. percent cover) and tube elevation reefiness, can be assessed against the extent to produce a measure of overall reefiness, as illustrated in Table 57 and Table 58. This method was initially devised by BSL staff and later approved by the JNCC in 2010 (see Jenkins *et al* (2015) for an example application by JNCC and CEFAS).

To avoid potential bias of manual still photographs towards areas of greater environmental interest and to more accurately quantify the reefiness of heterogeneous patches of *S. spinulosa*, screengrabs were taken approximately every 10 seconds along the camera transects (Appendix O). Each screengrab was assessed for *Sabellaria* patchiness and tube elevation, which were then combined to assess reef structure. The average reef structure is then usually assessed for each delineated patch of *S. spinulosa*; however, due to the patchiness in *S. spinulosa* coverage and the absence of texture differences on the SSS/MBES, the transect as a whole was averaged to assess potential 'reefiness' (Table 60).

UK4855H-824-RR-01

Table 57 Sabellaria Reef Structure Matrix (After Gubbay, 2007)

Reef Structure Matrix			Elevation (cm)					
			<2	2 to 5	5 to 10	>10		
		Not a Reef	Low	Medium	High			
	<10%	Not a Reef	Not a Reef	Not a Reef	Not a Reef	Not a Reef		
Databiases	10-20%	Low	Not a Reef	Low	Low	Low		
Patchiness	20-30%	Medium	Not a Reef	Low	Medium	Medium		
	>30%	High	Not a Reef	Low	Medium	High		

Table 58 Sabellaria Reef Structure vs Area Matrix (After Gubbay, 2007)

Reef Structure vs Area		Area (m²)					
		<25	25 – 10,000	10,000 – 1,000,000	>1,000,000		
		Not a Reef	Low	Medium	High		
	Not a Reef	Not a Reef	Not a Reef	Not a Reef	Not a Reef		
Reef Structure (incl. Patchiness and	Low	Not a Reef	Low	Low	Low		
Elevation)	Medium	Not a Reef	Low	Medium	Medium		
	High	Not a Reef	Medium	High	High		

The 10 second interval screen grabs and HD video indicated a fairly variable distribution of *S. spinulosa* encrusted over cobbles and pebbles across the OWF_76 transect. For example, out of the 47 images taken along the transect and reviewed for *S. spinulosa* 'reefiness', 32 (68.0%) showed evidence of *S. spinulosa* aggregations. Of the images showing *S. spinulosa*, 19 (59.4%) were classed as 'Not Reef', 5 (15.6%) as 'Low Reef' and 4 (12.5%) as 'Medium Reef' and 'High Reef' in terms of *S. spinulosa* patchiness or percent cover. A similar pattern was evident for tube elevation with 12 (37.5%) classed as 'Not Reef', 8 (25.0%) as 'Low Reef', 11 (34.4%) as 'Medium Reef' and 1 (3.1%) as 'High Reef'. When both patchiness and elevation were taken into account, by examining reef structure, even fewer images showed noteworthy reefiness, with 19 (59.3%) classed as 'Not a Reef', 6 (18.8%) as 'Low Reef', 7 (21.9%) as 'Medium Reef' and no instances of 'High Reef'. This equates to a total of just 13 images (40.6%) showing appreciable reefiness of 'Low Reef' or 'Medium Reef (Table 59). The low overall reef structure levels are consistent with the review of video footage, with many areas seen to be characterised by low coverage of *Sabellaria* encrusting cobbles and pebbles.

Table 59 Summary of Sabellaria Reefiness Image Analysis Results (After Gubbay, 2007)

'Reefiness' of Video Screengrabs	No Sal	bellaria	Not a	Reef	Lo	ow .	Med	dium	Hi	gh
reelliess of video screengraps	No.	%	No.	%	No.	%	No.	%	No.	%
Patchiness (% Cover)			19	59.4	5	15.6	4	12.5	4	12.5
Elevation (Tube Height, cm)	32	68.0	12	37.5	8	25.0	11	34.4	1	3.1
Reef Structure			19	59.3	6	18.8	7	21.9	0	0

As previously discussed, the lack of unique SSS/MBES features associated with the *S. spinulosa* aggregations made it impossible to delineate the extent of the *Sabellaria* habitat within the OWF survey area. As such, the reef structure matrix of each 10-second still image was overlain across the camera track and indicates the variability in *Sabellaria* coverage and elevation across the OWF_76 transect (Figure 54). The spatial variability in individual 'reefiness', with a maximum coverage of 47% and elevation of 10cm, indicates that '*S. spinulosa* encrusted

UK4855H-824-RR-01

circalittoral rock' (CR.MCR.CSab.Sspi/MC2213) and 'S. spinulosa on stable circalittoral mixed sediment' (SS.SBR.PoR.SspiMx./MC2211) habitats could potentially be present within the survey area, with neither potential habitat likely to occur in isolation. A conservative approach revealed an average tube elevation of 2.5cm and percentage cover of 8.2% across the OWF_76 transect, indicating that the Sabellaria aggregations were not reef forming, even when an area of >25m² was assumed.

Although the *S. spinulosa* aggregations along the OWF_76 transect were not classified as reef forming, a notable difference in the species diversity between aggregations of *S. spinulosa* and cobbles/pebbles were observed, with 23 epifaunal species observed within areas of *Sabellaria*, while only 15 epifaunal species were observed in areas of a cobbles/pebbles along OWF_VID_76. The notable difference in diversity was attributed to *Tubularia* sp. *S. spinulosa*, Ophiuroidea, *Hyas* sp., Haleciidae, *Ensis* sp., Cirripedia, *Crepidula fornicata* and Brachyura sp. The finding of increased biodiversity surrounding fragmented *S. spinulosa* aggregations, such as those observed at station OWF_76, was corroborated by Van der Reijden *et al.*, (2021) that found even patchy biogenic 'reefs' may promote density and local biodiversity of mobile, epibenthic species, due to increased habitat heterogeneity. This indicates that patchy biogenic reefs that occur in dynamic environments may also have high ecological value and that their conservation status should be considered to ensure their protection (Van der Reijden *et al.*, 2021).

Table 60 Conservative Summary of Sabellaria Reef Assessed from Video, Stills and SSS Data

	Geodetics: WGS84, UTM 31N, CM 3°E								
						Reefiness bay 2007)			
Station	Easting (m)	Northing (m)	SSS Signature	Patchiness (% cover)	Elevation (Average tube height in cm)	Area (m²)	Reef Structure		
OWF VID 76	399 987	5 935 227	No clear SSS feature to	8.2	2.5	>25m ² *	Not a Reef		
	400 005	5 935 295	delineate boundary	0.2	2.3	723111	Not a Reel		

^{*&}gt;25m² was precautionarily applied as the boundary off the feature observed on the camera data could not be distinguished from the SSS/MBES data

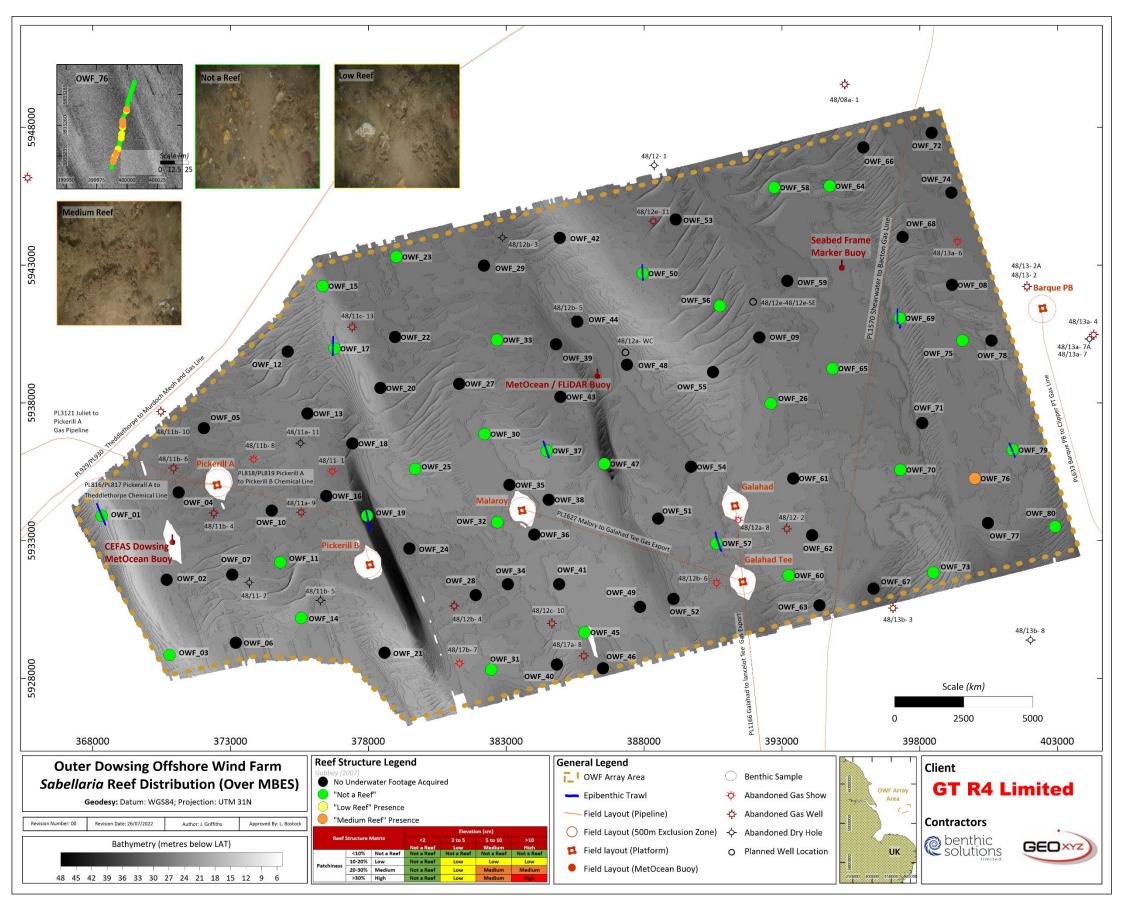


Figure 54 Sabellaria spinulosa reef habitat assessment for the OWF survey area

Document No. UK4855H-824-RR-01

c Ocean Quahog (Arctica islandica)

The ocean quahog (*Arctica islandica*) bivalve species are afforded protected status under the OSPAR Commission due to their inclusion in the OSPAR list of threatened and/or declining species in the Greater North Sea area as a priority species (OSPAR, 2008; 2009a). This species is also listed as an MCZ FOCI for both inshore and offshore protection (JNCC and Natural England, 2016). Ocean quahogs grow very slowly, and are at particular risk from bottom fishing gear, and, like other slow-growing animals, once their numbers have been reduced their populations can take a long time to recover.

No evidence of distinct *A. islandica* siphons or relic shells were observed on any of the video footage or still photographs and no adult or juvenile specimens were recovered in the trawl or grab datasets. Therefore, it is unlikely that *A. islandica* occur within the survey area in any appreciable quantities.

d Sandeel Spawning and Nursery Grounds

Sandeels are small, thin eel-like fish that form large shoals and live most of their life buried in the seabed. They are considered an important component of marine food webs providing food for marine predators such as seabirds, mammals, and other fish (Furness, 1990; 2002). Of the five species of sandeels occurring in the North Sea, the lesser sandeel (*A. marinus*) is the most abundant and comprises over 90% of sandeel fishery catches (Fisheries Management Guidance, 2014). Sandbanks and other sandy areas are known to be important habitats for sandeel, which prefer habitats in water depths between 30m and 70m but are known to occur at depths of 15 m and 120 m (Holland *et al.*, 2005). These small fish burrow into the sediment, sand and use interstitial water to ventilate their gills (Holland *et al.*, 2005). They do not create a permanent opening when burrowed. Fine sediment has the potential to clog their gills and therefore, sandeel have a very specific habitat requirement, resulting in an often highly patchy distribution (Holland *et al.*, 2005; Jensen *et al.*, 2011). Sandeel spawning and nursery grounds have been delineated by Cefas for UK waters; The OWF survey area is located in a low intensity spawning and nursery ground area (Figure 56). Small scale variations in sediment type across the OWF survey area result in a heterogenous mosaic of habitat suitability, ranging from 'Unsuitable' to 'Prime' spawning and nursing grounds for the species (Ellis *et al.*, 2012; Figure 56).

Preferred sandeel habitat is a substrate which contains a high percentage of medium to coarse sand (particle size of 0.25 mm to 2 mm), with a mud content of less than 10% (particles <63 μ m) (Wright *et al.*, 1998; Holland *et al.*, 2005). Sediments with a gravel component are also considered to be suitable for sandeel habitat. The inclusion of gravel means that using Folk classifications (Folk, 1954) to assess sandeel habitat can overstate the suitability of the habitat for sandeels. To determine areas of potentially available habitat for sandeel grounds, the PSA results for the grab stations were compared to the parameters specified by Latto *et al.* (2013), as shown in Table 61.

Table 61 Sandeel Ground Assessment Categories Specified by Latto et al. (2013)

Folk Categories	Habitat Preference
Sand	Preferred
Gravelly Sand	Preferred
Slightly Gravelly Sand	Preferred
Sandy Gravel	Marginal
Other	Unsuitable

Results from the analysis of PSA and assigned Folk scale data, using the Latto et al. (2013) method are outlined in Table 62. Small scale variations in the particle size composition of sediments across the survey area

produced highly variable suitability ratings across habitats assigned the same biotope type, with no spatial pattern observed across the survey area or specific biotope preference. 'Preferred' sediments for sandeel grounds were identified at 44 stations across the OWF survey area, with 29 stations considered 'Marginal' for sandeel grounds. The remaining 7 stations were classed as 'Unsuitable' for sandeel habitat. These stations were either too coarse or showed bimodal sediment distributions, containing both very fine and coarse material. As a result, these stations were assigned the Folk classifications of 'Gravel', 'Muddy Sandy Gravel' or 'Gravelly Muddy Sand' (Table 62).

Table 62 Sandeel Ground Assessment Results using Latto et al. (2013)

Station	Depth (m)	Modified Folk Scale	Habitat Preference
OWF_01	12.9	Sand	Preferred
OWF_02	21.0	Sandy Gravel	Marginal
OWF_03	12.6	Sand	Preferred
OWF_04	19.9	Sandy Gravel	Marginal
OWF_05	21.1	Gravelly Sand	Preferred
OWF_06	20.4	Gravelly Sand	Preferred
OWF_07	17.2	Sandy Gravel	Marginal
OWF_08	20.7	Sand	Preferred
OWF_09	21.0	Sandy Gravel	Marginal
OWF_10	19	Gravelly Sand	Preferred
OWF_11	18.5	Sand	Preferred
OWF_12	18.4	Gravelly Sand	Preferred
OWF_13	19.8	Gravelly Sand	Preferred
OWF_14	16.0	Sandy Gravel	Marginal
OWF_15	15.4	Sand	Preferred
OWF_16	20.0	Sandy Gravel	Marginal
OWF_17	14.8	Sand	Preferred
OWF_18	22.2	Gravelly Sand	Preferred
OWF_19	38.6	Sandy Gravel	Marginal
OWF_20	19.1	Sand	Preferred
OWF_21	10.2	Gravelly Sand	Preferred
OWF_22	23.2	Slightly Gravelly Sand	Preferred
OWF_23	21.5	Sandy Gravel	Marginal
OWF_24	21.2	Sandy Gravel	Marginal
OWF_25	17.8	Sand	Preferred
OWF_26	19.7	Sandy Gravel	Marginal
OWF_27	19.8	Gravelly Sand	Preferred
OWF_28	18.5	Gravelly Muddy Sand	Unsuitable
OWF_29	22.6	Gravelly Muddy Sand	Unsuitable
OWF_30	20.4	Gravelly Sand	Preferred
OWF_31	17.1	Sandy Gravel	Marginal
OWF_32	20.5	Sandy Gravel	Marginal
OWF_33	21.7	Gravelly Sand	Preferred
OWF_34	20.2	Gravelly Sand	Preferred
OWF_35	20.8	Gravelly Sand	Preferred
OWF_36	20.1	Sandy Gravel	Marginal
OWF_37	19.4	Sandy Gravel	Marginal

UK4855H-824-RR-01

Station	Depth (m)	Modified Folk Scale	Habitat Preference
OWF_38	20.3	Sandy Gravel	Marginal
OWF_39	24.9	Gravelly Sand	Preferred
OWF_40	15.7	Sand	Preferred
OWF_41	19.6	Sandy Gravel	Marginal
OWF_42	18.5	Sand	Preferred
OWF_43	23.6	Gravelly Muddy Sand	Unsuitable
OWF_44	21.3	Sandy Gravel	Marginal
OWF_45	20.2	Sandy Gravel	Marginal
OWF_46	20.6	Sandy Gravel	Marginal
OWF_47	37.3	Slightly Gravelly Sand	Preferred
OWF_48	19.2	Slightly Gravelly Sand	Preferred
OWF_49	18.9	Sandy Gravel	Marginal
OWF_50	18.4	Sandy Gravel	Marginal
OWF_51	18.5	Sandy Gravel	Marginal
OWF_52	23.1	Sandy Gravel	Marginal
OWF_53	22.7	Gravelly Sand	Preferred
OWF_54	19.3	Slightly Gravelly Sand	Preferred
OWF_55	14.8	Slightly Gravelly Sand	Preferred
OWF_56	19.6	Sand	Preferred
OWF_57	18.6	Sandy Gravel	Marginal
OWF_58	23.9	Gravelly Sand	Preferred
OWF_59	23.9	Sandy Gravel	Marginal
OWF_60	17.9	Sand	Preferred
OWF_61	18.4	Muddy Sandy Gravel	Unsuitable
OWF_62	18.7	Sandy Gravel	Marginal
OWF_63	17.5	Slightly Gravelly Sand	Preferred
OWF_64	23.7	Slightly Gravelly Sand	Preferred
OWF_65	22	Gravelly Sand	Preferred
OWF_66	21.5	Sand	Preferred
OWF_67	25.5	Gravelly Sand	Preferred
OWF_68	21.7	Sand	Preferred
OWF_69	21.6	Sand	Preferred
OWF_70	22.1	Gravelly Sand	Preferred
OWF_71	21.7	Sand	Preferred
OWF_72	25.8	Sandy Gravel	Marginal
OWF_73	17.9	Sand	Preferred
OWF_74	24.9	Sandy Gravel	Marginal
OWF_75	22.8	Sandy Gravel	Marginal
OWF_76	22.5	Muddy Sandy Gravel	Unsuitable
OWF_77	17.4	Gravel	Unsuitable
OWF_78	21.4	Gravelly Sand	Preferred
OWF_79	21.8	Muddy Sandy Gravel	Unsuitable
OWF_80	22.8	Sand	Preferred

More specific definitions of sandeel preferred grounds using sediment particle size were provided by Greenstreet *et al.* (2010). This method utilises the percentage composition of the sediment by weight, which is split into two distinct fractions; silt and fine sand (particles >0.25mm), and medium to coarse sand (particles 0.25-2.0mm). The coarse >2mm fraction, which can often overstate sandeel habitat suitability, is not considered by this method. The sediment fraction data are then used to assess sandeel sediment preference for each station from Figure 55.

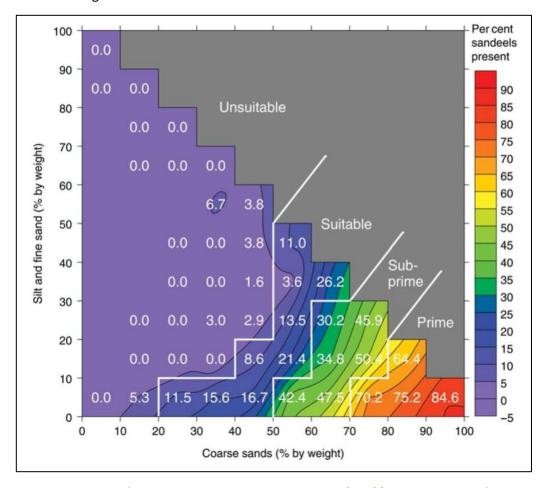


Figure 55 Sandeel Sediment Preference Categories as per Greenstreet *et al.* (2010) (Silt and Fine Sand refer to Particle Sizes >0.25mm, whilst Medium to Coarse Sand refer to Particle Sizes 0.25 to 2.0mm)

The results using the method outlined in Greenstreet *et al.* (2010) indicated less favourable habitat for sandeel grounds across the survey area than the Latto *et al.*, (2013) method. The suitability of some stations was downgraded under the Greenstreet *et al* (2010), while others were upgraded. Overall, the majority of stations (67.5%) have an appropriate sediment type to be utilised by sandeels as spawning and nursery ground.

In total, 21 stations have been classified as 'Prime' sandeel habitat according to Greenstreet *et al.* (2010), of which 17 stations were classed as 'Preferred' habitat under Latto *et al.*, 2013 and 4 were considered 'Marginal'. A further 12 stations were classed as 'Sub-Prime' (Greenstreet *et al.*, 2010), all of which were previously 'Preferred' or 'Marginal' (Latto *et al.*, 2013). 'Suitable' habitat was determined to be present at 21 stations (Greenstreet *et al.*, 2010), of which two stations (OWF_61 and OWF_77) that were previously considered 'Unsuitable' under Latto *et al.*, (2013) were classed as suitable sandeel habitat. These stations had a higher proportion of medium and course sands and lower proportion of fines when compared to the other 'Unsuitable' stations. As course sediments over 2mm are not considered in this method, eight stations

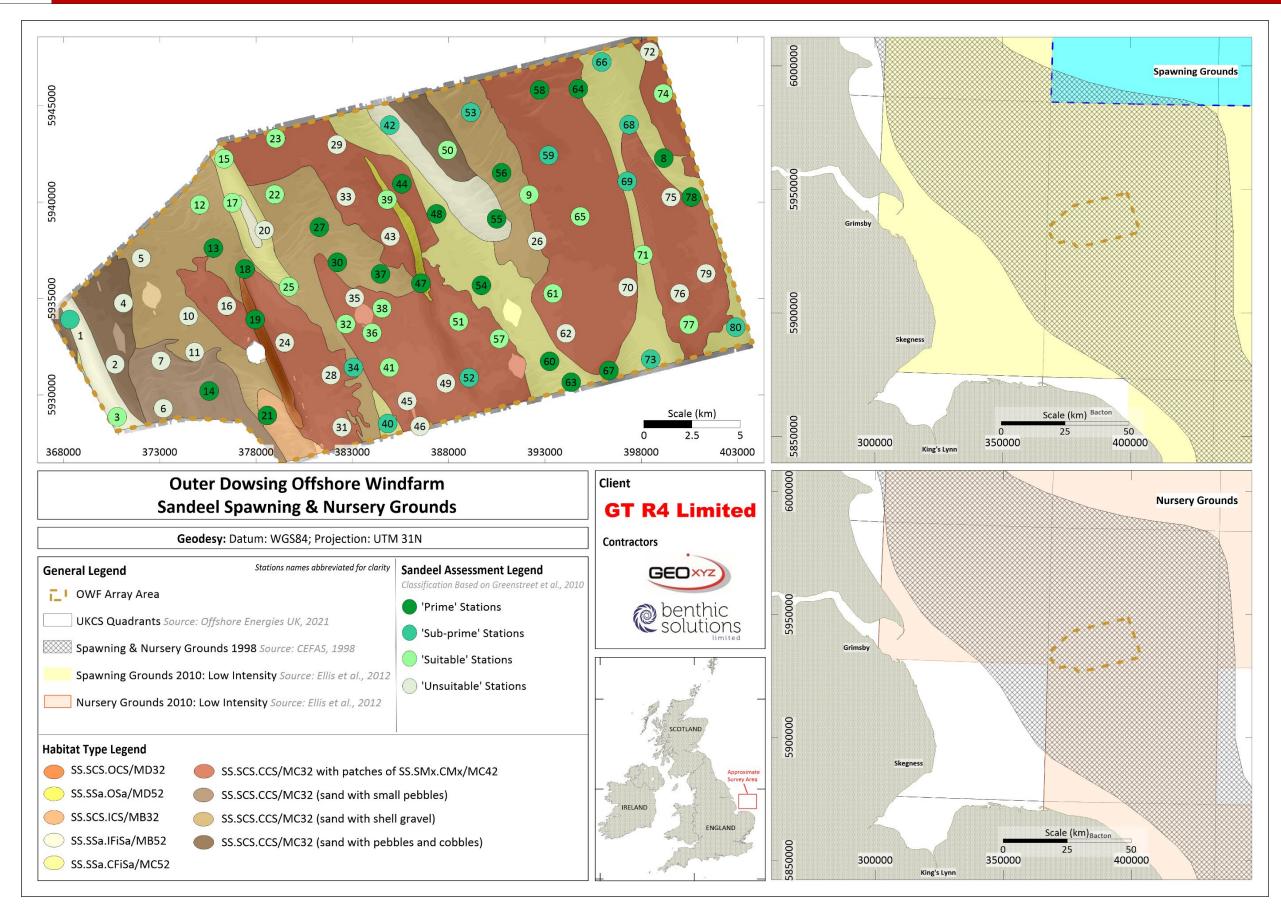
previously considered 'Preferred' and 13 considered 'Marginal' habitat are classed as 'Unsuitable'. Five stations classed as 'Unsuitable' areas of 'Gravelly Muddy Sand' have remained so, with a total of 26 stations considered 'Unsuitable' for sandeel spawning and nursing (Table 63). Therefore, similarly to the Latto *et al.* (2013) method, the Greenstreet *et al.* (2010) method revealed no overall mapped habitat preference due to the variability in sediment composition within habitat delineations.

Sandeels were also present within the grab macrofauna and epibenthic trawl datasets and the video analysis. They were also observed during video analysis transects. Furthermore, the OWF site falls within sandeels spawning and nursery grounds; however, it should be noted that even optimal habitats may not be occupied by sandeels if populations are below the area's carrying capacity (Holland *et al.*, 2005).

Table 63 Sandeel Ground Assessment Results using Greenstreet et al. (2010)

Station	Water Depth (m)	Silt and Fine Sands (% by weight)	Medium to Coarse Sands (% by weight)	Habitat Preference
OWF_01	12.9	24.6	75.4	Sub-Prime
OWF_02	21	70.6	35.5	Unsuitable
OWF_03	12.6	31.4	68.7	Suitable
OWF_04	19.9	59.3	52.8	Unsuitable
OWF_05	21.1	55.0	55.1	Unsuitable
OWF_06	20.4	67.6	36.0	Unsuitable
OWF_07	17.2	32.5	79.5	Unsuitable
OWF_08	20.7	8.0	92.9	Prime
OWF_09	21	49.9	55.7	Suitable
OWF_10	19	56.5	52.1	Unsuitable
OWF_11	18.5	57.5	42.7	Unsuitable
OWF_12	18.4	35.3	65.8	Suitable
OWF_13	19.8	10.5	107.0	Prime
OWF_14	16	36.5	86.8	Prime
OWF_15	15.4	48.3	51.7	Suitable
OWF_16	20	64.0	42.7	Unsuitable
OWF_17	14.8	41.2	58.8	Suitable
OWF_18	22.2	29.1	98.8	Prime
OWF_19	38.6	16.8	107.6	Prime
OWF_20	19.1	59.7	40.4	Unsuitable
OWF_21	10.2	18.7	121.5	Prime
OWF_22	23.2	45.2	57.7	Suitable
OWF_23	21.5	46.9	68.0	Suitable
OWF_24	21.2	54.1	55.8	Unsuitable
OWF_25	17.8	30.8	69.6	Suitable
OWF_26	19.7	53.2	51.7	Unsuitable
OWF_27	19.8	16.3	106.8	Prime
OWF_28	18.5	56.3	49.8	Unsuitable
OWF_29	22.6	63.7	43.9	Unsuitable
OWF_30	20.4	10.8	101.9	Prime
OWF_31	17.1	36.4	75.2	Unsuitable
OWF_32	20.5	42.1	67.4	Suitable
OWF_33	21.7	66.9	42.6	Unsuitable
OWF_34	20.2	28.1	74.6	Sub-Prime

Document No. UK4855H-824-RR-01



UK4855H-824-RR-01

Station	Water Depth (m)	Silt and Fine Sands (% by weight)	Medium to Coarse Sands (% by weight)	Habitat Preference
OWF_35	20.8	52.7	56.8	Unsuitable
OWF_36	20.1	37.6	67.5	Suitable
OWF_37	19.4	10.9	114.7	Prime
OWF_38	20.3	42.0	69.1	Suitable
OWF_39	24.9	44.3	62.7	Suitable
OWF_40	15.7	20.5	79.6	Sub-Prime
OWF_41	19.6	43.0	62.8	Suitable
OWF_42	18.5	24.5	76.2	Sub-Prime
OWF_43	23.6	55.7	53.8	Unsuitable
OWF_44	21.3	32.1	87.3	Prime
OWF_45	20.2	51.5	56.1	Unsuitable
OWF_46	20.6	32.0	72.8	Unsuitable
OWF_47	37.3	3.7	113.4	Prime
OWF_48	19.2	11.1	97.8	Prime
OWF_49	18.9	34.4	70.8	Unsuitable
OWF_50	18.4	37.6	66.5	Suitable
OWF_51	18.5	42.5	63.1	Suitable
OWF_52	23.1	29.5	78.6	Sub-Prime
OWF_53	22.7	28.6	76.1	Sub-Prime
OWF_54	19.3	3.8	102.8	Prime
OWF_55	14.8	4.0	105.2	Prime
OWF_56	19.6	6.1	95.3	Prime
OWF_57	18.6	39.5	66.2	Suitable
OWF_58	23.9	25.2	91.0	Prime
OWF_59	23.9	27.8	79.2	Sub-Prime
OWF_60	17.9	13.9	86.5	Prime
OWF_61	18.4	42.1	62.7	Suitable
OWF_62	18.7	52.0	61.0	Unsuitable
OWF_63	17.5	18.7	82.6	Prime
OWF_64	23.7	23.3	80.4	Prime
OWF_65	22	40.2	63.0	Suitable
OWF_66	21.5	23.7	76.6	Sub-Prime
OWF_67	25.5	19.4	83.1	Prime
OWF_68	21.7	27.1	74.0	Sub-Prime
OWF_69	21.6	28.7	72.4	Sub-Prime
OWF_70	22.1	52.5	53.7	Unsuitable
OWF_71	21.7	40.5	59.5	Suitable
OWF_72	25.8	53.0	50.9	Unsuitable
OWF_73	17.9	23.3	76.8	Sub-Prime
OWF_74	24.9	40.1	68.8	Suitable
OWF_75	22.8	63.2	43.9	Unsuitable
OWF_76	22.5	63.3	40.5	Unsuitable
OWF_77	17.4	39.5	64.8	Suitable
OWF_78	21.4	14.9	101.8	Prime
OWF_79	21.8	51.6	53.2	Unsuitable
OWF_80	22.8	24.3	75.8	Sub-Prime

Figure 56 Sandeel Spawning and Nursing Grounds

Document No. UK4855H-824-RR-01 Page 195 of 292

e Herring Spawning and Nursery Grounds

Herring spawning grounds (HSGs) and nursery grounds have been delineated by Cefas for UK waters. The OWF survey area lies within an area of low intensity nursery ground, adjacent to high intensity nursery ground (Figure 57, Ellis *et al*, 2012). Spawning occurs during August to October and suitable HSGs include sediments that are well oxygenated, allowing their sticky eggs to gestate for around three weeks before they hatch (Rogers & Stocks, 2001). Such sediments are limited to unimodal, unmixed very coarse sands and gravels with a low proportion of fines (Ellis *et al.*, 2012). Overexploitation and poor recruitment led to a decline in the North Sea herring spawning stock in the 1970s, forcing closure of the fishery in 1977. Due to the unique sedimentary requirement for HSGs and the stock's vulnerability to overfishing (Rogers & Stocks, 2001), HSGs may be subject to protection if found. To determine whether any potential habitat for herring spawning exists within the OWF survey area, the PSA results from the grab sampling stations were assigned to the categories specified by Reach *et al.* (2013), as shown in Table 64.

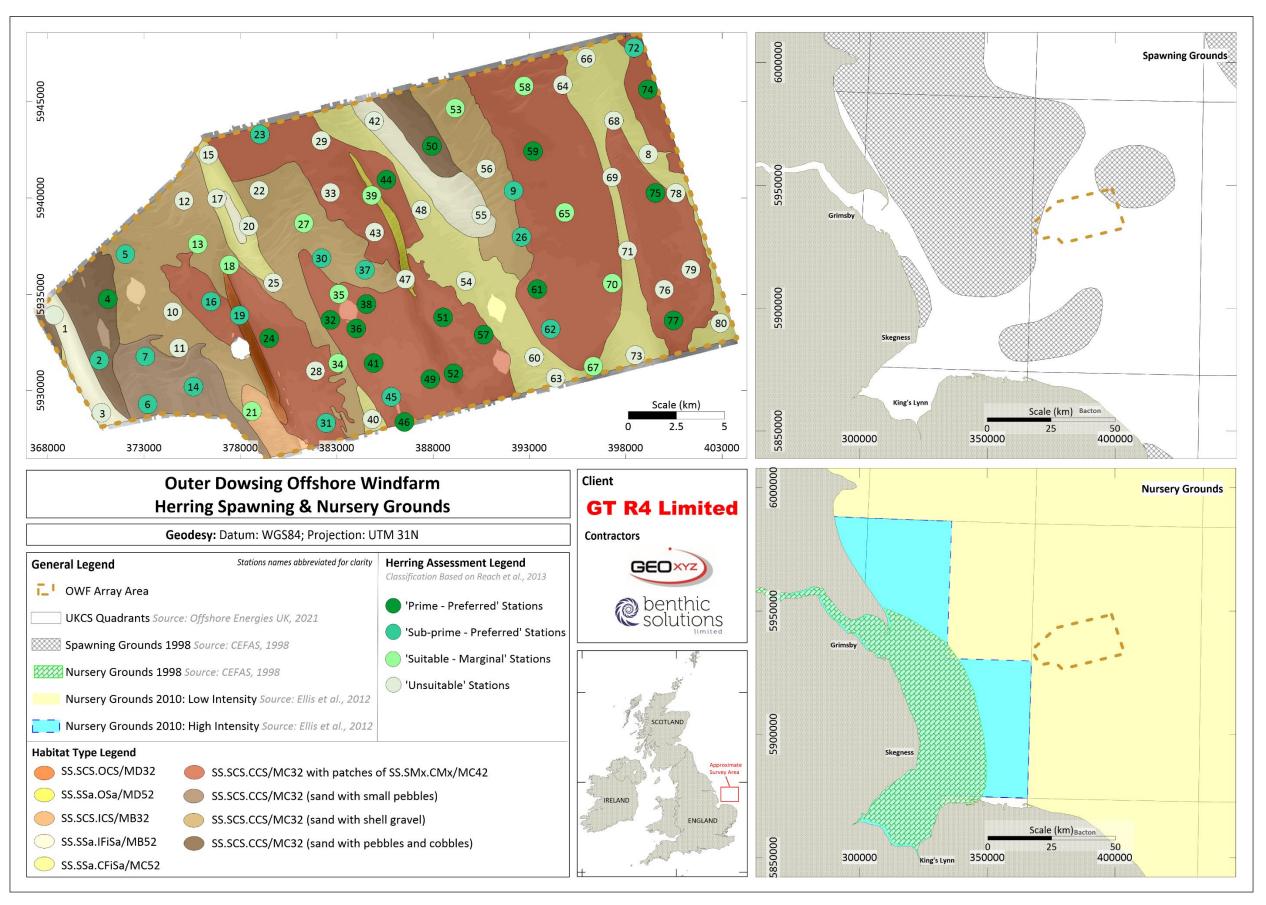
Table 64 Herring Spawning Ground Assessment Categories Specified by Reach et al. (2013)

Percent Contribution of Mud & Gravel	Habitat Sediment Preference	Habitat Sediment Classification
<5% mud, >50% gravel	Prime	Preferred
<5% mud, >25% gravel	Sub-prime	Preferred
<5% mud, >10% gravel	Suitable	Marginal
>5% mud <10% gravel	Unsuitable	Unsuitable

Results from particle size distribution of the survey area indicated that 46 stations sampled within the central area of the OWF showed HSG habitat sediment preference ranging from 'Suitable' to 'Prime'. A total of 18 stations showed the highest 'Prime-Preferred' sediment for HSG, indicating a high likelihood of herring spawning at these sample locations (Table 65). Stations within patches of MC32 (Atlantic circalittoral coarse sediment) were the most optimal, ranging from 'Sub-prime' to 'Prime'. Small scale variations in the proportions of mud and gravel across areas of MC32 with patches of MC42 (Atlantic circalittoral coarse sediment with patches of Atlantic circalittoral mixed sediment) created a mosaic of habitats ranging from 'Prime' to 'Unsuitable'. The remaining 34 stations within the survey area were classed as 'Unsuitable' for both habitat sediment preference and classification due to the presence of >5% fines and <10% gravel. Patches of seabed habitat assigned as MB52 (Atlantic infralittoral sand), MD52 (Atlantic offshore circalittoral sand) and MC52 (Atlantic circalittoral sand) were all unsuitable for herring spawning ground (Table 65 and Figure 57).

UK4855H-824-RR-01

Table 65 Herring Spawning Ground Assessment Results using Reach et al. (2013)


Station	Water Depth	Fines	Sands	Gravel	Modified Folk Scale	Habitat Sediment Preference	Habitat Sediment Classification	
OWF_01	12.9	0.0	100.0	0.0	Sand	No Preference	No Preference	
OWF_02	21	3.2	49.6	47.2	Sandy Gravel	Sub-prime	Preferred	
OWF_03	12.6	0.0	100.0	0.0	Sand	No Preference	No Preference	
OWF_04	19.9	0.4	23.8	75.7	Sandy Gravel	Prime	Preferred	
OWF_05	21.1	0.0	74.7	25.3	Gravelly Sand	Sub-prime	Preferred	
OWF_06	20.4	0.0	73.4	26.6	Gravelly Sand	Sub-prime	Preferred	
OWF_07	17.2	0.6	50.9	48.5	Sandy Gravel	Sub-prime	Preferred	
OWF_08	20.7	0.3	99.3	0.4	Sand	No Preference	No Preference	
OWF_09	21	2.2	56.4	41.4	Sandy Gravel	Sub-prime	Preferred	
OWF_10	19	0.0	94.7	5.3	Gravelly Sand	No Preference	No Preference	
OWF_11	18.5	0.0	99.9	0.1	Sand	No Preference	No Preference	
OWF_12	18.4	0.0	94.2	5.8	Gravelly Sand	No Preference	No Preference	
OWF_13	19.8	0.0	82.7	17.3	Gravelly Sand	Suitable	Marginal	
OWF_14	16	0.0	58.7	41.3	Sandy Gravel	Sub-prime	Preferred	
OWF_15	15.4	0.0	100.0	0.0	Sand	No Preference	No Preference	
OWF_16	20	2.4	49.3	48.3	Sandy Gravel	Sub-prime	Preferred	
OWF_17	14.8	0.0	100.0	0.0	Sand	No Preference	No Preference	
OWF_18	22.2	1.0	80.1	18.9	Gravelly Sand	Suitable	Marginal	
OWF_19	38.6	1.1	51.7	47.3	Sandy Gravel	Sub-prime	Preferred	
OWF_20	19.1	0.0	99.9	0.1	Sand	No Preference	No Preference	
OWF_21	10.2	0.0	81.9	18.1	Gravelly Sand	Suitable	Marginal	
OWF_22	23.2	0.0	96.6	3.4	Slightly Gravelly Sand	No Preference	No Preference	
OWF_23	21.5	0.0	51.7	48.3	Sandy Gravel	Sub-prime	Preferred	
OWF_24	21.2	0.9	34.4	64.7	Sandy Gravel	Prime	Preferred	
OWF_25	17.8	0.0	99.9	0.1	Sand	No Preference	No Preference	
OWF_26	19.7	0.0	53.6	46.4	Sandy Gravel	Sub-prime	Preferred	
OWF_27	19.8	1.0	77.4	21.6	Gravelly Sand	Suitable	Marginal	
OWF_28	18.5	7.1	63.7	29.2	Gravelly Muddy Sand	No Preference	No Preference	
OWF_29	22.6	8.0	62.8	29.2	Gravelly Muddy Sand	No Preference	No Preference	
OWF_30	20.4	0.4	73.2	26.3	Gravelly Sand	Sub-prime	Preferred	
OWF_31	17.1	0.4	50.0	49.6	Sandy Gravel	Sub-prime	Preferred	
OWF_32	20.5	0.0	37.4	62.7	Sandy Gravel Prime		Preferred	
OWF_33	21.7	6.2	66.3	27.5	Gravelly Sand	No Preference	No Preference	
OWF_34	20.2	0.0	82.3	17.7	Gravelly Sand	Suitable	Marginal	
OWF_35	20.8	1.0	87.6	11.4	Gravelly Sand	Suitable	Marginal	
OWF_36	20.1	0.6	22.4	77.0	Sandy Gravel	Prime	Preferred	
OWF_37	19.4	0.6	65.6	33.8	Sandy Gravel	Sub-prime	Preferred	
OWF_38	20.3	1.0	40.3	58.6	Sandy Gravel	Prime	Preferred	
OWF_39	24.9	2.4	73.3	24.4	Gravelly Sand	Suitable	Marginal	
OWF_40	15.7	0.0	100.0	0.0	Sand	No Preference	No Preference	
OWF_41	19.6	2.8	30.5	66.7	Sandy Gravel	Prime	Preferred	
OWF_42	18.5	0.0	99.5	0.5	Sand	No Preference	No Preference	
OWF_43	23.6	14.5	58.3	27.2	Gravelly Muddy Sand	No Preference	No Preference	
OWF_44	21.3	0.9	43.0	56.1	Sandy Gravel	Prime	Preferred	
OWF_45	20.2	2.4	57.1	40.5	Sandy Gravel	Sub-prime	Preferred	

UK4855H-824-RR-01

Station	Water Depth	Fines	Sands	Gravel	Modified Folk Scale	Habitat Sediment Preference	Habitat Sediment Classification	
OWF_46	20.6	1.0	36.5	62.5	Sandy Gravel	Prime	Preferred	
OWF_47	37.3	0.3	95.5	4.2	Slightly Gravelly Sand No Preference		No Preference	
OWF_48	19.2	0.7	95.1	4.3	Slightly Gravelly Sand	No Preference	No Preference	
OWF_49	18.9	3.7	33.6	62.8	Sandy Gravel	Prime	Preferred	
OWF_50	18.4	0.7	36.0	63.4	Sandy Gravel	Prime	Preferred	
OWF_51	18.5	1.9	33.9	64.2	Sandy Gravel	Prime	Preferred	
OWF_52	23.1	1.3	43.9	54.7	Sandy Gravel	Prime	Preferred	
OWF_53	22.7	0.0	85.4	14.6	Gravelly Sand	Suitable	Marginal	
OWF_54	19.3	0.0	97.7	2.3	Slightly Gravelly Sand	No Preference	No Preference	
OWF_55	14.8	0.3	96.9	2.8	Slightly Gravelly Sand	No Preference	No Preference	
OWF_56	19.6	0.0	99.9	0.1	Sand	No Preference	No Preference	
OWF_57	18.6	3.9	45.9	50.2	Sandy Gravel	Prime	Preferred	
OWF_58	23.9	1.4	87.6	11.0	Gravelly Sand	Suitable	Marginal	
OWF_59	23.9	0.9	39.9	59.2	Sandy Gravel	Prime	Preferred	
OWF_60	17.9	0.0	100.0	0.0	Sand	No Preference	No Preference	
OWF_61	18.4	3.2	28.8	68.0	Muddy Sandy Gravel	Prime	Preferred	
OWF_62	18.7	2.4	52.3	45.2	Sandy Gravel	Sub-prime	Preferred	
OWF_63	17.5	0.0	98.0	2.0	Slightly Gravelly Sand	No Preference	No Preference	
OWF_64	23.7	0.0	98.5	1.5	Slightly Gravelly Sand	No Preference	No Preference	
OWF_65	22	1.2	79.7	19.1	Gravelly Sand	Suitable	Marginal	
OWF_66	21.5	0.0	99.9	0.1	Sand	No Preference	No Preference	
OWF_67	25.5	0.6	74.9	24.5	Gravelly Sand	Suitable	Marginal	
OWF_68	21.7	1.4	98.2	0.4	Sand	No Preference	No Preference	
OWF_69	21.6	0.0	99.1	0.9	Sand	No Preference	No Preference	
OWF_70	22.1	0.0	87.2	12.8	Gravelly Sand	Suitable	Marginal	
OWF_71	21.7	0.0	99.8	0.2	Sand	No Preference	No Preference	
OWF_72	25.8	4.5	51.3	44.1	Sandy Gravel	Sub-prime	Preferred	
OWF_73	17.9	0.0	100.0	0.0	Sand	No Preference	No Preference	
OWF_74	24.9	1.0	45.3	53.7	Sandy Gravel	Prime	Preferred	
OWF_75	22.8	1.1	36.7	62.2	Sandy Gravel	Prime	Preferred	
OWF_76	22.5	7.2	53.6	39.2	Muddy Sandy Gravel	No Preference	No Preference	
OWF_77	17.4	0.3	18.6	81.1	Gravel	Prime	Preferred	
OWF_78	21.4	0.0	94.9	5.1	Gravelly Sand	No Preference	No Preference	
OWF_79	21.8	5.1	34.7	60.2	Muddy Sandy Gravel	No Preference	No Preference	
OWF_80	22.8	0.0	99.6	0.4	Sand	No Preference	No Preference	

Figure 57 Herring Spawning and Nursing Grounds

Document No. UK4855H-824-RR-01 Page 199 of 292

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

f Sandbanks which are Slightly Covered by Seawater all the Time

The Annex I habitat 'sandbanks which are slightly covered by seawater all the time' comprises sandy sediments that typically occur at depths of less than 20m below LAT. The diversity and types of community associated with this habitat are determined primarily by sediment type, together with a variety of other physical, chemical, and hydrographic factors. This habitat type is further split into a range of sub-types, including eelgrass 'Zostera marina' beds and maerl beds, which are both particularly distinctive and of high conservation value because of the diversity of species they may support and their general scarcity in UK waters.

The OWF site boundary crosses five sandbank areas which have been delineated by the JNCC (2020); 'Additional Bank 93', 'Additional Bank 97', 'Additional Bank 96', 'Additional Bank 94' and Additional Bank 92' (Figure 3). These sandbanks do not form part of any designated Special Areas of Conservation (SAC). The higher proportions of sand dominated sediment across the eastern, northern and southern edges of the survey area, in conjunction with shallow water depths of <15m are consistent with the expected presence of Annex I sandbank habitat within the OWF site.

UK4855H-824-RR-01

5 CONCLUSION

The water depth across the OWF survey area ranged between 5m to 47m below LAT. The seabed undulated across the site due to the presence of sand waves, megaripples, sandbanks and canyons. Megaripples and sand waves were observed ubiquitously across the survey area and were orientated east-northeast to west-southwest with typical amplitudes of 1m and 1m to 8m, respectively and wavelengths of 10m to 25m and 100m to 1,250m, respectively. Sandbanks were present along the northern and southern extents of the survey area and had heights equal or greater than 5m. Two canyons were present resulting in a maximum seabed slope of 23°.

The results of the particle size analysis indicated a variable sediment type present across the OWF survey area. The seabed sediments were generally dominated by either sands or sands with a low but variable proportion of fines. Higher proportions of sand were recorded at shallow depths associated with sandbank features. While the proportion of gravel in the form of pebbles and gravel matrixes interspersed with sand was observed in deeper parts of the survey area. The samples collected in the survey area represented seven Folk classifications with most assigned to either 'gravelly sand' or 'sandy gravel'. Regional comparisons to the survey area indicates a natural distribution of sediments, unimpacted by seabed infrastructure is present within the OWF array.

Total organic carbon was relatively low across the survey area and indicated an organically-deprived environment, with lower TOC concentrations recorded on the crests of sandbanks, which was unsurprising given the dominance of sand and gravel with minimal fines.

The total polycyclic aromatic hydrocarbons (PAH) were generally low across the survey area with an elevated Σ 16PAH and Σ 22PAH recorded at station OWF_19sampled within a canyon feature, which was hypothesised to be an area of accelerated natural deposition. The source of the PAHs across the survey area was determined to be from a mixed source of pyrolytic and petrogenic sources given the equal loading of 22 PAHs across the survey area, which was unsurprising given the proximity to gas and oil exploration. Polychlorinated biphenyls (PCBs), organotins and organochlorine pesticides were recorded at relatively low concentrations, which in conjunction with the low PAHs suggests a natural distribution of aromatic hydrocarbons across the site.

Concentrations of trace metals were generally at background levels but elevated concentrations above UKOOA thresholds was observed for mercury, nickel, zinc, copper and arsenic potentially indicating a residual trace of historical drilling activities within the OWF survey area. However, all metals with the exception of arsenic and nickel were below their respective sediment quality guideline value (SQGV) and were deemed to be 'low risk' within the OWF survey area. Arsenic and nickel exceeded their SQGVs at four and three stations respectively, but at levels which would be considered acceptable as the concentrations recorded were below the background levels determined from previous surveys close to the OWF survey area.

Benthic macrofaunal species richness and faunal abundance was variable across the survey area and reflected the sand and gravel dominated sediments across the survey area. A total of 4,429 individuals were recorded, of which 116 annelid species represented 37.7% of the total number of individuals. Simpson's diversity indices for the macrofauna showed variation across the survey area, where results ranged from 0.126 to 0.976 and indicated a variable community structure. Further analysis using multivariate statistics revealed seven significantly different macrofaunal cluster groupings within the survey area, with differences in macrofaunal assemblages attributed to the exclusion of certain taxa and the underlying MESH sediment classifications. As such, the variation in the macrofaunal community composition was significantly correlated to the sediment particle size, with all other correlations to physico-chemical parameters attributed to autocorrelation to sedimentary parameters due to the relatively low concentrations of trace metals, PAH and TOC.

UK4855H-824-RR-01

Epibenthic trawl species richness and faunal abundance reflected the sand and gravel dominated sediments throughout the survey area. A total of 4,866 individuals were recorded across 91 species, of which 23 species of Chordata represented 29.7% of the total number of individuals. Similarly, to the grab macrofaunal, the Simpson's diversity indices of 0.120 to 0.768 were indicative of a variable community structure across the survey area. Further analysis using multivariate statistics identified three significantly different macrofaunal groupings within the survey area, which were differentiated based on the epifaunal differences between sand dominated sandbank crest habitats, while the coarse sediment habitats were differentiated based on the presence/absence of *Sabellaria spinulosa*. The grab macrofaunal and epifaunal trawl datasets were considered to represent natural background infaunal and epifaunal conditions for this region of the southern North Sea.

The seabed across the OWF survey area corresponded well to the reflectivity in side scan sonar data across the site and was therefore assigned seven level four JNCC/EUNIS habitat types: MB52 'Atlantic infralittoral fine sand' (SS.SSa.IFiSa), MC52 'Atlantic circalittoral fine sand' (SS.SSa.CFiSa), MD52 'Atlantic offshore circalittoral sand' (SS.SSa.OSa), MB32 'Atlantic infralittoral coarse sediment' (SS.SCS.ICS), MC32 'Atlantic circalittoral coarse sediment' (SS.SCS.CCS), MD32 'Atlantic offshore circalittoral coarse sediment' (SS.SCS.OCS) or MC32/MC42'Atlantic circalittoral coarse and mixed sediment'(SS.SCS.CCS/SS.SMx.CMx). A review of the infauna and epifaunal datasets indicated the presence of several level five habitat types but all were considered impoverished examples: MB5231 'Infralittoral mobile clean sand with sparse fauna' (SS.SSa.IfiSa.ImoSa), MB5233 'N. cirrose and Bathyporeia sp. in infralittoral sand' (SSa.IFiSa.NcirBat), MD5212 'Owenia fusiformis and Amphiura filiformis in offshore circalittoral sand or muddy sand' (SS.SSa.OSa.OfusAfil), MB3231 'Sparse fauna on a highly mobile sublittoral shingle (cobbles and pebbles)' (SS.SCS.ICS.SSh), MC3211 'Spirobranchus triqueter with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles' (SS.SCS.CCS.SpiB), MD3312 'Hesionura elongata and Protodorvillea kefersteini in offshore coarse sand' (SS.SCS.OCS.HeloPkef), MC4214 'Flustra foliacea and Hydrallmania falcata on tide-swept circalittoral mixed sediment' (SS.SMx.CMx.FluHyd) and MC2211 'Sabellaria spinulosa on stable circalittoral mixed sediment' (SS.SBR.PoR.SspiMx).

The associated fauna evident from video footage and still photographs comprised a high diversity and density of epifauna. The finer sand dominated sediments had an impoverished epifaunal community when compared to visual inspections of the coarse and mixed sediment habitats. This is due to the greater abundance of hard substrate in the form of cobbles and pebbles present across the coarser sediment habitats, which enables the development of complex epifaunal communities. However, Chordata such as sandeels (Ammodytes sp.), plaice (Pleuronectes platessa), dragonets (Callionymus lyra), lesser weever fish (Echiichthys vipera) and pogges (Agonus cataphractus) were sighted more often in sand dominated habitats.

A number of potential sensitive habitats and species are known to occur in the wider southern North Sea including, geogenic stony reefs (EC Habitats Directive Annex I habitat), biogenic reef (EC Habitats Directive Annex I, Habitat FOCI, OSPAR Threatened and/or Declining Habitat, UKBAP Priority Habitat), lesser sandeel (*Ammodytes marinus*) (Species FOCI, UKBAP Priority Species), herring spawning grounds, shallow sandbanks (EC Habitats Directive Annex I) and ocean quahog (*A. islandica*) (Species FOCI, OSPAR Threatened and/or Declining Species).

The presence of cobbles and boulders indicated the potential for Annex I stony reef to occur in areas of intermediate habitats of 'Atlantic circalittoral mixed sediment' and 'Atlantic circalittoral coarse sediment'; however, the majority of camera transects were classified as 'Not a Reef' according to the Irving (2009) criteria as the percentage cover of cobbles and boulders was <10%. Only a single transect (OWF_VID_57) was classified as 'Low Reef' due to the increased composition and elevation of cobbles present. Station OWF_57 had epifauna present at sufficient densities to be considered 'possible reef with sand veneer' or 'reef with sand veneer'

UK4855H-824-RR-01

according to Golding *et al.* (2020) criteria; however, the lack of mean reef species restricted the confident assignment of Annex I stony reef. The lack of SSS/MBES signatures further restricted the designation of potential patches of stony reef outside of the camera ground-truthed areas; however, a hard substrate density map of pebbles, cobbles and boulders indicated the presence of several dense regions of hard substrate availability. Although, in light of the current ground-truthed data, it is unlikely that these areas of dense cobble and boulder cover would be classified as Annex I stony reef habitats.

The presence of *S. spinulosa* aggregations at station OWF_76 indicated a conformance to SS.SBR.PoR.SspiMx '*S. spinulosa* on stable circalittoral mixed sediment'. The presence of *S. spinulosa* aggregations could indicate a presence of Annex I *S. spinulosa* reef; however, according to Gubbay (2007), the *S. spinulosa* aggregations observed along transect OWF_76 were unlikely to represent 'reef'. Although, these aggregations of *S. spinulosa* were not reef forming, areas of *S. spinulosa* aggregations had higher epifaunal species diversity when compared to areas where *S. spinulosa* was absent, indicating that even fragmented *Sabellaria* aggregations can have ecological benefits. Similarly, to the stony reef assessment, the absence of textural differences in the SSS/MBES data, restricted the mapping of *Sabellaria* at OWF_76 and across the wider survey area. Therefore, the spatial extent of the SS.SBR.PoR.SspiMx habitat within the wider OWF survey area are not known.

Numerous sandeels (Species FOCI, PMF species Scotland, UKBAP Priority Species) were observed on the video footage in sand dominated areas; however, Greenstreet (2010) indicated a wider spatial preference across multiple habitat boundaries, with 67% of stations classified as 'Prime' and 'Suitable' for sandeels based on PSA. Therefore, indicating that sandeels could potentially occupy larger areas of 'unsuitable' habitats, if the small-scale variability in sediments was within the 'Prime' or 'Preferred' criteria outlined by Greenstreet (2010). The presence of sandeels along with the 'Prime' and 'Suitable' habitat classification is unsurprising given the OWF survey area falls within a sandeel nursery ground and between two spawning grounds. It should also be noted that even optimal habitats may not be occupied by sandeels when populations are below the area's carrying capacity.

Areas of Atlantic circalittoral coarse sediment, Atlantic offshore circalittoral coarse sediment and Atlantic infralittoral coarse sediment were the most optimal for herring spawning grounds, ranging from 'Sub-prime' to 'Prime'. Whereas areas of Atlantic infralittoral sand, Atlantic offshore circalittoral sand and Atlantic circalittoral sand were all unsuitable for herring pawning ground. Similarly, to sand eels, the presence of 'Sub-prime' and 'Prime' sediments for herring spawning within the OWF survey area were unsurprising given the proximity to known spawning and nursey grounds.

The OWF survey area is situated between five areas delineated as sandbanks ('Additional Bank 93' and 'Additional Bank 97', Additional Bank 96', Additional Bank 94' and Additional Bank 92'); however, these sandbanks do not form part of any designated Special Areas of Conservation (SACs). The higher proportions of sandy sediment to the east of the survey area, along with the relatively shallow water depths in this area, provides further evidence for the expected presence of Annex I sandbank habitat beyond the southern and northern edges of the OWF survey area.

No living specimens of ocean quahog (*A. islandica*) (Species FOCI, Scottish PMF OSPAR threatened and/or declining Species) were observed on underwater video footage or recorded in grab/epibenthic trawl macrofauna datasets. Therefore, it is unlikely for the ocean quahog to occur within the OWF survey area.

Non-native marine species are of particular concern when they become invasive thus detrimental to native species. However, invasive species within the OWF survey area were limited to observations of slipper limpets (*C. fornicata*), which have been present in the UK since the late 1800s.

6 REFERENCES

Barnes, R.S.K., Coughlan, J. and Holmes, N.J., 1973. A preliminary survey of the macroscopic bottom fauna of the Solent, with particular reference to *Crepidula fornicata* and *Ostrea edulis*. In Proceedings of the Malacological Society of London (No. 4).

BGS, 2021. The BGS Lexicon of Named Rock Units — Result Details: Coal Pit Formation. [Date accessed: 10/07/2022]. Available from: https://webapps.bgs.ac.uk/lexicon/lexicon.cfm?pub=COP

Blanchard, M., 1997. Spread of the slipper limpet *Crepidula fornicata* (L. 1758) in Europe. Current state dans consequences. Scientia marina, 61(Suppl. 2), pp.109-118.

Blumer, M. and Snyder, W. D., 1965. Isoprenoid hydrocarbons in recent sediments: presence of pristane and probably absence of phytane, Science 150, 1588.

Bordin, G., McCourt, J. and Rodriguez, A. 1992. Trace metals in the marine bivalve *Macoma balthica* in the Westerschelde Estuary, the Netherland. Part 1: analysis of total copper, cadmium, zinc and iron-locational and seasonal variations. Sci. Tot. Environ, 127: 225-280.

Brils, J.M., Huwer, S.L., Kater, B.J., Schout, P.G., Harmse, J., Delvigne, G.A.L. and Scholten, M.C.T.H., 2002. Oil effect in freshly spiked marine sediment on *Vibro fischeri, Corophium volutator* and *Echinocardium cordatum*. Environmental toxicology chemistry, 21: 2242-2251.

Bryan, G. W., and Langston, W. J., 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environmental Pollution, 76: 89-131.

Bullimore and Hiscock, 2001. Procedural Guideline No. 3-12: Quantitative surveillance of sublittoral rock biotopes and species using photographs

Chester, R. and Voutsinou, F. G., 1981. The Initial Assessment of Trace Metal Pollution in Coastal Sediments. Mar Pol Bull 12: 84-91.

Çinar, M.E., Arianoutsou, M., Zenetos, A. and Golani, D., 2014. Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquatic Invasions, 9(4), pp.391-423.

Clarke, K.R., Gorley, R.N., Somerfield, P.J., Warwick, R.M. 2014. Change in marine communities: an approach to statistical analysis and interpretation, 3rd edition. PRIMER-E: Plymouth

Coggan, R., Mitchell, A., White, J., & Golding, N. 2007. Recommended operating guidelines (ROG) for underwater video and photographic imaging techniques. MESH. Available from http://www.emodnet-seabedhabitats.eu/pdf/GMHM3_Video_ROG.pdf.

Connor, D. et al. 2004. The Marine Habitat Classification for Britain and Ireland. Version 04.05. Introduction.

Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., Sanderson, W., Turnbull, C. & Vincent, M, 2001. Marine Monitoring Handbook, JNCC, Peterborough, ISBN 1 86107 5243. Available from https://data.jncc.gov.uk/data/ed51e7cc-3ef2-4d4f-bd3c-3d82ba87ad95/marine-monitoring-handbook.pdf.

Douglas, G.S., Bence, A.E., Prince, R.C., McMillen, S.J. and Butler, E.L., 1996. Environmental stability of selected petroleum hydrocarbon source and weathering ratios. Environmental science and technology, 30(7), 2332-2339.

EMODnet, 2022. European Marine Observation Data Network (EMODnet) Seabed Habitats Project: Spatial Data Downloads. [Date accessed: 20/06/2022]. Available from: https://www.emodnet-seabedhabitats.eu/access-data/download-data/

UK4855H-824-RR-01

EUNIS, 2019. EUNIS habitat classification 2019. [Date accessed: 19/06/2022]. Available from: https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification.

Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. Journal of Geology 62: 344-349.

Girones, L., Ana, L., Olivia, A.L., Marcovecchio, J.E. and Arias, A.H., 2020. Spatial distribution and ecological risk assessment of residual organochlorine pesticides (OCPs) in South American marine environments. Springer. Nature Switzerland.

GT R4. 2022. Offshore ECC Geophysical Site Investigation 2022. Outer Dowsing Offshore Wind – UK. Pp. 42.

Habitats Directive (European Community), 2002, 2007. Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and flora.

Hitchin, R., Turner, J.A., Verling, E. 2015. Epibiota remote monitoring from digital imagery: Operational guidelines. Available from http://www.nmbaqcs.org/media/1591/epibiota_operational_guidelines_final.pdf.

Holland, G.J., Greenstreet, S.P., Gibb, I.M., Fraser, H.M. and Robertson, M.R., 2005. Identifying sandeel Ammodytes marinus sediment habitat preferences in the marine environment. Marine ecology progress series, 303: 269-282.

Holt and Sanderson, 2001. Procedural Guideline No. 3-5: Identifying biotopes using video recordings

Jenkins, C., Eggleton, J.D., Albrecht, J., Barry, J., Duncan, G., Golding, N. & O'Connor, J. 2015. North Norfolk Sandbank and Saturn Reef cSAC/SCI Management Investigation Report. JNCC/Cefas Partnersh. Rep. Ser. Rep. No. 7:92. Available from https://data.jncc.gov.uk/data/e1cafa60-03e5-411a-96b6-d7fed00dccb0/JNCC-Cefas-7-FINAL-WEB.pdf

Jenkins, C., Eggleton, J.D., Barry, J. & O'Connor, J. 2018. Advances in assessing *Sabellaria spinulosa* reefs for ongoing monitoring. Ecology and Evolution. 8: 7673-7687. Available from https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.4292. (chuck in were we discuss elevation/ extent)

JNCC, 2014. JNCC clarifications on the habitat definitions of two habitat Features of Conservation Importance. Joint Nature Conservation Committee. 14pp.

JNCC, 2015. The Marine Habitat Classification for Britain and Ireland Version 15.03. [Date accessed: 26/06/2022]. Available from: https://mhc.jncc.gov.uk/

JNCC, 2020. SACFOR abundance scale used for both littoral and sublittoral taxa from 1990 onwards. [Date accessed: 23/06/2022]. Available from https://mhc.incc.gov.uk/

JNCC and Natural England, 2016. Review of the MCZ Features of Conservation Importance. May 2016. 43pp.

Kaiser, M.J., Bergmann, M., Hinz, H., Galanidi, M., Shucksmith, R., Rees, E.I.S., Darbyshire, K. and Ramsay, K., **2004.** Demersal fish and epifauna associated with sandbank habitats. Coastal and shelf science, 60: 445-456.

Laflamme, R.E. and Hites, R.A., 1978. The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochim. Cosmochim. Acta. 42: 289-303.

Latto, P.L., Reach, I.S., Alexander, D., Armstrong, S., Backstrom, J., Beagley, E., Murphy, K., Piper, R. and Seiderer, L.J., 2013. Screening spatial interactions between marine aggregate application areas and sandeel habitat. A method statement produced for BMAPA.

UK4855H-824-RR-01

Le Pape, O., Guérault, D. and Desaunay, Y., 2004. Effect of an invasive mollusc, American slipper limpet *Crepidula fornicata*, on habitat suitability for juvenile common sole *Solea solea* in the Bay of Biscay. Marine Ecology Progress Series, 277, pp.107-115.

Luoma, S. N., and Davies J. A., 1983. Requirements for modelling trace metal portioning in oxidised estuarine sediments. Marine Chemistry, 12: 159-181.

Martins, R., Sampaio, L., Quintino, V. and Rodrigues, A.M. 2014. Diversity, distribution and ecology of benthic molluscan communities on the Portuguese continental shelf Journal of sea research, 93: 75-89.

McLeese, D. W., Sprague, J. B., and Ray, S., 1987. Effects of cadmium on marine biota. p. 171-198. In: Nriagu, J.O. and J.B. Sprague (eds.). Cadmium in the Aquatic Environment. Advances in Environmental Science and Technology, Volume 19. John Wiley & Sons, New York. 272 pp.

MMO, 2015. High level review of current UK action level guidance. MMO project no:1053.

Munro, 2001. Procedural Guideline No. 3-13: In situ surveys of sublittoral epibiota using hand-held video

Musafa, E., Bilal, K. and Vedat, E., 1996. Source and depositional controls on heavy metal distribution in marine sediments of the gulf of Iskenderun, eastern Mediterranean. Marine geology, 133(3-4): 223-239.

National Research Council (NRC), 1983. Drilling Discharges in the Marine Environment. National Academy Press, Washington DC. pp.180.

Neff, J. M., 2005. Bioaccumulation in marine organisms. Effects of contaminants from oil well produced water. Elsevier, Oxford, UK.

OGUK, 2019. Seabed Environmental Survey. Guidelines. Issue 1. pp 55. ISSN 978-1-913078-08-9.

OSPAR., 2008. Descriptions of habitats on the OSPAR list of threatened and/or declining species and habitats. OSPAR Convention for the Protection of the Marine Environment of the North-east Atlantic. Reference Number: 2008-07. 8pp.

OSPAR, 2009a. Background Document for ocean quahog *Arctica islandica*. Biodiversity Series. Publication Number: 407/2009. OSPAR Commission, London.

OSPAR, 2009b. Agreement on CEMP Assessment Criteria for the QSR 2010. OSPAR agreement number: 2009-2. www.ospar.org/.

OSPAR, 2010. Background Document for Seapen and Burrowing Megafauna Communities. OSPAR Commission Biodiversity Series. 27pp.

OSPAR, 2012. Levels and trends in marine contaminants and their biological effects—CEMP Assessment report 2012.

OSPAR, 2014. Levels and Trends in Marine Contaminants and their Biological Effects. CEMP Assessment Report 2013. Publication number: 631/2014, OSPAR Commission 2014.

Parry, M.E.V., 2019. Guidance on Assigning Benthic Biotopes using EUNIS or the Marine Habitat Classification of Britain and Ireland, JNCC report No. 546, JNCC, Peterborough, ISSN 0963-8091. Available from https://data.jncc.gov.uk/data/f23a26d7-07ad-4291-a42d-b422dad82351/JNCC-Report-546-REVISED-WEB.pdf

Parry, M.E.V., K.L. Howell, B.E. Narayanaswamy, B.J. Bett, D.O.B. Jones, D.J. Hughes, N. Piechaud, H. Ellwood, N. Askew, C. Jenkins and E. Manca. 2015. A Deep-sea Section for the Marine Habitat Classification of Britain and

UK4855H-824-RR-01

Ireland. JNCC report 530. In: **JNCC. 2015.** The Marine Habitat Classification for Britain and Ireland Version 15.03 [Online].

Preston, J., Fabra, M., Helmer, L., Johnson, E., Harris-Scott, E. and Hendy, I.W., 2020. Interactions of larval dynamics and substrate preference have ecological significance for benthic biodiversity and *Ostrea edulis* Linnaeus, 1758 in the presence of *Crepidula fornicata*. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(11), pp.2133-2149.

Santoro, A., Held, A., Linsinger, T.P.J., Perez, A. and Ricci, M., 2017. Comparison of total and aqua regia extractability of heavy metals in sewage sludge: The case study of a certified reference material. Trends in analytical chemistry, 89: 34-40.

Schaule, B. K. and Patterson, C. C., 1983. Perturbations of the Natural Lead Depth Profile in the Sargasso Sea by Industrial Lead. In: Trace Metals in Seawater. Plenum Press, New York.

Simon P.R. Greenstreet, Eric Armstrong, Henrik Mosegaard, Henrik Jensen, Iain M. Gibb, Helen M. Fraser, Beth E. Scott, Gayle J. Holland, Jonathan Sharples. 2006. Variation in the abundance of sandeels *Ammodytes marinus* off southeast Scotland: an evaluation of area-closure fisheries management and stock abundance assessment methods. *ICES Journal of Marine Science*.63 (8) pp: 1530–1550.

Simon, P.R., Greenstreet, G.J., Holland, E.J., Guirey, E., Armstrong, H.M., Fraser, M. and Gibb, M., 2010. Combining hydroacoustic seabed survey and grab sampling techniques to assess "local" sandeel population abundance, ICES Journal of Marine Science, 67(5): 971–984.

Simpson, L.S., Batley, G.E. and Chariton, A.A., 2013. Revision of the ANZECC/ARMCANZ sediment quality guidelines. Land and water science report 08/07.

Streftaris, N. and Zenetos, A., 2006. Alien marine species in the Mediterranean-the 100 'Worst Invasives' and their impact. Mediterranean Marine Science, 7(1), pp.87-118.

Tessier, A., Campbell, P. G. C. and Bisson, M., 1979. Sequel Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry 51: 844 - 851.

Thieltges, D.W., 2005. Impact of an invader: epizootic American slipper limpet *Crepidula fornicata* reduces survival and growth in European mussels. Marine Ecology Progress Series, 286, pp.13-19.

Thompson, B., and Lowe, S., 2004. Assessment of macrobenthos response to sediment contamination in the San Francisco estuary, California, USA. Environ. Toxicol. Chem. 23: 2178–2187.

Turner, J.A., Hitchin, R., Verling, E., van Rein, H. 2016. Epibiota remote monitoring from digital imagery: Interpretation guidelines.

UKBAP, 2008. UK Biodiversity Action Plan Priority Habitat Descriptions: Deep Sea Sponge Communities.

UK GOV, 2019. Other regulatory issues - Version at July 2019: 1 - 175. Accessed from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/815762/O ther_Regulatory_Issues_-_July_2019.pdf

UKOOA, 2001. An analysis of U.K Offshore Oil & gas Environmental Surveys 1975-95, pp. 141.

Van Der Reijden, K.J, Koop, L., Mestdagh, S., Snellen, M., Herman, P.M., Olff, H. and Govers, L.L., 2021. Conservation implications of *Sabellaria spinulosa* reef patches in a dynamic sandy-bottom environment. Frontiers in Marine science, 13: 8-642659.

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

Vane, C.H., Kim, W.A., Beriro, D.J., Cave, M.R., Knights, K., Moss-Hayes, V. and Nathanail, P.C., 2014. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry, 51: 303-314. ISSN: 0883-2927.

Wallingford, H.R., Haskoning, P. and D'Olier B., 2002. Southern North Sea sediment transport study, phase 2 sediment transport report. Produced for Great Yarmouth Borough Council. Report EX 4526,

Wentworth, C K., 1922, A Scale of Grade and Class Terms for Clastic Sediments, The Journal of Geology, Vol. 30, No. 5 (Jul. - Aug. 1922), pp. 377-392.

WFD-UKTAF, 2014. UKTAG transitional and coastal water assessment method, benthic invertebrate fauna. Infaunal quality index: 22

Whalley, C., Rowlatt, S., Bennett, M. and Lovell, D., 1999. Total arsenic in sediments from the western north sea and the Humber Estuary. Marine pollution bulletin, 38(5): 394-400

Wright, P.J., Pedersen, S.A., Donald, L., Anderson, C., Lewy, P. and Proctor, R., 1998. The influence of physical factors on the distribution of lesser sandeel, Ammodytes marinus and its relevance to fishing pressure in the North Sea: 17

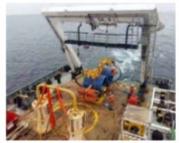
Wright, L. and Reid I., 2017. Classification of Weathered Kerosene and Diesel Fuel using Passive Headspace Concentration with Activated Charcoal Strip and Statistical Analysis Technique. *J* Forensic Res. 8(403), pp10.

Youngblood, W.W. and Blumer, M., 1975. Polycyclic aromatic hydrocarbons in the environment: homologues series in soils and recent marine sediments. Geochim. Cosmochim. Acta, 39:1303-1314.

UK4855H-824-RR-01

7 APPENDIX

APPENDIX A - GEO OCEAN III


GEO OCEAN III

Offshore Survey & Support Vessel

SUPPORT ACTIVITIES / VESSEL CAPABILITIES

The GEO OCEAN III is a multi-disciplined DP II offshore survey vessel. With her specifically selected equipment and capabilities for the North Sea survey and light construction support activities, she is the ideal candidate for our Oil & Gas and Renewables clients.

The vessel is equipped with 56 berths, Offshore crane, Survey and ROV systems. Equipment can be rapidly deployed using the large Stern A-Frame, crane or through the 6 x6 m moonpool via the dedicated A-frame and 30t AHC winch. All together making the Geo Ocean III a dynamic platform for subsea operations.

GEOxyz | T: +32 (0) 56 70 68 48 | info@geoxyz.eu | www.geoxyz.eu

GEO OCEAN III

Offshore Survey & Support Vessel

TECHNICAL SPECIFICATION

-			٠
Ge	100	r	п

Name Geo Ocean III Flag Luxembourg Port Registry Luxembourg LXGP Call Sign IMO Number 9285586 Classification LLOYDS - HULL - MACH Vessel Type Special Service: Survey Vessel SV Fire fighting ship / Fire fighting 1 Waterspray / Oil Recovery / Stand by rescue AUT-UMS - ALM - DYNAPOS-AM/AT-R; SDS Unrestricted navigation

Dimensions and Construction

De Hoop Builder 2004 Built LOA 77,30 m Width Moulded 18 m 7,40 m Depth Moulded Draft min. / max. 3,80 m/6,10 m Gross Tonnage 3,722 Moonpool 6 m x 6m

Accommodation

 Total Berths
 56 persons

 Total Cabins
 32

 Single cabins
 8 x 1 person

 Double cabins
 24 x 2 persons

 Offices
 1 x Dedicated Online

1 x Dedicated Offline / Conference room

1 x Client Office 1 x OCM Office 1 x 3rd Party Office

Hospital 1 x Hospital
Other Facilities Galley, Large Mess room, 2 x day room,
Gymnasium, Dirty Mess

Capacities & delivery Rates

Main Deck area: 670 m² Hangar Deck: 290 m² Mezzanine Deck Area: 268 m² Max Deck Loading Main Deck 5t/m² Mezzanine Deck 2t/m² Max Deck Load 1.300 t @ 1m above deck 1,105m3 - 100m3/h @ 8bars Fuel oil (capacity - transfer): Drill or Water ballast (capacity - transfer): 1,350m3 - 40m3/h @ 4.5bars Antiheeling (capacity - transfer): 250m3 - 2 x 500m3/h Fresh water (capacity - transfer): 495 m3 - 40 m3/h @ 4.5bars 324 m³ Oil recovery: Foam: 24 m³

Safety Equipment

FI-Fi: Class 1

Pumps: 2 x 1,200m²/h
Monitors: 2 x 1,200m³/h
fast Rescue Craft: 1 x Seabear 23 MKII
Rescue capacity: 150 persons in tropical area

MACHINERY & PERFORMANCE

Propulsion - Machinery

 Main propulsion:
 2 x 1,800 kW FP Azimuth thrusters

 Main Engines:
 4 x 1360kW Caterpillar

 Tunnel thrusters:
 1 x Insert manufacturer 780 kW

 Fwd Azimuth
 1 x Rolls Royce 600kW retractable

SPEED & CONSUMPTION (Information only)

 Service Speed
 10 kts

 Max Speed
 12 kts

Fuel consumption

 Stand-by in port:
 2t/day

 Survey Speed:
 7t/day

 DPII:
 6t/day

Deck Equipment and Cranes

 Main Crane:
 SMST telescopic
 40t @ 9m - 6t @ 23.5m

 Winch Capacity:
 40t / 40t - 200m

 Deck Crane
 4.5t @9m Man-riding

 Stern A- Frame :
 54t @ 8m outreach

 Max launching Dims
 8m clearance up / 10m wide opening

 Offshore capacity:
 54t @ 8m outreach

 Winch Capacity
 30t / 30t - 1,500m - AHC

 Moonpool A-Frame
 30t

 Winch Capacity
 30t / 30t - 1,500m - AHC

 Tuggers:
 1 x 10t & 1 x 30t

 Capstons:
 2 x 5t

 Deck Service Air Supply:
 66 m³/h @ 8 bars

 Deck Power Supply:
 3 x 265 kW - 480 VAC /60Hz

Navigation and Dynamic Positioning

DP System: GE DP21 + IJS DP 2 Type: DGPS 1 Fugro Seastar 9205 Reference 1: DGPS 2 Fugro Seastar 9205 G4 and XP2 corrections USBL Reference 2: Reference 3: Reference 4: Kongsberg Fan Beam Primary Heading/motion/INS POSMV 320 Ocean Master Secondary Heading/motion/INS POSMV 320 Ocean master Subsea Positioning Sonardyne Ranger 2 c/w 6G HPT 5000

Survey Suite and Offline software

Offline Software
Oliver GlnSy, NaviSuite, Beamworks,
Oasis Montaj (UXO marine),
Visual works, Autodesk, Arc GlS,
Video Distribution
4k ultra high definition

Video Distribution 4k ultra high definition Audio comms Canford clear comms

Survey Sensors

Survey Suite

MBES Hull Mounted (Optional Dual head) R2Sonic 2024 UHR
Single Beam XXXXXXX
Sound Velocity Sensor Valeport Swift
Sidescan Sonar Edgetech 2200
Sub Bottom Profiler Silas, Depending on requirements

Subsea Equipment

WROV 1 x 150HP WROV
IROV Mezzanine deck configured for rapid mobilisation
1 x Seaeye Cougar
Vibrocorer 3/6m electric/hydraulic systems as required
CPT Optional 1.5 – 20t systems (Neptune or Manta type as required)

GEOxyz | T: +32 (0) 56 70 68 48 | info@geoxyz.eu | www.geoxyz.eu

QINSY

APPENDIX B - SAMPLING EQUIPMENT

ar Ending of an English English

Comments

For detailed assessment of ecologically sensitive habitats. The camera system was housed within a freshwater lens (FWL) adapted sled, which allows this system to take high resolution images and video in areas of poor visibility water clarity. During phase 1, the FWL frame was setup for both the BSL MOD 4.2 and 4.4 camera systems.

Two additional camera sleds were retained onboard as backups.

The Mini-Hamon Grab was the primary sampler used at every station throughout Phase 1 for all MF/PSA/TOC sampling. It is a single shovel sampler designed for operations in mixed, diamicton sands and gravel sediments and acquires a 1 x 0.1m² sample from a single deployment.

The Shipek Grab was utilised at 30 sampling stations to acquire samples for contaminant analysis, with a further 15 sub-sampled for eDNA.

When the grab touches the bottom, inertia from a self-contained weight releases a catch and helical springs rotate the inner half cylinder by 180°. After turning, the scoop remains closed by the residual torque of the scoop spring. Because the rotation of the bucket is under tension, its shear strength is far greater than the sediment strength, thus cutting cleanly, particularly in soft clays, muds, silts & sands.

Item

Comments

The Day Grab was retained onboard as a backup to the Mini-Hamon and was not used in the course of Phase 1 environmental sampling operations.

It is normally used to acquire undisturbed samples from muddy or sandy seabed sediment, collecting 1 x $0.1 m^2$ sample from a single deployment.

The *Wilson* Auto-siever was loaded with a sieve stack of 5mm and 1mm sieves and utilises seawater to remove excess sediment whilst retaining macrofauna for formaldehyde preservation.

A robust commercial Jennings-type 2m beam trawl was used in Phase 1 to acquire Macro Faunal samples from a minimum of 500m long trawl transects

Comprised of a heavy-duty steel beam, outer commercial mesh, and internal 7.5mm scientific mesh and is configured with a 5mm mesh liner in the cod-end to retain smaller organisms.

APPENDIX C – FIELD OPERATIONS AND SURVEY METHODS

Seabed Photography and Video

Seabed video footage was acquired at 31 locations across the OWF site to provide ground-truthing of sediments indicated in the acoustic data. The 31 camera transects were carried out using MOD4.4 and MOD4.2 camera systems mounted within a BSL freshwater lens drop down frame equipped with a separate strobe, and LED lamps.

Once at the seabed, the camera was moved along the length of the transect at a speed of 0.3 to 0.5 knots. Still photographs were captured remotely using a surface control unit via a soft towed umbilical to the camera system. The stills were uploaded in real-time and saved to the camera and a laptop via specialist software. Live video footage, overlaid with the date, time, position and site details were viewed in real-time. The live video stream was used to assist with targeting of the stills camera. HD footage was saved internally by the video camera; data was downloaded at the end of each day of camera operations and backed-up onto a hard drive

Grab Sampling

A 0.1m² mini Hamon grab was used for macrofaunal and physico-chemistry sampling at all sample locations due to coarse sediments encountered across the OWF area. Three consecutive 'no sample' deployments were agreed to be the maximum number of attempts at any location before moving on. Samples above the predetermined minimum of 40% retention were obtained at 71 sampling stations. Coarse material at the remaining nine stations prevented adequate grab penetration and therefore were rejected as an acceptable sample.

A 0.1m² Shipek grab used to collect contaminant samples. Three consecutive 'no samples' per grab type was agreed to be the maximum at each location before moving on. At 30 stations both primary and secondary contaminant samples could be acquired from a single grab sample.

Pre-deployment procedures included the cleaning of the inner stainless grab buckets, cable and shackles so that they were generally grease free. Samples were subject to quality control upon recovery and were flagged if they did not meet the following requirements:

- Water above sample is undisturbed;
- Bucket closure complete allowing no sediment washout;
- Sampler access doors had closed properly enclosing the sample;
- No disruption of the sample through striking the side of the vessel;
- Sample was taken within the acceptable target range <10m;
- Sample represented greater than 5L capacity (ca. 40% of the sampler's capacity);
- No hagfish (Myxine glutinosa) and/or other mucus coagulants were found in the sample;
- No obvious contamination from equipment or the vessel;
- The sample was acceptable to the principal scientist.

Upon recovery, each sample was inspected, described and photographed prior to processing. Key observations from samples included colour, sediment classification, layering, smell (including the presence of H₂S), obvious fauna, evidence of bioturbation and evidence of anthropogenic debris. Two successful 0.1m² replicates were required per station to acquire enough material for three macrofauna replicates and sub-sampling of physico-

UK4855H-824-RR-01

chemistry from the remaining sample, achieved through two deployments of the Hamon Grab. The macrofaunal replicates were processed on-board over a 5mm and a 1mm aperture mesh by BSL scientists using a *Wilson* Auto-siever.

Sample Processing

Field processing was conducted on board after they had been subjected to the afore mentioned quality control and proclaimed acceptable. Sub-sampling of physico-chemical parameters was undertaken from the grab samples with the following material retrieved from the surface sediments (0-2cm) for later analysis:

- 1. Heavy & trace metals and total organic carbon & matter (stored in doubled lined Ziplock plastic bag);
- 2. Particle size distribution (PSA; stored in doubled lined Ziplock plastic bag).

Sub-sampling of contaminants from the Shipek grab was undertaken by BSL scientists from the grab samples for later analysis. Sediment samples were collected using stainless steel implements and stored in a pre-washed foil capped glass jar.

The preservation of materials was undertaken using standard techniques. All physico-chemical samples were stored in appropriate containers (i.e. glass for hydrocarbons, and plastics for metals and PSA) and immediately frozen and stored (<-18°C) for later transportation (frozen) to the laboratory upon demobilisation. Macrofaunal samples were fixed and stained in 5-10% buffered formalin and a vital stain (Rose Bengal) for storage and transportation. This material will be later transferred to industrial methylated spirit (IMS). All biological samples were double labelled with internal tags.

Benthic Trawls

A 2-metre Jennings style beam trawl was to be deployed along 8 trawl routes across the OWF survey area. Samples were required to be a minimum of 5 litres with smaller trawl catches classed as a 'no samples and repeated at a 50m offset. Three consecutive 'no samples' was agreed to be the maximum number of attempts at any location before moving on. Where preliminary review of co-located camera transects indicated that an area supported sparse epifauna, the trawl length was extended beyond the minimum 500m length to increase the chance of acquiring satisfactory trawl samples.

Samples were extracted from the trawl, photographed with their respective identification label and, if necessary, sieved over a 5mm mesh. Biological organisms were separated into trays by general groups (e.g. crustaceans, echinoderms, mollusc, sponges and others). Individuals were counted and identified to species where possible, those that were unable to be identified in the field were fixed and returned to the onshore laboratory for analysis. One example for each taxa was fixed and kept as a reference collection.

Before fixing, conspicuous specimens were photographed and all specimens were biomassed by taxa. The lengths of fish specimens were also measured and recorded. Larger reference specimens including all fish were stored in bags in the freezer, smaller specimens were fixed in formalin and stored in plastic bags or pots, grouped by trawl into larger buckets.

APPENDIX D – DATA PRESENTATION, LABORATORY AND STATISTICAL ANALYSES

PARTICLE SIZE DISTRIBUTION

The samples recovered from each site were analysed by BSL who participate in the North East Atlantic Marine Biological Analytical Quality Control Scheme (NMBAQC) for PSA analysis.

The sample was homogenised and split into a small sub-sample for laser diffraction and the remaining material was sieved through stainless steel sieves with mesh apertures of $8000\mu m$, $4000\mu m$, $2000\mu m$ and $1000\mu m$. In most cases almost the entire sample would pass through the sieve stack, but any material retained on the sieve, such as small shells, shell fragments and stones were removed, and the weight was recorded.

The smaller sub-sample was wet screened through a 1000µm sieve and determined using a Malvern Mastersizer 2000 particle sizer according to Standard Operating Procedures (SOP). The results obtained by a laser sizer have been previously validated by comparison with independent assessment by wet sieving (Hart, 1996). The range of sieve sizes, together with their Wentworth classifications, is given in Table A. For additional quality control, all datasets were run through the Mastersizer in triplicate and the variations in sediment distributions assessed to be within the 95% percentile.

The separate assessments of the fractions above and below $1000\mu m$ were combined using a computer programme. This followed a manual input of the sieve results for fractions 16mm-8mm, 8mm-4mm, 4mm-2mm and 2mm-1mm fractions and the electronic data captured by the Mastersizer below $1000\mu m$.

This method defines the particle size distributions in terms of Phi mean, median, fraction percentages (i.e., coarse sediments, sands and fines), sorting (mixture of sediment sizes) and skewness (weighting of sediment fractions above and below the mean sediment size; Folk 1954).

Formulae and classifications for particle calculations made are given below:

Graphic Mean (M) - a very valuable measure of average particle size in Phi units (Folk and Ward, 1957).

$$M = {}^{\emptyset}16 + {}^{\emptyset}50 + {}^{\emptyset}84$$

Where

M =The graphic mean particle size \mathfrak{F}_n Phi $\emptyset =$ the Phi size of the 16th, 50th and 84th percentile of the sample

Table II.I - Phi and Sieve Apertures with Wentworth Classifications

Micror	ns (μm)	Phi	(ф)	Sediment Description	
Aperture	Sediment Retained	Aperture	Sediment Retained	Sediment i	Jescription
4000	≥ 4000	-2	-2 < -1	Pebble	Casual
2000	2000 < 4000	-1	-1 < -0.5	Granule	Gravel
1400	1400 < 2000	-0.5	-0.5 < 0	Vary Coarse Sand	
1000	1000 < 1400	0	0 < 0.5	Very Coarse Sand	
710	710 < 1000	0.5	0.5 < 1	Coores Cored	
500	500 < 710	1	1 < 1.5	Coarse Sand	
355	355 < 500	1.5	1.5 < 2	Medium Sand	Canada
250	250 < 355	2	2 < 2.5	Medium Sand	Sands
180	180 < 250	2.5	2.5 < 3	Fine Cond	
125	125 < 180	3	3 < 3.5	Fine Sand	
90	90 < 125	3.5	3.5 < 4	Von Fine Cand	
63	63 < 90	4	4 < 4.5	Very Fine Sand	
44	44 < 63	4.5	4.5 < 5	Coarse Silt	
31.5	31.5 < 44	5	5 < 5.5	Coarse Siit	
22	22 < 31.5	5.5	5.5 < 6	Medium Silt	
15.6	15.6 < 22	6	6 < 6.5	Medium Siit	Finas (Cilta)
11	11 < 15.6	6.5	6.5 < 7	Fine Silt	Fines (Silts)
7.8	7.8 < 11	7	7 < 7.5	rine siit	
5.5	5.5 < 7.8	7.5	7.5 < 8	Vam. Fina Cilt	
3.9	3.9 < 5.5	8	8 < 9	Very Fine Silt	
2	2 < 3.9	9	9 < 10	Clay	Fines (Clave)
1	1<2	10	≥ 10	Clay	Fines (Clays)

• **Sorting (D)** – the inclusive graphic standard deviation of the sample is a measure of the degree of sorting (Table B).

$$D = \frac{84 + 16}{4} + \frac{95 + 5}{6.6}$$

where

D = the inclusive graphic standard deviation

 \emptyset = the Phi size of the 84th, 16th, 95th and 5th percentile of the sample

Table II.II - Sorting Classifications

Sorting Coefficient (Graphical Standard Deviation)	Sorting Classifications
0 < 0.35	Very well sorted
0.35 < 0.50	Well sorted
0.50 < 0.71	Moderately well sorted
0.71 < 1	Moderately sorted
1 < 2	Poorly sorted
2 < 4	Very poorly sorted
4+	Extremely poorly sorted

• Skewness (S) – the degree of asymmetry of a frequency or cumulative curve (Table C).

$$S = {}_{0}84 + {}_{0}16 - ({}_{0}50) + {}_{0}95 + {}_{0}5 - 2({}_{0}50)$$

$$2({}_{0}84 - {}_{0}16) + {}_{0}95 + {}_{0}5 - {}_{0}5)$$

where

S = the skewness of the sample

 \emptyset = the Phi size of the 84th, 16th, 50th, 95th and 5th percentile of the sample

Table II.III - Skewness Classifications

Skewness Coefficient	Mathematical Skewness	Graphical Skewness
+1 > +0.30	Strongly positive	Strongly coarse skewed
+0.30 > +0.10	Positive	Coarse skewed
+0.10 > -0.10	Near symmetrical	Symmetrical
-0.10 > -0.30	Negative	Fine skewed
-0.30 > -1	Strongly negative	Strongly fine skewed

• **Graphic Kurtosis (K)** – The degree of peakedness or departure from the 'normal' frequency or cumulative curve (Table D).

$$K = \frac{95^{-0.5}}{2.44 (975^{-0.25})}$$

Where

K = Kurtosis

 \emptyset = the Phi size of the 95th, 5th, 75th and 25th percentile of the sample

Table II.IV - Kurtosis Classifications

Kurtosis Coefficient	Kurtosis Classification	Graphical meaning
0.41 < 0.67	Very Platykurtic	Flat-peaked; the ends are better
0.67 < 0.90	Platykurtic	sorted than the centre
0.90 < 1.10	Mesokurtic	Normal; bell shaped curve
1.11 < 1.50	Leptokurtic	Curves are excessively peaked; the
1.50 < 3	Very Leptokurtic	centre is better sorted than the ends.
3 +	Extremely Leptokurtic	

LABORATORY ANALYSIS

The samples recovered from each site were analysed by SOCOTEC. SOCOTEC is accredited by the Marine Management Organisation and UKAS to test for the following in marine sediments;

- Total Organic Carbon (TOC)
- Petroleum Hydrocarbon (THC) (MMO accreditation)
- Polycyclic Aromatic Hydrocarbons (PAHs)
- Trace/Heavy Metals
- Organotins
- Polychlorinated Biphenyls (PCBs)
- Organochlorine Pesticides (OCPs)

UK4855H-824-RR-01

TOTAL ORGANIC CARBON CONCENTRATIONS

Total Organic Carbon in Sediment

A portion of air-dried and ground sample is mixed with concentrated sulphurous acid. This is warmed to 40°C for an extended period of time. The resultant mixture is then heated to dryness at 100°C. The dried residue is analysed for carbon content using an Eltra induction furnace fitted with an NDIR cell. The total quantity of carbon liberated is calculated and reported as a percentage of the original mass of sample.

HYDROCARBON CONCENTRATIONS (TOTAL HYDROCARBON CONCENTRATIONS AND ALIPHATICS)

General Precautions

High purity solvents were used throughout the analyses. Solvent purity was assessed by evaporating an appropriate volume to 1ml and analysing the concentrate by GC for general hydrocarbons, target n-alkanes and aromatics. All glassware and extraction sundries were cleaned prior to use by thorough rinsing with hydrocarbon-free deionised water followed by two rinses with dichloromethane. All glassware was heated in a high temperature oven at 450°C for 6 hours.

Total Hydrocarbon Content (THC) in Marine Sediment

Anhydrous Sodium Sulphate, Sodium Chloride and DCM are added to a portion of the As Received sample and is vigorously agitated. The sample is placed in an ultrasonic bath and then centrifuged. The extract is then analysed by UV Fluorescence Screening and quantified by comparing the results against a Forties Oil calibration curve.

Polycyclic Aromatic Hydrocarbons in Marine Sediment

Methanol and DCM are added to a portion of the As Received sample and mixed on a magnetic stirring plate. The solvent extract is then water partitioned and concentrated to a low volume. A double clean-up stage is employed to remove contaminants that may interfere with the analysis. The extract is analysed by GC-MS and quantified by comparing the results against a calibration curve for each of the target analytes.

HEAVY AND TRACE METAL CONCENTRATIONS

Metals in Sediment by ICP- MS

A portion of air-dried and ground sample is digested with Aqua Regia. Once cooled the extract is filtered and prediluted before being analysed. Analysis is performed by ICP-MS and quantified by comparing the results against a calibration curve for each of the target analytes

Analytical Methodology

Inductively Coupled-Plasma Optical Emission Spectrometry

The instrument is calibrated using dilutions of the 1ml (=10mg) spectroscopic solutions. The final calibration solutions are matrix matched with the relevant acids. The calibration line consists of five standards.

Inductively Coupled Plasma- Mass Spectrometry

The instrument is calibrated using dilutions of the 1ml (=10mg) spectroscopic solutions. The calibration line consists of seven standards.

UK4855H-824-RR-01

The analytes are scaled against internal standards to take account of changes in plasma conditions as a result of matrix differences for standards and samples. The internal standards have a similar mass and ionisation properties to the target metals.

CONTAMINANT CONCENTRATIONS

Organotins in Marine Sediment

A portion of the As Received sample is digested with hydrochloric acid and methanol before being extracted into toluene. The extract is then derivatized using sodium tetraethylborate (STEB) before concentration and a copper/silica clean-up is performed. The extract is analysed by GC-MS and quantified by comparing the results against a calibration curve for each of the target analytes.

Poly Chlorinated Biphenyls (PCBs) in Marine Sediment

A portion of air-dried and sieved sample is spiked with 13C labelled internal standards, ultrasonically solvent extracted and concentrated under nitrogen. A clean-up stage is employed to remove contaminants that may interfere with the analysis. The sample extract is analysed by Gas Chromatography coupled to a triple quadrupole mass spectrometer (GC-MS-MS). Quantification is performed by comparison with a solution containing each of the targeted compounds, normalised to the 13C labelled internal standards.

Organochlorine Pesticides (OCPs) in Marine Sediment

A portion of air-dried and sieved sample is spiked with 13C labelled internal standards, ultrasonically solvent extracted and concentrated under nitrogen. A clean-up stage is employed to remove contaminants that may interfere with the analysis. The sample extract is analysed by Gas Chromatography coupled to a triple quadrupole mass spectrometer (GC-MS-MS). Quantification is performed by comparison with a solution containing each of the targeted compounds, normalised to the 13C labelled internal standards.

MACRO-INVERTEBRATE ANALYSIS

Methodology

All macrofaunal determination was carried out inhouse by the BSL specialist taxonomist team. The BSL specialist taxonomist team are comprised of three senior individuals who possess a wealth of experience in macrofaunal identification in temperate deep-water environments.

Benthic sediment samples were thoroughly washed with freshwater on a 500µm sieve to remove traces of formalin, placed in gridded, white trays and then hand sorted by eye followed by binocular microscope, to remove all fauna. Sorted organisms were preserved in 70% IMS and 5% glycerol. Where possible, all organisms were identified to species level according to appropriate keys for the region. Colonial and encrusting organisms were recorded by presence alone and, where colonies could be identified as a single example, these were also recorded, although these datasets have not been considered in the overall statistical analysis of the material. The presence of anthropogenic components was also recorded where relevant.

All taxa were distinguished to species level and identified to at least family level where possible, and many of the species that could not be fully identified were separated putatively. Nomenclature for species names were allocated either when identity was confirmed, allocated as "cf." when apparently identifying to a known species but confirmation was not possible (for example, incomplete specimens or descriptions), or allocated as "aff."

UK4855H-824-RR-01

when close to but distinct from a described species. The terms "indet." refers to being unable to identify to a lower taxon and "juv" as a juvenile to that species, genus or family.

Quality Assurance

BSL is committed to total quality control from the start of a project to its completion. All samples taken or received by the company were given a unique identification number. All analytical methods were carried out according to recognised standards for marine analyses. All taxonomic staff are fully qualified to post-doctorate level. Documentation is maintained that indicates the stage of analysis that each sample has reached. A full reference collection of all specimens has been retained for further clarification of putative species groups where/if required. BSL is a participant in the NMBAQC quality assurance scheme.

Digital datasets are kept for all sites in the form of excel spreadsheets (by sample and by station) on BSL's archive computer. This system is duplicated onto a second archive drive in case of electronic failure. These datasets will be stored in this way for a minimum of 3 years or transferred to storage disk (data CD or DVD).

Biological Data Standardisation and Analyses

In accordance with OSPAR Commission (2004) guidelines, all species falling into juvenile, colonial, planktonic of meiofaunal taxa are excluded from the full analyses within the dataset. This helps to reduce the variability of data undertaken during different periods within the year, or where minor changes may occur or where some groups may only be included in a non-quantitative fashion, such as presence/absence. Certain taxa, such as the Nematoda, normally associated with meiofauna, were included where individuals greater than 10mm were recorded. The following primary and univariate parameters were calculated for all data by stations and sample (Table II.VI).

Table II.VI - Primary and Univariate Parameter Calculations

Variable	Parameter	Formula	Description
Total Species	S	Number of species recorded	Species richness
Total Individuals	N	Number of individuals recorded	Sample abundance
Shannon-Wiener Index	H(s)	$H(s) = -\sum_{i=1}^{s} (Pi) (log_2 Pi)$ where s = number of species & Pi = proportion of total sample belonging to <i>i</i> th species.	Diversity: using both richness and equitability, recorded in log 2.
Simpsons Diversity	1-Lambda		Evenness, related to dominance of most common species (Simpson, 1949)
Pielou's Equitability	J	$J = \frac{H(s)}{(log \ S)}$ where s = number of species & H(s) = Shannon-Wiener diversity index.	Evenness or distribution between species (Pielou, 1969)
Margalef's Richness	D _{Mg}	$D_{M_S} = \frac{(S-I)}{(\log N)}$ where s = number of species & N = number of individuals.	Richness derived from number of species and total number of individuals (Clifford and Stevenson, 1975)

UK4855H-824-RR-01

In addition to univariate methods of analysis, data for both sample replicates and stations were analysed using multivariate techniques. These serve to reduce complex species-site data to a form that is visually interpretable. A multivariate analysis was based on transformed data (square root) to detect any improved relationships when effects of dominance were reduced. The basis for multivariate analyses was based upon the software PRIMER (Plymouth Routines in Multivariate Ecological Research).

Similarity Matrices and Hierarchical Agglomerative Clustering (CLUSTER)

A similarity matrix is used to compare every individual sample replicate and/or stations with each other. The coefficient used in this process is based upon Bray Curtis (Bray and Curtis, 1957), considered to be the most suitable for community data. These are subsequently assigned into groups of replicates and/or stations according to their level of similarity and clustered together based upon a Group Average Method into a dendrogram of similarity.

Non-metric Multidimensional Scaling (nMDS)

nMDS is currently widely used in the analysis of spatial and temporal change in benthic communities (e.g. Warwick and Clarke, 1991). The recorded observations from data were exposed to computation of triangular matrices of similarities between all pairs of samples. The similarity of every pair of sites was computed using the Bray-Curtis index on transformed data. Clustering was undertaken by a hierarchical agglomerative method using group average sorting, and the results are presented as a dendrogram and as a two-dimensional ordination plot. The degree of distortion involved in producing an ordination gives an indication of the adequacy of the nMDS representation and is recorded as a stress value as outlined in Table II.VII.

nMDS Stress Adequacy of Representation for Two-Dimensional Plot ≤0.05 Excellent representation with no prospect of misinterpretation. >0.05 to 0.1 Good ordination with no real prospect of a misleading interpretation. Potentially useful 2-d plot, though for values at the upper end of this range too much >0.1 to 0.2 reliance should not be placed on plot detail; superimposition of clusters should be undertaken to verify conclusions. Ordination should be treated with scepticism. Clusters may be superimposed to verify >0.2 to 0.3 conclusions, but ordinations with stress values >2.5 should be discarded. A 3-d ordination may be more appropriate. Ordination is unreliable with points close to being arbitrarily placed in the 2-d plot. A 3-d >0.3 ordination should be examined.

Table II.VII - Inference from nMDS Stress Values

Similarity Percentages Analysis (SIMPER)

The nMDS clustering program is used to analyse differences between sites. SIMPER enables those species responsible for differences to be identified by examining the contribution of individual species to the similarity measure.

UK4855H-824-RR-01

Bioaccumulation Curve

Bioaccumulation Curve Estimates are undertaken using Chao-1 (S*1). This is a formula that estimates how many additional species would be needed to sample all of the asymptotic species richness of a region, based on the samples acquired. It calculates this by comparing the number of species that occur in one sample with those that occur in two samples where;

$$S_{1}^{*} = S_{obs} + (a^{2}/2b)$$

Sobs is the number of species observed

a is the number of species observed just once

b is the number of species observed just twice

Relationship Testing (RELATE)

A non-parametric Mantel test that looks at the relationship between 2 matrices (often biotic and environmental). This shows the degree of seriation, an alternative to cluster analysis, which looks for a sequential pattern in community change. The test computes Spearman's rank correlation coefficient (P) between the corresponding elements of each pair of matrices to produce a correlation statistic present between the two datasets, the significance of the correlation determined by a permutation procedure (Clarke and Gorley, 2006).

Analysis of Similarity (ANOSIM)

Non-parametric, multivariate test often used in community ecology that calculates Bray-Curtis coefficient (for biological data) or Euclidean distance (for environmental data) based on permutations of ranked data. It produces an R value which is an effect level on a scale of 0-1; R=1 where all differences between sites are greater than any differences within site, R=0 when there is no separation between groups. P value (<5%) is the likelihood of arriving at that R value by chance, this significance value is determined by a permutation procedure (Clarke and Gorley, 2006).

Similarity Profile (SIMPROF)

Analyses data for significant clusters that show evidence of a multivariate pattern in data that are a priori unstructured, i.e. single samples from each site, this differs from the ANOSIM tests which permutes data based on a grouping factor such as 'site' or 'year'. The test works by comparing samples which have been ranked and ordered by resemblance against an expected profile which is obtained by permuting random species (variables) across the set of samples, a mean of 1000 permutations is taken to produce an expected result for null structure with rare and common species displaying the same pattern. If the actual data deviates outside the 95% limits of the expected profile, then there is evidence for significant structure and vice versa. The 'significant structure' is well represented on a dendrogram which will also show the clusters containing that lack significant differentiation (null structure; Clarke and Gorley, 2006).

NORMALISATION

Normalisation is a procedure used here to correct concentrations for the influence of the natural variability in sediment composition (i.e. grain size, organic matter and mineralogy). Natural and anthropogenic contaminants tend to show a much higher affinity to fine particulate matter compared to coarse (OSPAR, 2009) due to the increased adsorption capacity of organic matter and clay minerals. In sites where there is variability in grain size between stations, effects of sources of contamination will at least partly be obscured by grain size differences.

Normalisation can be performed through linear regression or by simple contaminant/normaliser ratios.

Linear regression normalisation takes into account the possible presence of contaminants and co-factors. The binding capacity of the sediments can be related to the content of fines (primary co-factor) in the sediments. The level of fines can be represented by the contents of major elements of the clay fraction such as aluminium (secondary co-factor). Figure II.I represents the general model for normalisation of the contaminants.

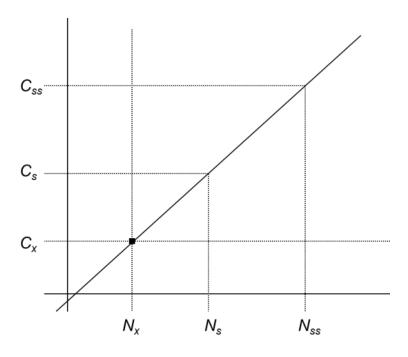


Figure II.I - Relation between the contaminant C and the cofactor N

Cx and Nx represent the contaminant and the co-factor contents, respectively, in pure sand. The regression line will always originate from this point and pivot depending on the sampled contaminant concentrations (Cs and Ns). These 'pivot values' are derived from statistical analysis of contaminant concentrations in pure sand.

The linear relationship between the pivot point and the sampled concentrations allows determination of the contaminant content for any preselected co-factor content (Nss) by interpolation and extrapolation. When comparing to the OSPAR BCs and BACs the secondary cofactors for normalisation are 50ppm of Li for metals and 2.5% TOC when normalising organics. The slope of the regression line (PL) can be represented by Equation 1, which can then be re-arranged to give the contaminant content Css that is normalised to Nss in Equation 2.

$$PL = \frac{dC}{dN} = \frac{C_S - C_X}{N_S - N_X} = \frac{C_{SS} - C_X}{N_{SS} - N_X}$$

Equation 1: Slope of the regression line expressed in terms of Nss

$$C_{SS} = (C_S - C_x) \frac{N_{SS} - N_x}{N_S - N_x} + C_x$$

Equation 2: Rewritten equation giving the contaminant content Css normalised to Nss

Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC / ARMCANZ)

The ANZECC and ARMCANZ framework is a tiered, decision-tree approach to assess contaminated sediments against a set of sediment quality guideline values (SQGV) to establish the level of risk on the biological community (Simpsons *et al.*, 2013; Figure II.I). The SQGVs are tabulated in Table II.IX. If the contaminant concentrations exceed the SQGVs, further investigation is recommended to determine whether there is indeed an environment risk associated with the exceedance.

Table II.IX Sediment Quality Guideline Values (Simpson et al., 2013)

Contaminant	sqgv	SQGV-High
Antimony (mg.kg ⁻¹)	2.0	25.0
Cadmium (mg.kg ⁻¹)	1.5	10.0
Chromium (mg.kg ⁻¹)	80.0	370.0
Copper (mg.kg ⁻¹)	65.0	270.0
Lead (mg.kg ⁻¹)	50.0	220.0
Mercury (mg.kg ⁻¹)	0.15	1.00
Nickel (mg.kg ⁻¹)	21.0	52.0
Silver (mg.kg ⁻¹)	1.0	4.0
Zinc (mg.kg ⁻¹)	200.0	410.0
Arsenic (mg.kg ⁻¹)	20.0	70.0
Tributyltin (μg.kg ⁻¹)	9.0	70.0
Total PAHs (μg.kg ⁻¹)	10,000	50,000
Total DDT (μg.kg ⁻¹)	1.2	5.0
Total PCBs (μg.kg ⁻¹)	34.0	280.0
Total Petroleum Hydrocarbons (TPHs) (mg.kg ⁻¹)	280.0	550.0

For metals, if the SQGV is exceeded by the results of the total metals analysis, the metals should be compared to background concentrations in reference sediments of comparable grain size from appropriate sites (Figure II.I part a). Exceedance of the SQGV is acceptable if it is below the background concentration. Note that for most anthropogenic organic contaminants, the background concentrations should be zero, but for metals it is possible for background concentrations to significantly exceed trigger values. If the SQGV is exceeded, and above the background concentration, the next step in the case of metal contaminants is to look at a dilute acid extractable metal concentration (AEM, by 30 min 1 M HCl extraction) which provides a useful measure of the potentially bioavailable metals (Figure II.I part a). Non-available forms of metals in sediments might include mineralised metals that require strong acid dissolution, as achieved by total particulate metal (TPM) measurements (also referred to as total recoverable metals). For many assessments, AEM measurements may be a useful starting point in the decision tree, rather than TPM determinations. However, for some metal phases that are sparing soluble in 1 M HCl (e.g. sulphide phases of Ag, Cu, Hg) and metals associated with organic polymers that may degrade over time (e.g. antifouling paints, tyre rubber), the measurement of TPM allows the potential future transformation of these metals into more bioavailable forms to be adequately considered.). In some jurisdictions, TPM measurements are deemed necessary for comparison with historical data trends. The contaminants whose concentrations exceed SQGVs following consideration of contaminant bioavailability are termed contaminants of potential concern (COPCs). The contaminants whose concentrations exceed SQGVs following consideration of contaminant bioavailability are termed contaminants of potential concern (COPCs). If the SQGV is still exceeded, the third step involves the more explicit consideration of the bioavailable contaminant fraction (Figure II.I part a).

GEOXYZ

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

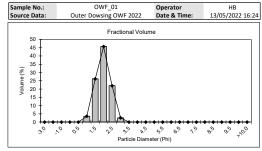
For metals that form insoluble sulphides, amorphous iron sulphide (FeS) measured as so-called acid-volatile sulphides (AVS), is an important metal-binding phase that reduces metal bioavailability. Measurements of metal concentrations in the pore waters and elutriates also provides valuable information on metal bioavailability.

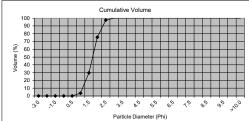
Many organic contaminants are hydrophobic and bind strongly to the organic carbon in sediments. To account for the preferential partitioning of these contaminants to organic matter, organic contaminants and their SQGVs are normalised to the total organic carbon (TOC) concentration of the sediment (i.e. normalised to 1% TOC) ((Figure II.I part b). This normalisation should only be applied for TOC concentrations between 0.2 and 10% (Simpson *et al.*, 2013).

Trawl Sample Processing

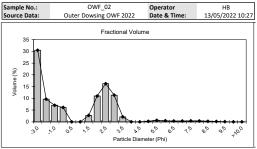
Trawl sample analysis is carried out in accordance with the Recommended operating guidelines (ROG) for MESH trawls and dredges. Upon collection, samples are sieved over a 5mm mesh then sorted into species where possible. A reference collection and any fauna unable to be identified in the field are preserved in 4% buffered formaldehyde solution and transferred to the laboratory. Identification of the reference collection is checked and all other fauna identified to the lowest possible taxonomical level, enumerated and preserved in 70% Industrial Methylated Spirit (IMS).

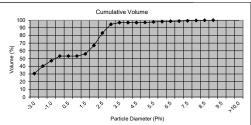
UK4855H-824-RR-01


APPENDIX E - PARTICLE SIZE DISTRIBUTION



Stations 61-80.pdf Stations 31-60.pdf Stations 1-30.pdf

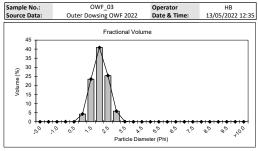


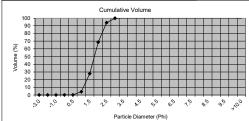


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.00	0.00	i cooic
2.0000	-1.0	0.01	0.01	Granule
1.0000	0.0	0.01	0.02	V.Coarse Sand
0.7100	0.5	0.00	0.02	Coarse Sand
0.5000	1.0	3.53	3.55	Coarse Sand
0.3550	1.5	26.15	29.70	Medium Sand
0.2500	2.0	45.73	75.44	Wicalam Sana
0.1800	2.5	21.99	97.42	Fine Sand
0.1250	3.0	2.58	100.00	Tille Salia
0.0900	3.5	0.00	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.i iiic Janu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	IVICUIUIII SIIC
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	Time site
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.309	0.118	1.693
Median	0.308		1.697
Wentworth Classification		Medium	Sand
Sorting	Value	Infere	nce
Coefficient	0.45	Well So	orted
Skewness	0.45 0.01	Well So Symme	

Mod. Folk for Habitat Classification		Sand and Muddy Sand
BGS Mod. Folk Classification		Sand
Gravel (%)	0.01%	
Sands (%)	99.99%	
Fines (%)	0.00%	

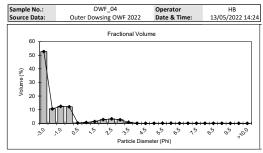


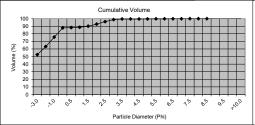


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	30.48	30.48	
4.0000	-2.0	9.65	40.14	Pebble
2.0000	-1.0	7.05	47.19	Granule
1.0000	0.0	6.11	53.30	V.Coarse Sand
0.7100	0.5	0.00	53.30	
0.5000	1.0	0.01	53.31	Coarse Sand
0.3550	1.5	2.73	56.04	
0.2500	2.0	11.00	67.04	Medium Sand
0.1800	2.5	16.23	83.27	
0.1250	3.0	11.38	94.65	Fine Sand
0.0900	3.5	2.11	96.76	
0.0630	4.0	0.03	96.79	V.Fine Sand
0.0440	4.5	0.00	96.79	
0.0315	5.0	0.25	97.04	Coarse Silt
0.0313	5.5	0.63	97.67	
0.0220	6.0	0.46	98.13	Medium Silt
0.0130	6.5	0.33	98.46	
0.0110	7.0	0.33	98.40	Fine silt
0.0078	7.5	0.34	98.80	
0.0039	7.5 8.0	0.35	99.19	V.Fine Silt
0.0039	8.5	0.35		
0.0028	8.5 9.0	0.25	99.79 99.95	Caaraa Clau
				Coarse Clay
0.0014	9.5	0.06	100.00	Mandle Class
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	1.561	7.903	-0.643
Median	1.540		-0.623
Wentworth Classification		V. Coar	se Sand
Sorting	Value	Infer	ence
Coefficient	2.68	Very Poor	ly Sorted
Skewness	0.00	Symme	etrical
Kurtosis	0.54	Very Pla	tykurtic
Fines (%)	3.21%		
Sands (%)	49.60%		
Gravel (%)	47.19%		
BGS Mod. Folk Classification		Sandy	Gravel

Coarse Sediments

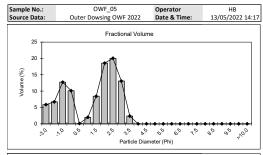


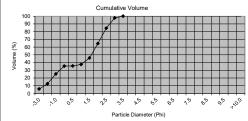

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.00	0.00	i ebbie
2.0000	-1.0	0.01	0.01	Granule
1.0000	0.0	0.03	0.04	V.Coarse Sand
0.7100	0.5	0.00	0.04	Coarse Sand
0.5000	1.0	4.25	4.29	coarse sand
0.3550	1.5	23.48	27.77	Medium Sand
0.2500	2.0	40.88	68.65	Wicalalli Salia
0.1800	2.5	25.42	94.07	Fine Sand
0.1250	3.0	5.86	99.93	rille Jaliu
0.0900	3.5	0.07	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jailu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediain Siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.rine siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10 O	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.298	0.125	1.747
Median	0.298		1.747
Wentworth Classification		Medium Sand	
Sorting	Value	Inference	

Sorting	Value	Inference
Coefficient	0.49	Well Sorted
Skewness	0.02	Symmetrical
Kurtosis	0.93	Mesokurtic
Fines (%)	0.00%	
Sands (%)	99.99%	
Gravel (%)	0.01%	

BGS Mod. Folk Classification	Sand
Mod. Folk for Habitat Classification	Sand and Muddy Sand

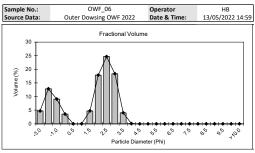


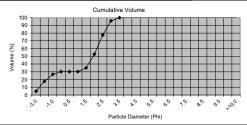

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	52.64	52.64	Pebble
4.0000	-2.0	10.61	63.25	Pennie
2.0000	-1.0	12.48	75.72	Granule
1.0000	0.0	12.11	87.83	V.Coarse Sand
0.7100	0.5	0.25	88.08	Coarse Sand
0.5000	1.0	0.61	88.69	Coarse Sanu
0.3550	1.5	1.36	90.05	Medium Sand
0.2500	2.0	2.74	92.79	ivieululii Saliu
0.1800	2.5	3.27	96.05	Fine Sand
0.1250	3.0	2.62	98.68	riile Jaliu
0.0900	3.5	0.81	99.49	V.Fine Sand
0.0630	4.0	0.06	99.55	v.riile Saliu
0.0440	4.5	0.00	99.55	Coarse Silt
0.0315	5.0	0.03	99.59	Coarse Silt
0.0220	5.5	0.11	99.69	Medium Silt
0.0156	6.0	0.07	99.77	Wedium Sit
0.0110	6.5	0.04	99.81	Fine silt
0.0078	7.0	0.04	99.84	rille siit
0.0055	7.5	0.05	99.90	V.Fine Silt
0.0039	8.0	0.05	99.95	v.riile siit
0.0028	8.5	0.04	99.99	
0.0020	9.0	0.02	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	6.368	11.018	-2.671
Median	8.994		-3.169
Wentworth Classification		Peb	ble

Sorting	Value	Inference
Coefficient	2.07	Very Poorly Sorted
Skewness	0.47	Very Positive (Coarse)
Kurtosis	0.92	Mesokurtic
Fines (%)	0.45%	
Sands (%)	23.83%	
Gravel (%)	75.72%	

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

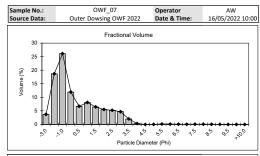


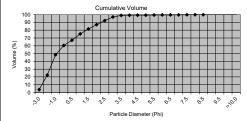


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	5.87	5.87	Pebble
4.0000	-2.0	6.73	12.60	rebble
2.0000	-1.0	12.72	25.32	Granule
1.0000	0.0	10.11	35.43	V.Coarse Sand
0.7100	0.5	0.10	35.54	Coarse Sand
0.5000	1.0	2.00	37.54	coarse sand
0.3550	1.5	8.42	45.96	Medium Sand
0.2500	2.0	18.55	64.50	Wicalain Sana
0.1800	2.5	20.04	84.55	Fine Sand
0.1250	3.0	13.07	97.62	Title Salia
0.0900	3.5	2.38	99.99	V.Fine Sand
0.0630	4.0	0.01	100.00	v.i iiic Janu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Course Site
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wicdiam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	Time site
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.594	3.013	0.752
Median	0.332		1.590
Wentworth Classification		Coarse Sand	
Sorting	Value	Inference	
Coefficient	1.97	Poorly Sorted	
Skewness	-0.58	Very Negative(fine)	
Kurtosis	0.75	Platykurtic	
Fines (%)	0.00%		
Sands (%)	74.68%		
Gravel (%)	25.32%		

BGS Mod. Folk Classification	Gravelly Sand
Mod Folk for Habitat Classification	Coarse Sediments

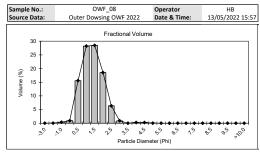


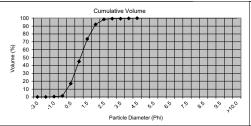


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	4.70	4.70	Pebble
4.0000	-2.0	12.84	17.54	reppie
2.0000	-1.0	9.10	26.64	Granule
1.0000	0.0	3.58	30.22	V.Coarse Sand
0.7100	0.5	0.00	30.22	Coarse Sand
0.5000	1.0	0.02	30.23	Coarse Sariu
0.3550	1.5	4.75	34.98	Medium Sand
0.2500	2.0	17.87	52.85	ivieululii Saliu
0.1800	2.5	24.66	77.51	Fine Sand
0.1250	3.0	18.37	95.88	riile Jailu
0.0900	3.5	4.04	99.92	V.Fine Sand
0.0630	4.0	0.08	100.00	v.riile Jaliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wedium Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille silt
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile Siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

<0.001	>10.0	0.00	100.00	Fine Clay	
Graphical		mm	StDev (mm)	Phi	
Mean (MZ)		0.577	3.061	0.794	
Median		0.267	1.906		
Wentworth Classification			Coarse Sand		
Sorting		Value	Inference		
Coefficient		2.10	Very Poorly Sorted		
Skewness		-0.67	Very Negative(fine)		
Kurtosis		0.67	Very Platykurtic		
Fines (%)		0.00%			
Sands (%)		73.36%			
Gravel (%)		26.64%			
BGS Mod. Folk Cla	ssification		Gravel	ly Sand	

Coarse Sediments

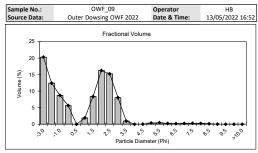


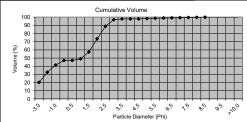


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	3.70	3.70	Pebble
4.0000	-2.0	18.67	22.37	i cobic
2.0000	-1.0	26.08	48.46	Granule
1.0000	0.0	11.94	60.40	V.Coarse Sand
0.7100	0.5	6.69	67.09	Coarse Sand
0.5000	1.0	8.10	75.18	coarse saria
0.3550	1.5	6.44	81.63	Medium Sand
0.2500	2.0	5.51	87.13	Wiculum Janu
0.1800	2.5	5.20	92.33	Fine Sand
0.1250	3.0	4.72	97.05	riile Saliu
0.0900	3.5	2.03	99.08	V.Fine Sand
0.0630	4.0	0.32	99.41	v.i iiic Janu
0.0440	4.5	0.00	99.41	Coarse Silt
0.0315	5.0	0.01	99.42	Coarse Silt
0.0220	5.5	0.14	99.56	Medium Silt
0.0156	6.0	0.11	99.66	Wicalain Siic
0.0110	6.5	0.07	99.73	Fine silt
0.0078	7.0	0.06	99.79	Title Site
0.0055	7.5	0.08	99.87	V.Fine Silt
0.0039	8.0	0.07	99.94	v.riile siit
0.0028	8.5	0.05	99.99	
0.0020	9.0	0.01	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	1.459	3.010	-0.545
Median	1.871		-0.904
Wentworth Classification		V. Coarse Sand	
Sorting	Value	Inference	
Coefficient	1.89	Poorly Sorted	
Skewness	0.27	Positive(Coarse)	
Kurtosis	0.80	Platykurtic	
Fines (%)	0.60%		
Sands (%)	50.95%		
Gravel (%)	48.46%		

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

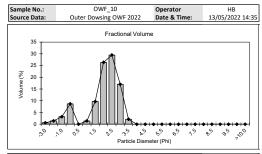


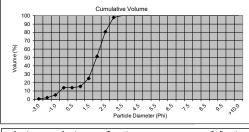

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.04	0.04	rebble
2.0000	-1.0	0.38	0.42	Granule
1.0000	0.0	0.92	1.34	V.Coarse Sand
0.7100	0.5	15.57	16.91	Coarse Sand
0.5000	1.0	28.22	45.12	coarse sand
0.3550	1.5	28.48	73.61	Medium Sand
0.2500	2.0	18.52	92.13	Wedium Sand
0.1800	2.5	6.36	98.49	Fine Sand
0.1250	3.0	0.90	99.39	rille Saliu
0.0900	3.5	0.02	99.41	V.Fine Sand
0.0630	4.0	0.28	99.69	v.riile Jaliu
0.0440	4.5	0.27	99.96	Coarse Silt
0.0315	5.0	0.04	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediain Siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille siit
0.0055	7.5	0.00	100.00	V. Fine Silt
0.0039	8.0	0.00	100.00	v.rine siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.468	0.267	1.096
Median	0.475		1.073
Wentworth Classification		Mediun	n Sand

Sorting	Value	Inference
Coefficient	0.64	Moderately Well Sorted
Skewness	0.06	Symmetrical
Kurtosis	0.95	Mesokurtic
Fines (%)	0.32%	
Sands (%)	99.27%	
Gravel (%)	0.42%	

BGS Mod. Folk Classification	Sand	
Mod. Folk for Habitat Classification	Sand and Muddy Sand	

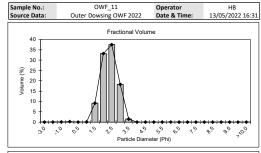


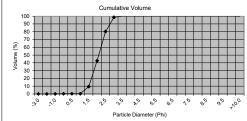


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	20.29	20.29	Pebble
4.0000	-2.0	12.42	32.71	rebble
2.0000	-1.0	8.73	41.44	Granule
1.0000	0.0	5.63	47.07	V.Coarse Sand
0.7100	0.5	0.00	47.07	Coarse Sand
0.5000	1.0	1.90	48.98	coarse saria
0.3550	1.5	8.37	57.35	Medium Sand
0.2500	2.0	16.24	73.59	Wedium Janu
0.1800	2.5	15.24	88.83	Fine Sand
0.1250	3.0	8.02	96.85	riile Saliu
0.0900	3.5	0.98	97.82	V.Fine Sand
0.0630	4.0	0.00	97.82	v.riile Jailu
0.0440	4.5	0.01	97.84	Coarse Silt
0.0315	5.0	0.37	98.20	Coarse Siit
0.0220	5.5	0.46	98.66	Medium Silt
0.0156	6.0	0.24	98.91	ivieululii siit
0.0110	6.5	0.17	99.08	Fine silt
0.0078	7.0	0.23	99.32	rille siit
0.0055	7.5	0.28	99.59	V.Fine Silt
0.0039	8.0	0.23	99.83	v.riile siit
0.0028	8.5	0.15	99.98	
0.0020	9.0	0.03	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.971	5.426	0.043
Median	0.482		1.052
Wentworth Classification		Coarse Sand	
Sorting	Value	Inference	
Coefficient	2.38	Very Poorly Sorted	
Skewness	-0.50	Very Negative(fine)	
Kurtosis	0.57	Very Platykurtic	
Fines (%)	2.18%		
Sands (%)	56.38%	3%	
Gravel (%)	41 449/		

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

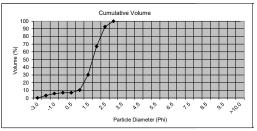



Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.63	0.63	Pebble
4.0000	-2.0	1.43	2.05	i cobic
2.0000	-1.0	3.20	5.26	Granule
1.0000	0.0	8.68	13.94	V.Coarse Sand
0.7100	0.5	0.03	13.97	Coarse Sand
0.5000	1.0	1.40	15.36	coarse sand
0.3550	1.5	9.66	25.02	Medium Sand
0.2500	2.0	26.31	51.34	Wedium Sand
0.1800	2.5	29.47	80.81	Fine Sand
0.1250	3.0	17.03	97.84	riile Janu
0.0900	3.5	2.16	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jaliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediain Siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille sitt
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.277	0.718	1.852
Median	0.255		1.970
Wentworth Classification		Mediun	n Sand

Sorting	Value	Inference
Coefficient	0.99	Moderately Sorted
Skewness	-0.38	Very Negative(fine)
Kurtosis	1.88	Very Leptokurtic
Fines (%)	0.00%	
Sands (%)	94.74%	
Gravel (%)	5.26%	

BGS Mod. Folk Classification	Gravelly Sand
Mod. Folk for Habitat Classification	Coarse Sediments

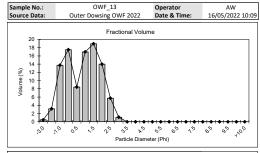


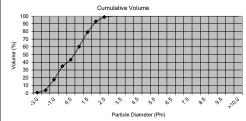
Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.01	0.01	1 CODIC
2.0000	-1.0	0.08	0.09	Granule
1.0000	0.0	0.19	0.28	V.Coarse Sand
0.7100	0.5	0.00	0.28	Coarse Sand
0.5000	1.0	0.05	0.33	coarse sand
0.3550	1.5	9.18	9.51	Medium Sand
0.2500	2.0	33.17	42.68	Wicalalli Salla
0.1800	2.5	37.54	80.22	Fine Sand
0.1250	3.0	18.29	98.51	Tine Sand
0.0900	3.5	1.49	100.00	V. Fine Sand
0.0630	4.0	0.00	100.00	v.rine sand
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	course sint
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wicalam Sile
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	Tille sile
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	V.I IIIC SIIC
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.237	0.103	2.076
Median	0.236		2.081
Wentworth Classification		Fine Sand	
Sorting	Value	Inference	
Coefficient	0.50	Well Sorted	
Skewness	-0.02	Symmetrical	
Kurtosis	0.98	Mesokurtic	
Fines (%)	0.00%		
Sands (%)	99.91%		
Gravel (%)	0.09%		
BGS Mod. Folk Classification		Sar	ıd

Sand and Muddy Sand

Outer Dowsing OWF 2022 Fractional Volum	Date & Time:	13/05/2022 14:0
Fractional Volum	me	
M		
1 1		
/		
⊬ 1 11\		
V II II N		
/ II II \		
/ <u> </u>		
		• • • • • • • •
0 00 10 20 30 10	65 65 VS	85 95 100
		1
		Particle Diameter (Phi)

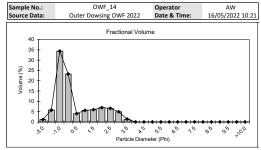

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.07	0.07	Pebble
4.0000	-2.0	3.19	3.25	Pebble
2.0000	-1.0	2.56	5.82	Granule
1.0000	0.0	1.04	6.85	V.Coarse Sand
0.7100	0.5	0.00	6.85	Coarse Sand
0.5000	1.0	3.42	10.27	Coarse Sariu
0.3550	1.5	19.94	30.21	Medium Sand
0.2500	2.0	36.94	67.15	iviculum sand
0.1800	2.5	25.56	92.72	Fine Sand
0.1250	3.0	7.16	99.87	rille Saliu
0.0900	3.5	0.13	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Janu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse Siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wicalam Site
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.i iiic Siic
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

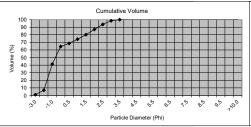

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.303	0.787	1.721
Median	0.299		1.743
Wentworth Classification		Mediun	n Sand
Sorting	Value	Infere	ence
Coefficient	0.90	Moderate	ly Sorted
Skewness	-0.31	Very Nega	tive(fine)
Kurtosis	2.11	Very Lept	tokurtic
Fines (%)	0.00%		
Sands (%)	94.18%		
Gravel (%)	5.82%		

Gravelly Sand

Coarse Sediments

BGS Mod. Folk Classification

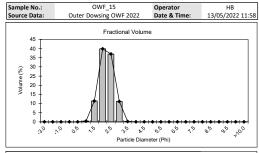


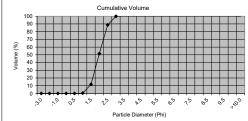

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.46	0.46	Pebble
4.0000	-2.0	3.14	3.60	rebble
2.0000	-1.0	13.73	17.33	Granule
1.0000	0.0	17.51	34.84	V.Coarse Sand
0.7100	0.5	8.42	43.26	Coarse Sand
0.5000	1.0	16.97	60.23	Coarse Sand
0.3550	1.5	18.95	79.18	Medium Sand
0.2500	2.0	13.99	93.17	Wicalalli Salla
0.1800	2.5	5.72	98.89	Fine Sand
0.1250	3.0	1.11	100.00	rille Jaliu
0.0900	3.5	0.00	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.i ilic Salia
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wedidin Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	riile siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.rille Silt
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clav

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.760	1.351	0.397
Median	0.627		0.674
Wentworth Classification		Coarse Sand	
Sorting	Value	Infere	ence
Coefficient	1.31	Poorly Sorted	
Skewness	-0.29	Negative (Fine)	
Kurtosis	0.83	Platykurtic	
Fines (%)	0.00%		
Sands (%)	82.67%		
Gravel (%)	17.33%		
BGS Mod. Folk Classification		Gravell	/ Sand

Coarse Sediments

Mod. Folk for Habitat Classification


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	1.16	1.16	Pebble
4.0000	-2.0	5.74	6.90	rebble
2.0000	-1.0	34.39	41.29	Granule
1.0000	0.0	23.25	64.55	V.Coarse Sand
0.7100	0.5	4.04	68.58	Coarse Sand
0.5000	1.0	5.61	74.19	Coarse Sand
0.3550	1.5	5.94	80.14	Medium Sand
0.2500	2.0	6.93	87.07	Wicalalli Salia
0.1800	2.5	6.61	93.68	Fine Sand
0.1250	3.0	4.93	98.61	Tine Sand
0.0900	3.5	1.37	99.97	V.Fine Sand
0.0630	4.0	0.03	100.00	v.i iiic saiid
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	coarse sint
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wicalam Sile
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	THIC SHE
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.i iile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay


10.001	710.0	0.00	100.00	Tille City
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		1.187	1.914	-0.247
Median		1.626		-0.701
Wentworth Classifi	cation		V. Coarse Sand	
Sorting		Value	Infer	ence
Coefficient		1.65	Poorly	Sorted
Skewness		0.35	Very Positive (Coarse)	
Kurtosis		0.78	Platykurtic	
Fines (%)		0.00%		
Sands (%)		58.71%		
Gravel (%)		41.29%		

Sandy Gravel

Coarse Sediments

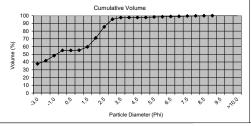
BGS Mod. Folk Classification

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.00	0.00	rebble
2.0000	-1.0	0.01	0.01	Granule
1.0000	0.0	0.01	0.02	V.Coarse Sand
0.7100	0.5	0.00	0.02	Coarse Sand
0.5000	1.0	0.37	0.39	coarse sand
0.3550	1.5	11.38	11.77	Medium Sand
0.2500	2.0	39.89	51.66	Wicaiaiii Sana
0.1800	2.5	37.03	88.69	Fine Sand
0.1250	3.0	11.11	99.80	Title Salid
0.0900	3.5	0.20	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.rine sand
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse Site
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wicalam Silt
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	Title site
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.rine siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.255	0.102	1.973
Median	0.254		1.975
Wentworth Classification		Mediun	n Sand
Sorting	Value	Infere	ence
Coefficient	0.45	Well S	orted
Skewness	-0.01	Symmetrical	
Kurtosis	1.01	Mesok	urtic
Fines (%)	0.00%		
Sands (%)	99.99%		
Gravel (%)	0.01%		
BGS Mod. Folk Classification		Sar	ıd

Sand and Muddy Sand

30 30 30 30 30 30 30 30 30 30
Cumulative Volume

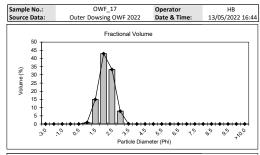

Fractional Volume

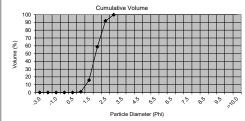
Operator Date & Time: HB 13/05/2022 14:50

OWF_16

Outer Dowsing OWF 2022

Sample No.: Source Data:

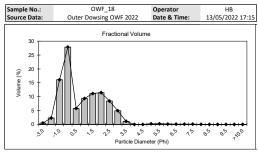

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	37.71	37.71	
4.0000	-2.0	4.03	41.74	Pebble
2.0000	-1.0	6.60	48.34	Granule
1.0000	0.0	6.63	54.97	V.Coarse Sand
0.7100	0.5	0.00	54.97	
0.5000	1.0	0.31	55.28	Coarse Sand
0.3550	1.5	4.28	59.55	
0.2500	2.0	11.65	71.20	Medium Sand
0.1800	2.5	14.25	85.45	
0.1250	3.0	9.96	95.41	Fine Sand
0.0900	3.5	2.13	97.54	
0.0630	4.0	0.05	97.59	V.Fine Sand
0.0440	4.5	0.00	97.59	
0.0315	5.0	0.20	97.79	Coarse Silt
0.0313	5.5	0.48	98.27	
0.0220	6.0	0.48	98.61	Medium Silt
0.0136	6.5	0.34	98.86	
0.0110	7.0	0.25	98.80	Fine silt
0.0055	7.5	0.31	99.45	V.Fine Silt
0.0039	8.0	0.27	99.72	
0.0028	8.5	0.18	99.90	
0.0020	9.0	0.10	100.00	Coarse Clay
0.0014	9.5	0.01	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

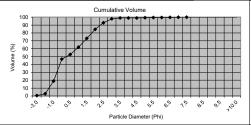

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	2.130	17.175	-1.091
Median	1.749		-0.807
Wentworth Classification		Gran	ule
Sorting	Value	Infere	ence
Coefficient	3.08	Very Poor	ly Sorted
Skewness	-0.10	Negative	(Fine)
Kurtosis	0.53	Very Plat	ykurtic
Fines (%)	2.42%		
Sands (%)	49.25%		
Gravel (%)	48.34%		

Sandy Gravel

Coarse Sediments

BGS Mod. Folk Classification

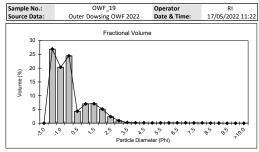


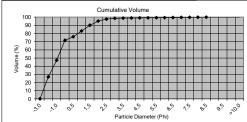


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.00	0.00	1 CODIC
2.0000	-1.0	0.01	0.01	Granule
1.0000	0.0	0.01	0.01	V.Coarse Sand
0.7100	0.5	0.00	0.01	Coarse Sand
0.5000	1.0	0.88	0.90	coarse sand
0.3550	1.5	14.99	15.89	Medium Sand
0.2500	2.0	42.90	58.79	Wicalalli Salla
0.1800	2.5	33.24	92.02	Fine Sand
0.1250	3.0	7.88	99.90	Tine Sand
0.0900	3.5	0.10	100.00	V. Fine Sand
0.0630	4.0	0.00	100.00	v.rine sand
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Course sint
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wicalam Sile
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	Tille sile
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	V.I IIIC SIIC
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.267	0.108	1.907
Median	0.272		1.881
Wentworth Classification		Mediun	n Sand
Sorting	Value	Infere	ence
Coefficient	0.44	Well Sorted	
Skewness	0.05	Symmetrical	
Kurtosis	1.01	Mesokurtic	
Fines (%)	0.00%		
Sands (%)	99.99%		
Gravel (%)	0.01%		
BGS Mod. Folk Classification		Sar	ıd

Sand and Muddy Sand

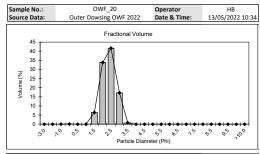


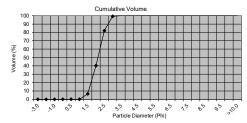

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.51	0.51	Pebble
4.0000	-2.0	2.32	2.83	rebble
2.0000	-1.0	16.10	18.93	Granule
1.0000	0.0	27.90	46.83	V.Coarse Sand
0.7100	0.5	5.76	52.59	Coarse Sand
0.5000	1.0	9.34	61.93	Coarse Sand
0.3550	1.5	11.14	73.08	Medium Sand
0.2500	2.0	11.45	84.52	ivieululii 3aliu
0.1800	2.5	8.42	92.94	Fine Sand
0.1250	3.0	4.93	97.88	rille Saliu
0.0900	3.5	1.12	99.00	V.Fine Sand
0.0630	4.0	0.02	99.02	v.riile Jailu
0.0440	4.5	0.01	99.03	Coarse Silt
0.0315	5.0	0.22	99.25	Coarse siit
0.0220	5.5	0.24	99.50	Medium Silt
0.0156	6.0	0.14	99.64	Wieululli Siit
0.0110	6.5	0.11	99.74	Fine silt
0.0078	7.0	0.11	99.86	rine siit
0.0055	7.5	0.11	99.96	V.Fine Silt
0.0039	8.0	0.04	100.00	v.riile Siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clav

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.797	1.376	0.327
Median	0.840		0.251
Wentworth Classification	Coarse Sand		
Sorting	Value	Inference	
Coefficient	1.50	Poorly Sorted	
Skewness	0.07	Symmetrical	
Kurtosis	0.78	Platykurtic	
Fines (%)	0.98%		
Sands (%)	80.09%		
Gravel (%)	18.93%		
BGS Mod. Folk Classification		Gravel	ly Sand

Mod. Folk for Habitat Classification

Coarse Sediments

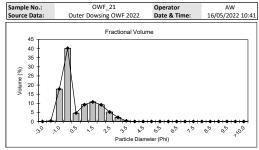


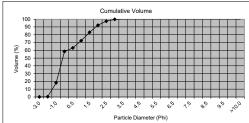


Aperture	Aperture	Percentage		Sediment	
(mm)	(Phi unit)	Fractional	Cumulative	Description	
8.0000	-3.0	0.03	0.03	Pebble	
4.0000	-2.0	26.90	26.93	i ebbie	
2.0000	-1.0	20.32	47.25	Granule	
1.0000	0.0	24.43	71.68	V.Coarse Sand	
0.7100	0.5	4.35	76.02	Coarse Sand	
0.5000	1.0	7.01	83.03	coarse saria	
0.3550	1.5	7.07	90.11	Medium Sand	
0.2500	2.0	5.13	95.23	Wiculum Junu	
0.1800	2.5	2.38	97.61	Fine Sand	
0.1250	3.0	0.92	98.53	rille Saliu	
0.0900	3.5	0.25	98.78	V.Fine Sand	
0.0630	4.0	0.16	98.95	v.riile Jailu	
0.0440	4.5	0.14	99.08	Coarse Silt	
0.0315	5.0	0.10	99.18	Coarse siit	
0.0220	5.5	0.10	99.28	Medium Silt	
0.0156	6.0	0.12	99.41	Wedium Sit	
0.0110	6.5	0.15	99.55	Fine silt	
0.0078	7.0	0.14	99.70	rille siit	
0.0055	7.5	0.12	99.82	V.Fine Silt	
0.0039	8.0	0.09	99.91	v.riile siit	
0.0028	8.5	0.06	99.97		
0.0020	9.0	0.03	100.00	Coarse Clay	
0.0014	9.5	0.00	100.00		
0.0010	10.0	0.00	100.00	Medium Clay	
< 0.001	>10.0	0.00	100.00	Fine Clay	

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	1.721	2.875	-0.783
Median	1.888		-0.917
Wentworth Classification		V. Coarse Sand	
Sorting	Value	Infer	ence
Coefficient	1.62	Poorly Sorted	
Skewness	0.15	Positive(Coarse) Platykurtic	
Kurtosis	0.80		
Fines (%)	1.06%		
Sands (%)	51.69%		
Gravel (%)	47.25%		

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

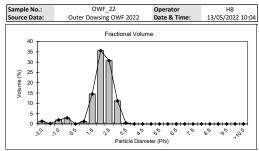


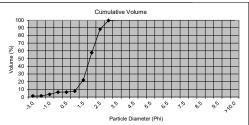

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8,0000	-3.0	0.00	0.00	
4.0000	-2.0	0.00	0.00	Pebble
2.0000	-1.0	0.06	0.06	Granule
1.0000	0.0	0.07	0.12	V.Coarse Sand
0.7100	0.5	0.00	0.12	
0.5000	1.0	0.02	0.14	Coarse Sand
0.3550	1.5	6.45	6.58	
0.2500	2.0	33.80	40.38	Medium Sand
0.1800	2.5	41.66	82.04	
0.1250	3.0	17.22	99.26	Fine Sand
0.0900	3.5	0.74	100.00	
0.0630	4.0	0.00	100.00	V.Fine Sand
0.0440	4.5	0.00	100.00	
0.0315	5.0	0.00	100.00	Coarse Silt
0.0220	5.5	0.00	100.00	
0.0156	6.0	0.00	100.00	Medium Silt
0.0110	6.5	0.00	100.00	
0.0078	7.0	0.00	100.00	Fine silt
0.0055	7.5	0.00	100.00	
0.0039	8.0	0.00	100.00	V.Fine Silt
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clav
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clav
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.237	0.092	2.080
Median	0.234		2.096
Wentworth Classification		Fine S	and
Sorting	Value	Infere	ence
Coefficient	0.45	Well So	orted
Skewness	-0.02	Symmetrical	
Kurtosis	0.97	Mesokurtic	
Fines (%)	0.00%		
Sands (%)	99.95%		
Gravel (%)	0.06%		

Sand Sand and Muddy Sand

BGS Mod. Folk Classification

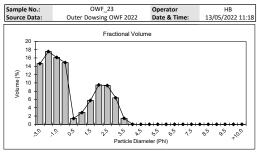


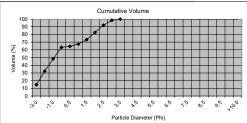


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.34	0.34	rebble
2.0000	-1.0	17.81	18.15	Granule
1.0000	0.0	40.22	58.37	V.Coarse Sand
0.7100	0.5	4.65	63.02	Coarse Sand
0.5000	1.0	9.26	72.28	Coarse Sanu
0.3550	1.5	10.76	83.04	Medium Sand
0.2500	2.0	9.16	92.20	ivieululii 3aliu
0.1800	2.5	5.19	97.39	Fine Sand
0.1250	3.0	2.28	99.67	riile Janu
0.0900	3.5	0.33	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Janu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rine sit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clav

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.977	1.234	0.034
Median	1.208		-0.273
Wentworth Classification		Coarse	Sand
Sorting	Value	Infere	ence
Coefficient	1.29	Poorly Sorted	
Skewness	0.29	Positive(Coarse)	
Kurtosis	0.83	Platykurtic	
Fines (%)	0.00%		
Sands (%)	81.85%		
Gravel (%)	18.15%		

BGS Mod. Folk Classification	Gravelly Sand
Mod. Folk for Habitat Classification	Coarse Sediments

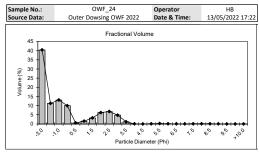


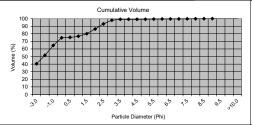


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	
				Description
8.0000	-3.0	1.28	1.28	Pebble
4.0000	-2.0	0.17	1.45	
2.0000	-1.0	1.94	3.38	Granule
1.0000	0.0	2.94	6.33	V.Coarse Sand
0.7100	0.5	0.00	6.33	Coarse Sand
0.5000	1.0	1.21	7.54	
0.3550	1.5	14.52	22.06	Medium Sand
0.2500	2.0	35.57	57.63	Wiculum Jana
0.1800	2.5	30.72	88.36	Fine Sand
0.1250	3.0	11.19	99.54	rille Saliu
0.0900	3.5	0.46	100.00	V. Fine Sand
0.0630	4.0	0.00	100.00	v.riile Saliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediain Siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rine sit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.278	0.407	1.846
Median	0.273		1.876
Wentworth Classification		Medium Sand	
Sorting	Value	Infer	ence
Coefficient	0.78	Moderately Sorted	
Skewness	-0.27	Negative (Fine)	
Kurtosis	1.88	Very Leptokurtic	
Fines (%)	0.00%		
Sands (%)	96.62%		
Gravel (%)	3.38%		
BGS Mod. Folk Classification		Slightly Gra	velly Sand

Sand and Muddy Sand

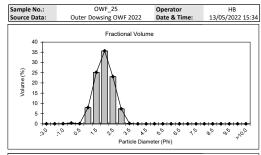


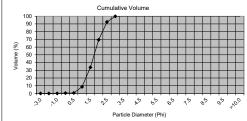

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	14.65	14.65	Pebble
4.0000	-2.0	17.56	32.21	i cobic
2.0000	-1.0	16.13	48.35	Granule
1.0000	0.0	14.89	63.24	V.Coarse Sand
0.7100	0.5	1.42	64.66	Coarse Sand
0.5000	1.0	2.85	67.51	coarse sand
0.3550	1.5	5.75	73.26	Medium Sand
0.2500	2.0	9.49	82.75	Wicaram Sana
0.1800	2.5	9.36	92.11	Fine Sand
0.1250	3.0	6.40	98.51	riile Janu
0.0900	3.5	1.46	99.98	V.Fine Sand
0.0630	4.0	0.02	100.00	v.riile Jaliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wiculain Siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	Tille sile
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

<0.001	/10.0	0.00	100.00	Fille Clay
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		1.518	4.207	-0.602
Median		1.889		-0.918
Wentworth Class	ification		V. Coarse Sand	
Sorting		Value	Infer	rence
Coefficient		2.16	Very Poo	rly Sorted
Skewness		0.19	Positive	(Coarse)
Kurtosis		0.61	Very Pla	atykurtic
Fines (%)		0.00%		
Sands (%)		51.65%		
Gravel (%)		48.35%		

Sandy Gravel Coarse Sediments

BGS Mod. Folk Classification

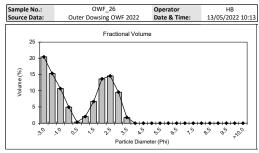


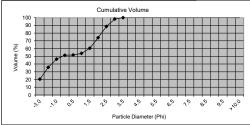


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	40.41	40.41	Pebble
4.0000	-2.0	11.22	51.64	Pebble
2.0000	-1.0	13.08	64.72	Granule
1.0000	0.0	9.98	74.70	V.Coarse Sand
0.7100	0.5	0.57	75.27	Coarse Sand
0.5000	1.0	1.52	76.79	Coarse Sariu
0.3550	1.5	3.30	80.09	Medium Sand
0.2500	2.0	6.21	86.30	iviculum sanu
0.1800	2.5	6.78	93.08	Fine Sand
0.1250	3.0	4.82	97.91	riile Jaliu
0.0900	3.5	1.19	99.09	V. Fine Sand
0.0630	4.0	0.03	99.13	v.riile Saliu
0.0440	4.5	0.00	99.13	Coarse Silt
0.0315	5.0	0.09	99.22	Coarse siit
0.0220	5.5	0.21	99.43	Medium Silt
0.0156	6.0	0.12	99.55	Wediain Siit
0.0110	6.5	0.05	99.60	Fine silt
0.0078	7.0	0.06	99.66	rille silt
0.0055	7.5	0.10	99.76	V.Fine Silt
0.0039	8.0	0.10	99.86	v.riile siit
0.0028	8.5	0.08	99.94	
0.0020	9.0	0.06	100.00	Coarse Clay
0.0014	9.5	0.01	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	2.807	8.843	-1.489
Median	4.584		-2.197
Wentworth Classification		Gran	ule
Sorting	Value	Infere	ence
Coefficient	2.53	Very Poor	ly Sorted
Skewness	0.37	Very Positiv	e (Coarse)
Kurtosis	0.72	Platyk	urtic
Fines (%)	0.87%		
Sands (%)	34.41%		
Gravel (%)	64.72%		

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

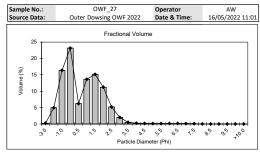


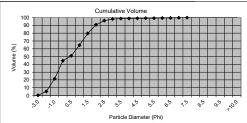


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.02	0.02	rebble
2.0000	-1.0	0.08	0.10	Granule
1.0000	0.0	0.39	0.49	V.Coarse Sand
0.7100	0.5	0.09	0.58	Coarse Sand
0.5000	1.0	7.99	8.57	Coarse Saria
0.3550	1.5	25.17	33.73	Medium Sand
0.2500	2.0	35.65	69.39	iviculum sanu
0.1800	2.5	23.06	92.45	Fine Sand
0.1250	3.0	7.35	99.79	rille Saliu
0.0900	3.5	0.21	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Janu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse Silt
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille sitt
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.307	0.155	1.705
Median	0.307		1.703
Wentworth Classification		Medium Sand	
Sorting	Value	Inference	
Coefficient	0.57	Moderately Well Sorte	
Skewness	0.00	Symmetrical	
Kurtosis	0.97	Mesokurtic	
Fines (%)	0.00%		
Sands (%)	99.90%		
Gravel (%)	0.10%		

BGS Mod. Folk Classification	Sand
Mod. Folk for Habitat Classification	Sand and Muddy Sand

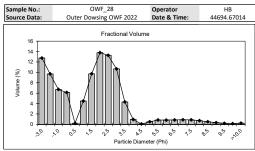


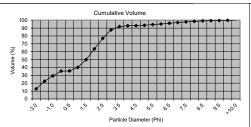

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	20.42	20.42	Pebble
4.0000	-2.0	15.32	35.74	rebble
2.0000	-1.0	10.67	46.41	Granule
1.0000	0.0	4.96	51.37	V.Coarse Sand
0.7100	0.5	0.33	51.70	Coarse Sand
0.5000	1.0	2.06	53.76	Coarse Sariu
0.3550	1.5	6.69	60.45	Medium Sand
0.2500	2.0	13.66	74.11	iviculum sanu
0.1800	2.5	14.55	88.66	Fine Sand
0.1250	3.0	9.56	98.22	riile Jaliu
0.0900	3.5	1.77	99.99	V. Fine Sand
0.0630	4.0	0.01	100.00	v.riile Saliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediain Siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille silt
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	1.332	5.086	-0.414
Median	1.276		-0.352
Wentworth Classification		V. Coarse Sand	
Sorting	Value	Inference	
Coefficient	2.34	Very Poorly Sorted	
Skewness	-0.02	Symmetrical	
Kurtosis	0.55	Very Platykurtic	
Fines (%)	0.00%		
Sands (%)	53.59%		
Gravel (%)	46.41%		

Sandy Gravel Coarse Sediments

BGS Mod. Folk Classification

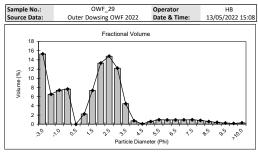


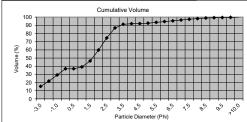


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.24	0.24	Pebble
4.0000	-2.0	4.96	5.20	i cobic
2.0000	-1.0	16.37	21.57	Granule
1.0000	0.0	23.16	44.73	V.Coarse Sand
0.7100	0.5	6.22	50.95	Coarse Sand
0.5000	1.0	13.65	64.60	coarse sand
0.3550	1.5	15.15	79.75	Medium Sand
0.2500	2.0	11.22	90.97	Wicaram Sana
0.1800	2.5	5.21	96.19	Fine Sand
0.1250	3.0	2.01	98.20	Title Salia
0.0900	3.5	0.51	98.71	V.Fine Sand
0.0630	4.0	0.25	98.96	v.rine sand
0.0440	4.5	0.18	99.14	Coarse Silt
0.0315	5.0	0.13	99.27	Course site
0.0220	5.5	0.14	99.41	Medium Silt
0.0156	6.0	0.15	99.56	Wiculain Siit
0.0110	6.5	0.16	99.72	Fine silt
0.0078	7.0	0.14	99.86	rille silt
0.0055	7.5	0.11	99.97	V.Fine Silt
0.0039	8.0	0.04	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

< 0.001	>10.0	0.00	100.00	Fine Clay
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		0.861	1.526	0.217
Median		0.754		0.407
Wentworth Classi	fication	Coarse Sand		
Sorting		Value	Infer	ence
Coefficient		1.44	Poorly Sorted	
Skewness		-0.15	Negative (Fine)	
Kurtosis		0.82	Platy	kurtic
Fines (%)		1.04%		
Sands (%)		77.39%		
Gravel (%)		21.57%		

BGS Mod. Folk Classification	Gravelly Sand
Mod. Folk for Habitat Classification	Coarse Sediments

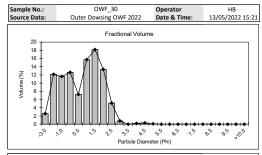


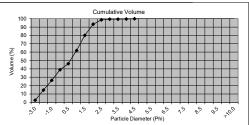


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	12.77	12.77	Pebble
4.0000	-2.0	9.70	22.47	rebble
2.0000	-1.0	6.73	29.20	Granule
1.0000	0.0	6.14	35.34	V.Coarse Sand
0.7100	0.5	0.22	35.56	Coarse Sand
0.5000	1.0	4.50	40.06	Coarse Sand
0.3550	1.5	9.74	49.80	Medium Sand
0.2500	2.0	13.79	63.60	Wicaram Sana
0.1800	2.5	13.29	76.89	Fine Sand
0.1250	3.0	10.68	87.57	Tille Salia
0.0900	3.5	4.32	91.89	V.Fine Sand
0.0630	4.0	0.96	92.86	v.riile Janu
0.0440	4.5	0.10	92.96	Coarse Silt
0.0315	5.0	0.52	93.47	Coarse siit
0.0220	5.5	0.85	94.32	Medium Silt
0.0156	6.0	0.84	95.17	Wicalam Site
0.0110	6.5	0.87	96.03	Fine silt
0.0078	7.0	0.89	96.93	riile siit
0.0055	7.5	0.88	97.80	V.Fine Silt
0.0039	8.0	0.72	98.53	v.i iile siit
0.0028	8.5	0.51	99.04	
0.0020	9.0	0.34	99.38	Coarse Clay
0.0014	9.5	0.22	99.60	
0.0010	10.0	0.15	99.74	Medium Clay
< 0.001	>10.0	0.26	100.00	Fine Clay

VU.001	10.0	0.20	100.00	rille Clay
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		0.697	4.431	0.522
Median		0.354		1.500
Wentworth Classification	n	Coarse Sand		e Sand
Sorting		Value	Infer	ence
Coefficient		2.81	Very Poorly Sorted	
Skewness		-0.30	Negative (Fine)	
Kurtosis		0.94	Mesokurtic	
Fines (%)		7.14%		
Sands (%)		63.65%		
Gravel (%)		29.20%		
GS Mod. Folk Classific	ation		Gravelly N	luddy Sand

Mixed Sediments

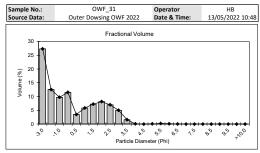


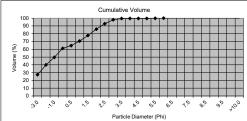


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	15.30	15.30	Pebble
4.0000	-2.0	6.52	21.81	1 CODIC
2.0000	-1.0	7.41	29.22	Granule
1.0000	0.0	7.66	36.88	V.Coarse Sand
0.7100	0.5	0.00	36.88	Coarse Sand
0.5000	1.0	2.23	39.11	course sund
0.3550	1.5	7.34	46.45	Medium Sand
0.2500	2.0	13.31	59.77	Wicalalli Salla
0.1800	2.5	14.81	74.58	Fine Sand
0.1250	3.0	12.21	86.79	Tine Sand
0.0900	3.5	4.45	91.25	V.Fine Sand
0.0630	4.0	0.75	92.00	v.rine sand
0.0440	4.5	0.09	92.09	Coarse Silt
0.0315	5.0	0.58	92.67	course sint
0.0220	5.5	0.97	93.65	Medium Silt
0.0156	6.0	0.93	94.58	Wicalam Sile
0.0110	6.5	0.93	95.51	Fine silt
0.0078	7.0	0.96	96.48	Time site
0.0055	7.5	0.97	97.45	V.Fine Silt
0.0039	8.0	0.83	98.28	V.I IIIC SIIC
0.0028	8.5	0.60	98.88	
0.0020	9.0	0.40	99.28	Coarse Clay
0.0014	9.5	0.26	99.54	
0.0010	10.0	0.17	99.71	Medium Clay
<0.001	>10.0	0.30	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.698	5.551	0.518
Median	0.327		1.613
Wentworth Classification		Coarse Sand	
Sorting	Value	Inference	
Coefficient	2.97	Very Poorly Sorted	
Skewness	-0.33	Very Negative(fine)	
Kurtosis	0.99	Mesokurtic	
Fines (%)	8.00%		
Sands (%)	62.78%		
Gravel (%)	29.22%		

BGS Mod. Folk Classification	Gravelly Muddy Sand
Mod. Folk for Habitat Classification	Mixed Sediments

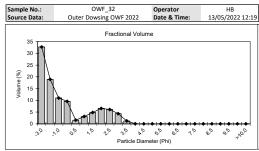


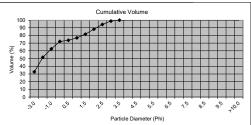


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
				Description
8.0000	-3.0	2.58	2.58	Pebble
4.0000	-2.0	12.14	14.72	
2.0000	-1.0	11.62	26.34	Granule
1.0000	0.0	12.63	38.97	V.Coarse Sand
0.7100	0.5	7.26	46.22	Coarse Sand
0.5000	1.0	15.71	61.93	course suria
0.3550	1.5	18.16	80.09	Medium Sand
0.2500	2.0	13.34	93.43	Wicalam Sana
0.1800	2.5	5.15	98.58	Fine Sand
0.1250	3.0	0.80	99.38	rille Saliu
0.0900	3.5	0.00	99.38	V. Fine Sand
0.0630	4.0	0.20	99.58	v.riile Jailu
0.0440	4.5	0.32	99.90	Coarse Silt
0.0315	5.0	0.10	100.00	Coarse Silt
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile Siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.931	2.632	0.102
Median	0.659		0.601
Wentworth Classification		Coarse Sand	
Sorting	Value	Infere	ence
Coefficient	1.64	Poorly S	Sorted
Skewness	-0.40	Very Nega	tive(fine)
Kurtosis	0.82	Platyk	urtic
Fines (%)	0.42%		
Sands (%)	73.25%		
Gravel (%)	26.34%		

BGS Mod. Folk Classification	Gravelly Sand
Mod. Folk for Habitat Classification	Coarse Sediments

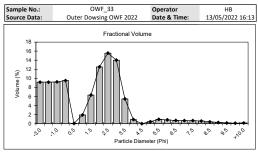


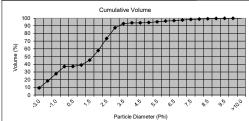

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	27.33	27.33	Pebble
4.0000	-2.0	12.54	39.88	i ebbie
2.0000	-1.0	9.74	49.62	Granule
1.0000	0.0	11.55	61.16	V.Coarse Sand
0.7100	0.5	3.49	64.66	Coarse Sand
0.5000	1.0	5.83	70.48	coarse sand
0.3550	1.5	7.22	77.70	Medium Sand
0.2500	2.0	8.16	85.87	Wicalalli Jana
0.1800	2.5	7.01	92.88	Fine Sand
0.1250	3.0	5.02	97.90	Tine Sand
0.0900	3.5	1.58	99.48	V.Fine Sand
0.0630	4.0	0.08	99.57	v.rine sand
0.0440	4.5	0.00	99.57	Coarse Silt
0.0315	5.0	0.09	99.66	Coarse Sile
0.0220	5.5	0.20	99.86	Medium Silt
0.0156	6.0	0.11	99.98	Wicalam Sile
0.0110	6.5	0.03	100.00	Fine silt
0.0078	7.0	0.00	100.00	Title site
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	1.843	6.389	-0.882
Median	1.967		-0.976
Wentworth Classification		V. Coarse Sand	
Sorting	Value	Infer	ence
Coefficient	2.35	Very Poor	ly Sorted

Sorting	Value	Inference
Coefficient	2.35	Very Poorly Sorted
Skewness	0.08	Symmetrical
Kurtosis	0.61	Very Platykurtic
Fines (%)	0.43%	
Sands (%)	49.95%	
Gravel (%)	49.62%	

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

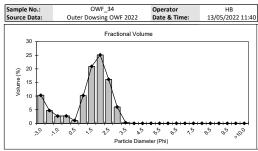


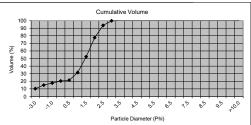

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	32.72	32.72	Pebble
4.0000	-2.0	18.93	51.64	Pennie
2.0000	-1.0	11.01	62.65	Granule
1.0000	0.0	9.56	72.21	V.Coarse Sand
0.7100	0.5	1.55	73.76	Coarse Sand
0.5000	1.0	3.13	76.89	Coarse Sanu
0.3550	1.5	4.83	81.73	Medium Sand
0.2500	2.0	6.57	88.29	iviculum sanu
0.1800	2.5	6.10	94.39	Fine Sand
0.1250	3.0	4.33	98.73	riile Jaliu
0.0900	3.5	1.24	99.96	V.Fine Sand
0.0630	4.0	0.04	100.00	v.riile Saliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse Silt
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wedium Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	2.519	5.946	-1.333
Median	4.347		-2.120
Wentworth Classification		Gran	iule

Sorting	Value	Inference
Coefficient	2.25	Very Poorly Sorted
Skewness	0.46	Very Positive (Coarse)
Kurtosis	0.66	Very Platykurtic
Fines (%)	0.00%	
Sands (%)	37.35%	
Gravel (%)	62.65%	

BGS Mod. Folk Classification	Sandy Gravel		
Mod. Folk for Habitat Classification	Coarse Sediments		

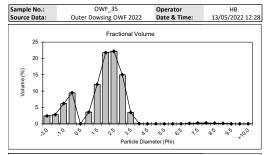


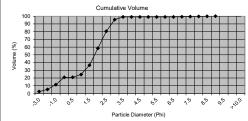

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	9.16	9.16	Pebble
4.0000	-2.0	9.15	18.31	rebble
2.0000	-1.0	9.21	27.52	Granule
1.0000	0.0	9.52	37.03	V.Coarse Sand
0.7100	0.5	0.06	37.10	Coarse Sand
0.5000	1.0	1.94	39.03	coarse sand
0.3550	1.5	6.32	45.35	Medium Sand
0.2500	2.0	12.53	57.88	Wicaram Sana
0.1800	2.5	15.55	73.43	Fine Sand
0.1250	3.0	14.01	87.43	Title Salia
0.0900	3.5	5.47	92.91	V.Fine Sand
0.0630	4.0	0.93	93.84	v.rine sand
0.0440	4.5	0.01	93.85	Coarse Silt
0.0315	5.0	0.46	94.30	Course sin
0.0220	5.5	0.96	95.26	Medium Silt
0.0156	6.0	0.86	96.12	iviculum siic
0.0110	6.5	0.72	96.84	Fine silt
0.0078	7.0	0.68	97.52	rine siit
0.0055	7.5	0.69	98.21	V.Fine Silt
0.0039	8.0	0.59	98.80	v.riile siit
0.0028	8.5	0.43	99.23	
0.0020	9.0	0.29	99.52	Coarse Clay
0.0014	9.5	0.18	99.70	
0.0010	10.0	0.12	99.82	Medium Clay
< 0.001	>10.0	0.18	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.603	3.752	0.730
Median	0.316		1.662
Wentworth Classification		Coarse	Sand

Sorting	Value	Inference
Coefficient	2.60	Very Poorly Sorted
Skewness	-0.34	Very Negative(fine)
Kurtosis	0.91	Mesokurtic
Fines (%)	6.16%	
Sands (%)	66.32%	
Gravel (%)	27.52%	

BGS Mod. Folk Classification	Gravelly Sand
Mod. Folk for Habitat Classification	Coarse Sediments

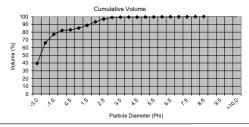




Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	10.28	10.28	Pebble
4.0000	-2.0	4.73	15.00	rebble
2.0000	-1.0	2.68	17.68	Granule
1.0000	0.0	2.73	20.41	V.Coarse Sand
0.7100	0.5	1.04	21.45	Coarse Sand
0.5000	1.0	10.19	31.64	Coarse Sariu
0.3550	1.5	20.87	52.51	Medium Sand
0.2500	2.0	25.12	77.63	ivieululii Saliu
0.1800	2.5	16.13	93.75	Fine Sand
0.1250	3.0	5.99	99.75	riile Jaliu
0.0900	3.5	0.25	100.00	V. Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jailu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse Silt
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile Siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

<0.001	>10.0	0.00	100.00	Fine Clay	
Graphical		mm	StDev (mm)	Phi	
Mean (MZ)		0.646	4.478	0.630	
Median		0.372		1.425	
Wentworth Classifi	ation		Coarse Sand		
Sorting		Value	Inference		
Coefficient		1.91	Poorly Sorted		
Skewness		-0.62	Very Negative(fine)		
Kurtosis		1.98	Very Leptokurtic		
Fines (%)		0.00%			
Sands (%)		82.32%			

BGS Mod. Folk Classification	Gravelly Sand
Mod. Folk for Habitat Classification	Coarse Sediments

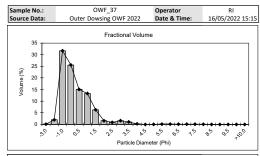


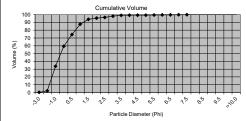
Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	2.42	2.42	Pebble
4.0000	-2.0	2.82	5.24	rebble
2.0000	-1.0	6.20	11.44	Granule
1.0000	0.0	9.48	20.92	V.Coarse Sand
0.7100	0.5	0.00	20.92	Coarse Sand
0.5000	1.0	3.60	24.52	Course Sund
0.3550	1.5	12.07	36.59	Medium Sand
0.2500	2.0	21.75	58.33	ivieululii Saliu
0.1800	2.5	22.16	80.50	Fine Sand
0.1250	3.0	15.01	95.51	rille Jaliu
0.0900	3.5	3.46	98.97	V.Fine Sand
0.0630	4.0	0.07	99.04	v.riile Jaliu
0.0440	4.5	0.00	99.04	Coarse Silt
0.0315	5.0	0.00	99.04	Coarse siit
0.0220	5.5	0.00	99.04	Medium Silt
0.0156	6.0	0.00	99.04	Wediam Sit
0.0110	6.5	0.00	99.04	Fine silt
0.0078	7.0	0.12	99.16	rine siit
0.0055	7.5	0.25	99.41	V.Fine Silt
0.0039	8.0	0.25	99.66	v.rine siit
0.0028	8.5	0.19	99.85	
0.0020	9.0	0.14	99.99	Coarse Clay
0.0014	9.5	0.02	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clav

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.419	1.463	1.254
Median	0.290		1.785
Wentworth Classification		Medium Sand	
Sorting	Value	Infer	ence
Coefficient	1.57	Poorly Sorted	
Skewness	-0.52	Very Negative(fine)	
Kurtosis	1.58	Very Leptokurtic	
Fines (%)	0.96%		
Sands (%)	87.60%		
Gravel (%)	11.44%		
BGS Mod. Folk Classification		Gravell	y Sand

Coarse Sediments

Sample No.:	OWF_36	Operator	RI
Source Data:	Outer Dowsing OWF 2022	Date & Time:	16/05/2022 13:24
45 T	Fractional Volum	ne	
40 35 30 25 20 15 10 5	Particle Diam	 ♦ • • • • • • • • • 	95 95 702

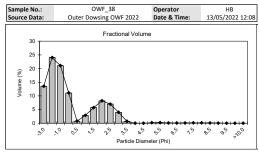


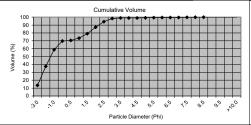

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	39.59	39.59	Pebble
4.0000	-2.0	26.49	66.08	rebble
2.0000	-1.0	10.95	77.03	Granule
1.0000	0.0	5.14	82.17	V.Coarse Sand
0.7100	0.5	0.82	82.99	Coarse Sand
0.5000	1.0	2.27	85.26	Coarse Sand
0.3550	1.5	3.58	88.85	Medium Sand
0.2500	2.0	4.44	93.29	ivicularii sana
0.1800	2.5	3.61	96.90	Fine Sand
0.1250	3.0	2.11	99.02	Tille Salia
0.0900	3.5	0.42	99.43	V.Fine Sand
0.0630	4.0	0.00	99.44	v.i ilic Salia
0.0440	4.5	0.00	99.44	Coarse Silt
0.0315	5.0	0.07	99.51	Coarse siit
0.0220	5.5	0.10	99.62	Medium Silt
0.0156	6.0	0.06	99.67	Wicalam Sile
0.0110	6.5	0.04	99.71	Fine silt
0.0078	7.0	0.06	99.77	Tille Sile
0.0055	7.5	0.08	99.85	V.Fine Silt
0.0039	8.0	0.07	99.92	v.riiie siit
0.0028	8.5	0.05	99.98	
0.0020	9.0	0.03	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

10.001	- 10.0	0.00	100.00	Title city
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		3.579	5.582	-1.840
Median		6.428		-2.684
Wentworth Classificat	ion		Granule	
Sorting		Value	Infer	ence
Coefficient		1.96	Poorly Sorted	
Skewness		0.62	Very Positive (Coarse)	
Kurtosis		1.15	Leptokurtic	
Fines (%)		0.56%		
Sands (%)		22.40%		
Gravel (%)		77.03%		
BGS Mod. Folk Classifi	cation		Sandy	Gravel

Mod. Folk for Habitat Classification

Coarse Sediments

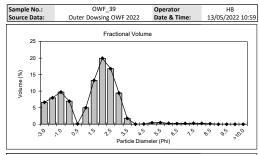


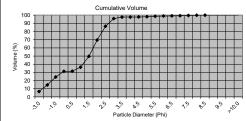


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.13	0.13	Pebble
4.0000	-2.0	1.97	2.10	i cobic
2.0000	-1.0	31.67	33.77	Granule
1.0000	0.0	25.56	59.34	V.Coarse Sand
0.7100	0.5	15.06	74.40	Coarse Sand
0.5000	1.0	13.31	87.71	course suriu
0.3550	1.5	6.30	94.01	Medium Sand
0.2500	2.0	1.58	95.59	Wicaram Sana
0.1800	2.5	0.89	96.48	Fine Sand
0.1250	3.0	1.61	98.09	Title Salia
0.0900	3.5	1.06	99.15	V.Fine Sand
0.0630	4.0	0.24	99.39	v.rine Janu
0.0440	4.5	0.00	99.39	Coarse Silt
0.0315	5.0	0.01	99.40	Coarse Sitt
0.0220	5.5	0.14	99.54	Medium Silt
0.0156	6.0	0.14	99.68	Wicalain Siic
0.0110	6.5	0.10	99.77	Fine silt
0.0078	7.0	0.08	99.86	Tille sile
0.0055	7.5	0.09	99.94	V.Fine Silt
0.0039	8.0	0.06	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

< 0.001	>10.0	0.00	100.00	Fine Clay
Graphical		mm	StDev (mm)	Phi
		mm		
Mean (MZ)		1.335	1.429	-0.417
Median		1.365		-0.449
Wentworth Classi	fication		V. Coa	rse Sand
Sorting		Value	Infe	rence
Coefficient		1.18	Poorly	Sorted
Skewness		0.12	Positive	e(Coarse)
Kurtosis		0.82	Plat	kurtic
Fines (%)		0.61%		
Sands (%)		65.62%		
Gravel (%)		33.77%		

BGS Mod. Folk Classification	Sandy Gravel	
Mod. Folk for Habitat Classification	Coarse Sediments	

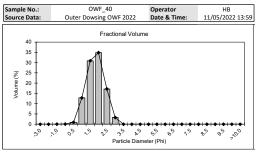


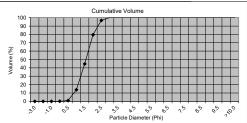

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	13.54	13.54	Pebble
4.0000	-2.0	24.02	37.56	rebble
2.0000	-1.0	21.08	58.64	Granule
1.0000	0.0	11.07	69.71	V.Coarse Sand
0.7100	0.5	0.78	70.49	Coarse Sand
0.5000	1.0	2.88	73.37	Coarse Sariu
0.3550	1.5	5.71	79.08	Medium Sand
0.2500	2.0	8.20	87.28	iviculum sanu
0.1800	2.5	6.99	94.27	Fine Sand
0.1250	3.0	3.98	98.25	riile Janu
0.0900	3.5	0.71	98.96	V.Fine Sand
0.0630	4.0	0.00	98.96	v.riile Jaliu
0.0440	4.5	0.01	98.97	Coarse Silt
0.0315	5.0	0.18	99.14	Coarse siit
0.0220	5.5	0.20	99.35	Medium Silt
0.0156	6.0	0.11	99.45	Wediain Sit
0.0110	6.5	0.08	99.53	Fine silt
0.0078	7.0	0.10	99.63	rille silt
0.0055	7.5	0.13	99.76	V.Fine Silt
0.0039	8.0	0.11	99.87	v.riile siit
0.0028	8.5	0.08	99.96	
0.0020	9.0	0.05	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Ct'	Malara	1	
Wentworth Classification		V. Coars	se Sand
Median	2.820		-1.496
Mean (MZ)	1.842	3.942	-0.881
Graphical	mm	StDev (mm)	Phi

Welltworth Classification		V. Course Suria
Sorting Coefficient	Value 2.05	Inference Very Poorly Sorted
Skewness	0.40	Very Positive (Coarse)
Kurtosis	0.64	Very Platykurtic
Fines (%)	1.04%	
Sands (%)	40.32%	
Gravel (%)	58.64%	

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

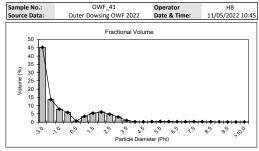


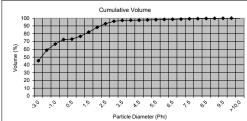


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	6.64	6.64	Pebble
4.0000	-2.0	8.00	14.64	i cobic
2.0000	-1.0	9.73	24.37	Granule
1.0000	0.0	6.96	31.33	V.Coarse Sand
0.7100	0.5	0.09	31.42	Coarse Sand
0.5000	1.0	4.97	36.39	coarse saria
0.3550	1.5	13.25	49.64	Medium Sand
0.2500	2.0	19.96	69.60	Wiculum Janu
0.1800	2.5	16.77	86.37	Fine Sand
0.1250	3.0	9.44	95.81	Title Salid
0.0900	3.5	1.80	97.61	V.Fine Sand
0.0630	4.0	0.03	97.64	v.i iiic Janu
0.0440	4.5	0.07	97.71	Coarse Silt
0.0315	5.0	0.44	98.15	Coarse Siit
0.0220	5.5	0.48	98.63	Medium Silt
0.0156	6.0	0.26	98.89	Wicalain Siic
0.0110	6.5	0.20	99.09	Fine silt
0.0078	7.0	0.25	99.35	rille siit
0.0055	7.5	0.28	99.63	V.Fine Silt
0.0039	8.0	0.23	99.86	v.i iiic siic
0.0028	8.5	0.14	100.00	
0.0020	9.0	0.01	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.629	3.211	0.668
Median	0.353		1.502
Wentworth Classification		Coarse	Sand
Sorting	Value	Infere	ence
Coefficient	2.00	Poorly S	orted
Skewness	-0.55	Very Nega	tive(fine)
Kurtosis	0.81	Platyk	urtic
Fines (%)	2.36%		
Sands (%)	73.27%		
Gravel (%)	24.37%		

BGS Mod. Folk Classification	Gravelly Sand
Mod. Folk for Habitat Classification	Coarse Sediments

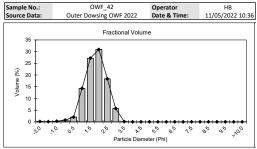


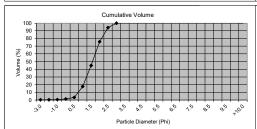

A at	Aperture	Percentage		Sediment
Aperture (mm)	(Phi unit)	Fractional	Cumulative	
				Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.00	0.00	
2.0000	-1.0	0.03	0.03	Granule
1.0000	0.0	0.06	0.09	V.Coarse Sand
0.7100	0.5	0.92	1.01	Coarse Sand
0.5000	1.0	12.84	13.85	
0.3550	1.5	30.87	44.72	Medium Sand
0.2500	2.0	34.85	79.56	Wicaram Sana
0.1800	2.5	17.15	96.72	Fine Sand
0.1250	3.0	3.28	100.00	Tine Sand
0.0900	3.5	0.00	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Janu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse Silt
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediain Siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.338	0.167	1.566
Median	0.339		1.560
Wentworth Classification		Mediur	n Sand
Sorting	Value	Infor	nco

Sorting	Value	Inference
Coefficient	0.54	Moderately Well Sorted
Skewness	-0.01	Symmetrical
Kurtosis	0.96	Mesokurtic
Fines (%)	0.00%	
Sands (%)	99.97%	
Gravel (%)	0.03%	

BGS Mod. Folk Classification	Sand
Mod. Folk for Habitat Classification	Sand and Muddy Sand

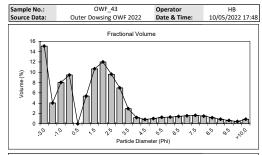


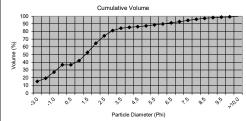


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	45.21	45.21	Pebble
4.0000	-2.0	13.65	58.86	1 CODIC
2.0000	-1.0	7.84	66.70	Granule
1.0000	0.0	5.81	72.50	V.Coarse Sand
0.7100	0.5	0.62	73.12	Coarse Sand
0.5000	1.0	3.46	76.58	course sund
0.3550	1.5	5.46	82.04	Medium Sand
0.2500	2.0	6.12	88.16	mediam sana
0.1800	2.5	4.75	92.91	Fine Sand
0.1250	3.0	3.10	96.02	Tine Sand
0.0900	3.5	1.02	97.03	V.Fine Sand
0.0630	4.0	0.21	97.24	v.rine sand
0.0440	4.5	0.14	97.38	Coarse Silt
0.0315	5.0	0.27	97.66	course sint
0.0220	5.5	0.33	97.99	Medium Silt
0.0156	6.0	0.28	98.27	Wicaiaiii Siic
0.0110	6.5	0.26	98.53	Fine silt
0.0078	7.0	0.27	98.80	Time sinc
0.0055	7.5	0.28	99.09	V.Fine Silt
0.0039	8.0	0.26	99.34	VII IIIC SIIIC
0.0028	8.5	0.20	99.55	
0.0020	9.0	0.15	99.70	Coarse Clay
0.0014	9.5	0.11	99.80	
0.0010	10.0	0.07	99.87	Medium Clay
<0.001	>10.0	0.13	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	3.274	8.583	-1.711
Median	6.596		-2.722
Wentworth Classification		Granule	
Sorting	Value	Inference	
Coefficient	2.50	Very Poorly Sorted	
Skewness	0.54	Very Positive (Coarse)	
Kurtosis	0.64	Very Platykurtic	
Fines (%)	2.76%		
Sands (%)	30.55%		
Gravel (%)	66.70%		

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

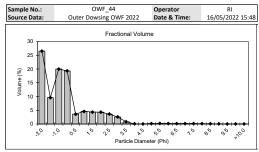


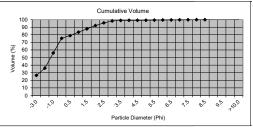

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.19	0.19	•
4.0000	-2.0	0.19	0.19	Pebble
2.0000	-1.0	0.27	0.55	Granule
1.0000	0.0	0.76	1.31	V.Coarse Sand
0.7100	0.5	2.03	3.33	
0.5000	1.0	14.29	17.62	Coarse Sand
0.3550	1.5	27.21	44.83	
0.3550	2.0	30.96	75.79	Medium Sand
0.2500	2.0	18.40	94.19	
0.1250	3.0	5.72	99.91	Fine Sand
0.0900	3.5	0.10	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	VII IIIC SIIC
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.338	0.192	1.564
Median	0.337		1.567
Wentworth Classification		Mediun	n Sand
Sorting	Value	Infere	ence
Coefficient	0.62	Moderately Well Sorte	
Skewness	-0.02	Symmetrical	
Kurtosis	0.94	Mesokurtic	
Fines (%)	0.00%		
Sands (%)	99.45%		
Gravel (%)	0.55%		

Sand Sand and Muddy Sand

BGS Mod. Folk Classification

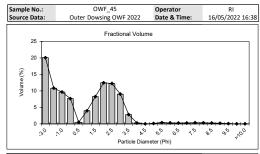


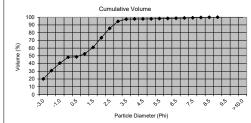

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	15.09	15.09	Pebble
4.0000	-2.0	4.04	19.13	rebble
2.0000	-1.0	8.03	27.17	Granule
1.0000	0.0	9.47	36.64	V.Coarse Sand
0.7100	0.5	0.00	36.64	Coarse Sand
0.5000	1.0	5.38	42.02	Coarse Sariu
0.3550	1.5	10.68	52.70	Medium Sand
0.2500	2.0	12.02	64.72	ivieululii 3aliu
0.1800	2.5	9.62	74.33	Fine Sand
0.1250	3.0	6.98	81.32	rille Jaliu
0.0900	3.5	2.94	84.26	V.Fine Sand
0.0630	4.0	1.21	85.47	v.riile Jailu
0.0440	4.5	0.84	86.30	Coarse Silt
0.0315	5.0	1.01	87.31	Coarse sitt
0.0220	5.5	1.26	88.57	Medium Silt
0.0156	6.0	1.28	89.85	ivieulum siit
0.0110	6.5	1.43	91.28	Fine silt
0.0078	7.0	1.56	92.84	rine siit
0.0055	7.5	1.64	94.48	V. Fine Silt
0.0039	8.0	1.49	95.97	v.rille Silt
0.0028	8.5	1.19	97.15	
0.0020	9.0	0.89	98.04	Coarse Clay
0.0014	9.5	0.64	98.68	
0.0010	10.0	0.44	99.12	Medium Clay
< 0.001	>10.0	0.88	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.637	6.713	0.650
Median	0.392		1.352
Wentworth Classification		Coarse	Sand
Sorting	Value	Inference	
Coefficient	3.36	Very Poor	ly Sorted

-0.14	Negative (Fine)
1.26	Leptokurtic
14.53%	
58.30%	
27.17%	
	1.26 14.53% 58.30%

BGS Mod. Folk Classification	Gravelly Muddy Sand
Mod. Folk for Habitat Classification	Mixed Sediments

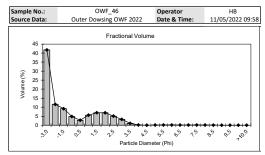


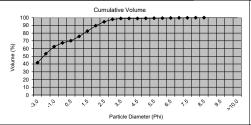


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	26.50	26.50	Pebble
4.0000	-2.0	9.57	36.07	Pebble
2.0000	-1.0	19.99	56.06	Granule
1.0000	0.0	19.33	75.39	V.Coarse Sand
0.7100	0.5	3.57	78.96	Coarse Sand
0.5000	1.0	4.55	83.51	Coarse Sanu
0.3550	1.5	4.32	87.83	Medium Sand
0.2500	2.0	4.28	92.11	ivieulum sanu
0.1800	2.5	3.59	95.70	Fine Sand
0.1250	3.0	2.55	98.25	rille Sallu
0.0900	3.5	0.79	99.03	V.Fine Sand
0.0630	4.0	0.04	99.07	v.riile Saliu
0.0440	4.5	0.00	99.08	Coarse Silt
0.0315	5.0	0.11	99.19	Coarse siit
0.0220	5.5	0.17	99.36	Medium Silt
0.0156	6.0	0.13	99.49	ivieulum siit
0.0110	6.5	0.11	99.60	Fine silt
0.0078	7.0	0.11	99.71	rille siit
0.0055	7.5	0.11	99.82	V.Fine Silt
0.0039	8.0	0.09	99.91	v.riile Siit
0.0028	8.5	0.06	99.97	
0.0020	9.0	0.03	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	2.500	6.885	-1.322
Median	2.606		-1.382
Wentworth Classification		Granule	
Sorting	Value	Inference	
Coefficient	2.15	Very Poorly Sorted	
Skewness	0.10	Positive(Coarse)	
Kurtosis	0.86	Platykurtic	
Fines (%)	0.93%		
Sands (%)	43.01%		
Gravel (%)	56.06%		

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

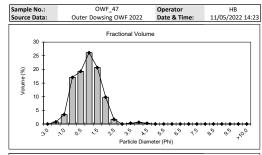


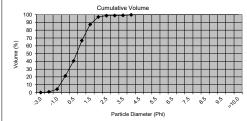


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	20.06	20.06	Pebble
4.0000	-2.0	10.83	30.90	i cobic
2.0000	-1.0	9.65	40.55	Granule
1.0000	0.0	7.65	48.20	V.Coarse Sand
0.7100	0.5	0.48	48.68	Coarse Sand
0.5000	1.0	3.94	52.62	Course Suria
0.3550	1.5	8.25	60.87	Medium Sand
0.2500	2.0	12.45	73.32	IVICUIUIII Juliu
0.1800	2.5	12.23	85.55	Fine Sand
0.1250	3.0	9.02	94.57	riile Jaliu
0.0900	3.5	2.80	97.37	V.Fine Sand
0.0630	4.0	0.26	97.63	v.riile Jailu
0.0440	4.5	0.00	97.63	Coarse Silt
0.0315	5.0	0.12	97.76	Coarse Sitt
0.0220	5.5	0.35	98.11	Medium Silt
0.0156	6.0	0.28	98.39	Wediain Siit
0.0110	6.5	0.23	98.62	Fine silt
0.0078	7.0	0.26	98.88	rille sitt
0.0055	7.5	0.33	99.21	V.Fine Silt
0.0039	8.0	0.32	99.53	v.riile siit
0.0028	8.5	0.24	99.77	
0.0020	9.0	0.16	99.94	Coarse Clay
0.0014	9.5	0.07	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	1.047	5.606	-0.066
Median	0.640		0.645
Wentworth Classification		V. Coars	e Sand
Sorting	Value	Infere	ence
Coefficient	2.45	Very Poor	ly Sorted
Skewness	-0.33	Very Negative(fine)	
Kurtosis	0.60	Very Plat	tykurtic
Fines (%)	2.37%		
Sands (%)	57.09%		
Gravel (%)	40.55%		

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

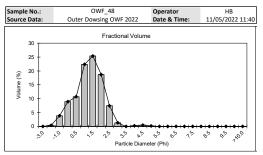


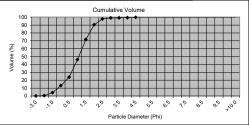

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	41.75	41.75	Pebble
4.0000	-2.0	11.59	53.34	Pebble
2.0000	-1.0	9.19	62.53	Granule
1.0000	0.0	4.83	67.36	V.Coarse Sand
0.7100	0.5	2.75	70.12	Coarse Sand
0.5000	1.0	5.59	75.70	Coarse Sariu
0.3550	1.5	6.94	82.65	Medium Sand
0.2500	2.0	6.90	89.55	iviculum sanu
0.1800	2.5	5.05	94.60	Fine Sand
0.1250	3.0	3.25	97.85	riile Jaliu
0.0900	3.5	1.05	98.90	V. Fine Sand
0.0630	4.0	0.13	99.03	v.riile Saliu
0.0440	4.5	0.00	99.03	Coarse Silt
0.0315	5.0	0.11	99.14	Coarse siit
0.0220	5.5	0.17	99.30	Medium Silt
0.0156	6.0	0.14	99.44	Wediain Siit
0.0110	6.5	0.12	99.56	Fine silt
0.0078	7.0	0.12	99.69	rille silt
0.0055	7.5	0.13	99.81	V.Fine Silt
0.0039	8.0	0.10	99.92	v.riile siit
0.0028	8.5	0.07	99.99	
0.0020	9.0	0.01	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	3.075	8.906	-1.621
Median	5.152		-2.365
Wentworth Classification		Gran	ule
Sorting	Value	Infer	ence
Coefficient	2.46	Very Poor	ly Sorted
Skewness	0.41	Very Positiv	e (Coarse)
Kurtosis	0.60	Very Plat	ykurtic
Fines (%)	0.98%		
Sands (%)	36.50%		
Gravel (%)	62.53%		

Sandy Gravel Coarse Sediments

BGS Mod. Folk Classification

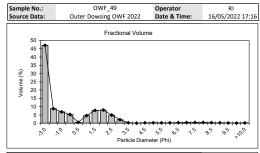


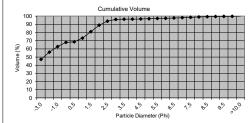


Aperture	Aperture	Percentage		Sediment	
(mm)	(Phi unit)	Fractional	Cumulative	Description	
8.0000	-3.0	0.00	0.00	Pebble	
4.0000	-2.0	0.78	0.78	i coolc	
2.0000	-1.0	3.46	4.24	Granule	
1.0000	0.0	17.08	21.31	V.Coarse Sand	
0.7100	0.5	19.26	40.57	Coarse Sand	
0.5000	1.0	26.09	66.66	Coarse Sana	
0.3550	1.5	20.63	87.30	Medium Sand	
0.2500	2.0	9.81	97.10	Wicalalli Salia	
0.1800	2.5	1.71	98.81	Fine Sand	
0.1250	3.0	0.00	98.81	Time Sand	
0.0900	3.5	0.30	99.11	V.Fine Sand	
0.0630	4.0	0.62	99.74	v.riile Janu	
0.0440	4.5	0.26	100.00	Coarse Silt	
0.0315	5.0	0.00	100.00	Coarse siit	
0.0220	5.5	0.00	100.00	Medium Silt	
0.0156	6.0	0.00	100.00	Wediam Sit	
0.0110	6.5	0.00	100.00	Fine silt	
0.0078	7.0	0.00	100.00	rine siit	
0.0055	7.5	0.00	100.00	V.Fine Silt	
0.0039	8.0	0.00	100.00	v.rille Silt	
0.0028	8.5	0.00	100.00		
0.0020	9.0	0.00	100.00	Coarse Clay	
0.0014	9.5	0.00	100.00		
0.0010	10.0	0.00	100.00	Medium Clay	
< 0.001	>10.0	0.00	100.00	Fine Clay	

<0.001	>10.0	0.00	100.00	Fine Clay
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		0.680	0.626	0.556
Median		0.634		0.657
Wentworth Classification			Coarse	e Sand
Sorting		Value	Infer	ence
Coefficient		0.88	Moderate	ly Sorted
Skewness		-0.16	Negativ	e (Fine)
Kurtosis		1.06	Meso	kurtic
Fines (%)		0.26%		
Sands (%)		95.50%		
Gravel (%)		4.24%		

BGS Mod. Folk Classification	Slightly Gravelly Sand
Mod Folk for Habitat Classification	Sand and Muddy Sand

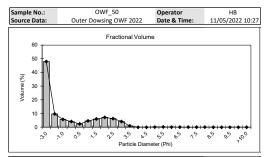


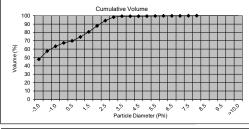


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.02	0.02	Pebble
4.0000	-2.0	0.41	0.43	rebbie
2.0000	-1.0	3.83	4.26	Granule
1.0000	0.0	8.91	13.16	V.Coarse Sand
0.7100	0.5	10.72	23.88	Coarse Sand
0.5000	1.0	22.36	46.24	Coarse Sana
0.3550	1.5	25.40	71.63	Medium Sand
0.2500	2.0	18.70	90.34	Wicalam Sana
0.1800	2.5	7.45	97.79	Fine Sand
0.1250	3.0	1.31	99.10	Tine Sand
0.0900	3.5	0.00	99.10	V.Fine Sand
0.0630	4.0	0.24	99.34	v.i iiic Janu
0.0440	4.5	0.47	99.81	Coarse Silt
0.0315	5.0	0.19	100.00	Course sin
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.502	0.587	0.996
Median	0.479		1.063
Wentworth Classification		Coarse	Sand
Sorting	Value	Infer	ence
Coefficient	0.91	Moderate	ly Sorted
Skewness	-0.18	Negative	e (Fine)
Kurtosis	1.25	Leptol	curtic
Fines (%)	0.66%		
Sands (%)	95.09%		
Gravel (%)	4.26%		

BGS Mod. Folk Classification	Slightly Gravelly Sand
Mod. Folk for Habitat Classification	Sand and Muddy Sand

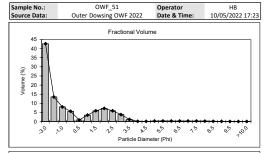


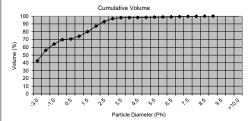


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	47.12	47.12	Pebble
4.0000	-2.0	8.80	55.92	rebble
2.0000	-1.0	6.85	62.77	Granule
1.0000	0.0	5.26	68.03	V.Coarse Sand
0.7100	0.5	0.52	68.55	Coarse Sand
0.5000	1.0	4.65	73.20	Coarse Saria
0.3550	1.5	7.80	80.99	Medium Sand
0.2500	2.0	7.99	88.99	Wicalalli Salia
0.1800	2.5	4.92	93.91	Fine Sand
0.1250	3.0	2.13	96.04	Tine Sand
0.0900	3.5	0.27	96.31	V.Fine Sand
0.0630	4.0	0.04	96.35	v.i iiic Janu
0.0440	4.5	0.24	96.59	Coarse Silt
0.0315	5.0	0.28	96.87	Coarse Siit
0.0220	5.5	0.26	97.12	Medium Silt
0.0156	6.0	0.25	97.38	Wediain Sit
0.0110	6.5	0.33	97.71	Fine silt
0.0078	7.0	0.41	98.12	Tille site
0.0055	7.5	0.45	98.57	V.Fine Silt
0.0039	8.0	0.42	98.99	v.rine siit
0.0028	8.5	0.33	99.32	
0.0020	9.0	0.24	99.56	Coarse Clay
0.0014	9.5	0.16	99.72	
0.0010	10.0	0.11	99.83	Medium Clay
< 0.001	>10.0	0.17	100.00	Fine Clav

< 0.001	>10.0	0.17	100.00	Fine Clay
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		3.602	11.748	-1.849
Median		6.689		-2.742
Wentworth Classif	ication		Granule	
Sorting		Value	Inference	
Coefficient		2.67	Very Poorly Sorted	
Skewness		0.45	Very Positive (Coarse)	
Kurtosis		0.58	Very Platykurtic	
Fines (%)		3.66%		
Sands (%)		33.58%		
Gravel (%)		62.77%		

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

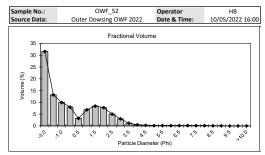


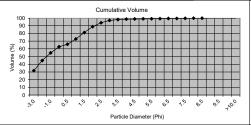

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	47.92	47.92	Pebble
4.0000	-2.0	9.70	57.63	i cobic
2.0000	-1.0	5.73	63.36	Granule
1.0000	0.0	4.15	67.51	V.Coarse Sand
0.7100	0.5	2.41	69.92	Coarse Sand
0.5000	1.0	4.63	74.55	coarse sand
0.3550	1.5	6.04	80.59	Medium Sand
0.2500	2.0	7.20	87.78	Wedium Sand
0.1800	2.5	6.31	94.09	Fine Sand
0.1250	3.0	4.18	98.27	riile Janu
0.0900	3.5	1.01	99.28	V. Fine Sand
0.0630	4.0	0.03	99.31	v.riile Jaliu
0.0440	4.5	0.00	99.31	Coarse Silt
0.0315	5.0	0.09	99.40	Coarse siit
0.0220	5.5	0.19	99.59	Medium Silt
0.0156	6.0	0.11	99.70	Wediain Siit
0.0110	6.5	0.06	99.75	Fine silt
0.0078	7.0	0.07	99.82	rille sit
0.0055	7.5	0.09	99.90	V.Fine Silt
0.0039	8.0	0.08	99.98	v.riile siit
0.0028	8.5	0.02	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	3.587	11.140	-1.843
Median	7.144		-2.837
Wentworth Classification		Gran	ule
Sorting	Value	Infere	ence
Coefficient	2.63	Very Poorly Sorted	
Skewness	0.49	Very Positive (Coarse)	
Kurtosis	0.58	Very Platykurtic	
Fines (%)	0.69%		
Sands (%)	35.95%		

BGS Mod. Folk Classification	Sandy Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

Gravel (%)



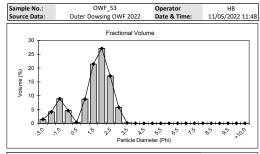


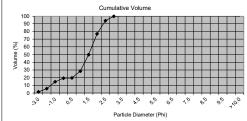
Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	42.67	42.67	Pebble
4.0000	-2.0	13.47	56.14	rebble
2.0000	-1.0	8.04	64.18	Granule
1.0000	0.0	5.60	69.78	V.Coarse Sand
0.7100	0.5	0.80	70.58	Coarse Sand
0.5000	1.0	3.52	74.10	coarse sand
0.3550	1.5	5.86	79.96	Medium Sand
0.2500	2.0	7.20	87.15	iviculum Janu
0.1800	2.5	5.88	93.04	Fine Sand
0.1250	3.0	3.81	96.85	riile Saliu
0.0900	3.5	1.11	97.96	V.Fine Sand
0.0630	4.0	0.11	98.07	v.riile Janu
0.0440	4.5	0.06	98.13	Coarse Silt
0.0315	5.0	0.24	98.37	Coarse Sill
0.0220	5.5	0.30	98.66	Medium Silt
0.0156	6.0	0.24	98.90	ivieulum siit
0.0110	6.5	0.23	99.13	Fine silt
0.0078	7.0	0.24	99.37	rille Silt
0.0055	7.5	0.23	99.60	V.Fine Silt
0.0039	8.0	0.18	99.79	v.rine siit
0.0028	8.5	0.12	99.91	
0.0020	9.0	0.07	99.98	Coarse Clay
0.0014	9.5	0.02	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	3.017	8.309	-1.593
Median	5.824		-2.542
Wentworth Classification		Granule	
Sorting	Value	Inference	
Coefficient	2.50	Very Poorly Sorted	
Skewness	0.50	Very Positive (Coarse)	
Kurtosis	0.60	Very Platykurtic	
Fines (%)	1.93%		
Sands (%)	33.89%		
Gravel (%)	64.18%		

BGS Mod. Folk Classification	Sandy Gravel
Mod Folk for Habitat Classification	Coarse Sediments

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	31.64	31.64	Pebble
4.0000	-2.0	13.18	44.82	Pebble
2.0000	-1.0	9.92	54.75	Granule
1.0000	0.0	8.01	62.76	V.Coarse Sand
0.7100	0.5	3.20	65.96	Coarse Sand
0.5000	1.0	6.85	72.81	Coarse Sariu
0.3550	1.5	8.46	81.27	Medium Sand
0.2500	2.0	7.76	89.03	iviculum sanu
0.1800	2.5	5.01	94.04	Fine Sand
0.1250	3.0	3.00	97.03	riile Jaliu
0.0900	3.5	1.16	98.20	V. Fine Sand
0.0630	4.0	0.49	98.68	v.riile Saliu
0.0440	4.5	0.23	98.91	Coarse Silt
0.0315	5.0	0.16	99.07	Coarse siit
0.0220	5.5	0.14	99.21	Medium Silt
0.0156	6.0	0.13	99.34	Wediain Siit
0.0110	6.5	0.14	99.47	Fine silt
0.0078	7.0	0.14	99.62	rille silt
0.0055	7.5	0.14	99.76	V.Fine Silt
0.0039	8.0	0.12	99.88	v.riile siit
0.0028	8.5	0.08	99.96	
0.0020	9.0	0.04	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

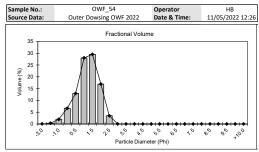

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	2.289	6.846	-1.194
Median	2.957		-1.564
Wentworth Classification		Gran	ule
Sorting	Value	Infere	ence
Coefficient	2.34	Very Poor	ly Sorted
Skewness	0.24	Positive(Coarse)	
Kurtosis	0.61	Very Platykurtic	
Fines (%)	1.32%		
Sands (%)	43.94%		
Gravel (%)	54.75%		

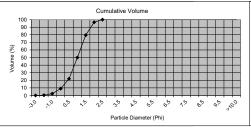

Sandy Gravel

Coarse Sediments

BGS Mod. Folk Classification

Mod. Folk for Habitat Classification

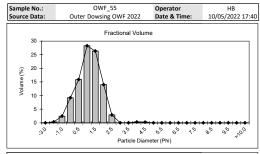


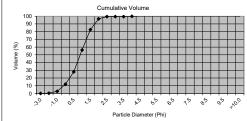


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	1.47	1.47	Pebble
4.0000	-2.0	4.16	5.63	i ebbie
2.0000	-1.0	8.94	14.57	Granule
1.0000	0.0	4.65	19.22	V.Coarse Sand
0.7100	0.5	0.37	19.59	Coarse Sand
0.5000	1.0	8.77	28.35	coarse saria
0.3550	1.5	21.46	49.81	Medium Sand
0.2500	2.0	27.09	76.90	Wicaiaiii Sana
0.1800	2.5	17.12	94.02	Fine Sand
0.1250	3.0	5.81	99.83	Title Salid
0.0900	3.5	0.17	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.rine sand
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse Site
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wicalam Silt
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	Title site
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.i iile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	510.0	0.00	100.00	Fine Clay

< 0.001	>10.0	0.00	100.00	Fine Clay
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		0.510	1.588	0.972
Median		0.354		1.497
Wentworth Class	ification		Coarse Sand	
Sorting		Value	Infer	ence
Coefficient		1.45	Poorly Sorted	
Skewness		-0.55	Very Negative(fine)	
Kurtosis		1.66	Very Leptokurtic	
Fines (%)		0.00%		
Sands (%)		85.43%		
Gravel (%)		14.57%		

BGS Mod. Folk Classification	Gravelly Sand	
Mod. Folk for Habitat Classification	Coarse Sediments	

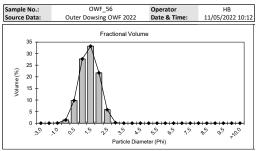


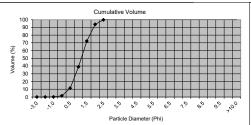


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.05	0.05	Pebble
4.0000	-2.0	0.32	0.37	rebble
2.0000	-1.0	1.97	2.34	Granule
1.0000	0.0	6.68	9.02	V.Coarse Sand
0.7100	0.5	12.96	21.98	Coarse Sand
0.5000	1.0	28.04	50.03	Coarse Sanu
0.3550	1.5	29.57	79.59	Medium Sand
0.2500	2.0	16.92	96.51	Wedium Sand
0.1800	2.5	3.48	99.99	Fine Sand
0.1250	3.0	0.01	100.00	riile Janu
0.0900	3.5	0.00	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jaliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediain Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille sit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.517	0.438	0.951
Median	0.500		0.999
Wentworth Classification		Coarse Sand	
Sorting	Value	Inference	
Coefficient	0.74	Moderately Sorted	
Skewness	-0.19	Negative (Fine)	
Kurtosis	1.25	Leptokurtic	
Fines (%)	0.00%		
Sands (%)	97.66%		
Gravel (%)	2.34%		

BGS Mod. Folk Classification	Slightly Gravelly Sand
Mod. Folk for Habitat Classification	Sand and Muddy Sand

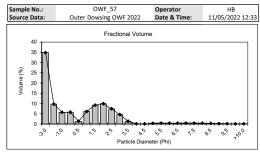


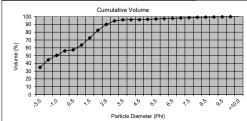

Aperture	Aperture	Percentage		Sediment	
(mm)	(Phi unit)	Fractional	Cumulative	Description	
8.0000	-3.0	0.00	0.00	Pebble	
4.0000	-2.0	0.34	0.34	i ebbie	
2.0000	-1.0	2.46	2.80	Granule	
1.0000	0.0	9.21	12.01	V.Coarse Sand	
0.7100	0.5	15.90	27.92	Coarse Sand	
0.5000	1.0	28.24	56.15	coarse saria	
0.3550	1.5	26.35	82.50	Medium Sand	
0.2500	2.0	13.98	96.48	Wiculum Jana	
0.1800	2.5	2.91	99.39	Fine Sand	
0.1250	3.0	0.02	99.40	Title Salia	
0.0900	3.5	0.03	99.43	V.Fine Sand	
0.0630	4.0	0.32	99.75	v.riile Jailu	
0.0440	4.5	0.25	100.00	Coarse Silt	
0.0315	5.0	0.00	100.00	Coarse siit	
0.0220	5.5	0.00	100.00	Medium Silt	
0.0156	6.0	0.00	100.00	Wedium Sit	
0.0110	6.5	0.00	100.00	Fine silt	
0.0078	7.0	0.00	100.00	rille sitt	
0.0055	7.5	0.00	100.00	V.Fine Silt	
0.0039	8.0	0.00	100.00	v.riile siit	
0.0028	8.5	0.00	100.00		
0.0020	9.0	0.00	100.00	Coarse Clay	
0.0014	9.5	0.00	100.00		
0.0010	10.0	0.00	100.00	Medium Clay	
< 0.001	>10.0	0.00	100.00	Fine Clay	

<0.001	>10.0	0.00	100.00	Fine Clay
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		0.558	0.505	0.841
Median		0.546		0.874
Wentworth Classific	ation		Coarse Sand	
Sorting		Value	Infer	ence
Coefficient		0.78	Moderately Sorted	
Skewness		-0.15	Negative (Fine)	
Kurtosis		1.19	Leptokurtic	
Fines (%)		0.25%		
Sands (%)		96.95%		
Gravel (%)		2.80%		
BGS Mod. Folk Class	ification		Slightly Gr	avelly Sand

Mod. Folk for Habitat Classification

Sand and Muddy Sand

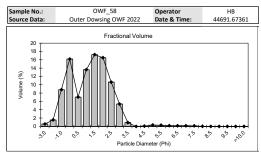


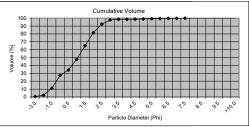

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.01	0.01	rebble
2.0000	-1.0	0.07	0.08	Granule
1.0000	0.0	1.43	1.51	V.Coarse Sand
0.7100	0.5	9.82	11.33	Coarse Sand
0.5000	1.0	27.70	39.03	Coarse Sanu
0.3550	1.5	33.23	72.26	Medium Sand
0.2500	2.0	21.69	93.95	Wedium Sand
0.1800	2.5	5.85	99.80	Fine Sand
0.1250	3.0	0.20	100.00	riile Janu
0.0900	3.5	0.00	100.00	V. Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jaliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediain Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille silt
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Grapilicai	111111	Sidev (IIIIII)	FIII	
Mean (MZ)	0.450	0.238	1.153	
Median	0.452		1.145	
Wentworth Classification	entworth Classification Medium Sa			
Sorting	Value	Inference		
Coefficient	0.59	Moderately Well Sorte		
Skewness	-0.01	Symmetrical		
Kurtosis	0.95	Mesokurtic		
Fines (%)	0.00%			
Sands (%)	99.92%			
Gravel (%)	0.08%			
BGS Mod. Folk Classification		Sar	nd	

Mod. Folk for Habitat Classification

Sand and Muddy Sand

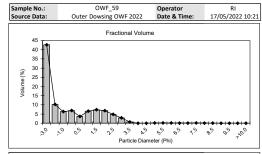


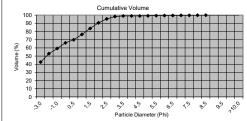


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	34.84	34.84	Pebble
4.0000	-2.0	9.71	44.55	rebble
2.0000	-1.0	5.69	50.24	Granule
1.0000	0.0	5.78	56.01	V.Coarse Sand
0.7100	0.5	1.35	57.36	Coarse Sand
0.5000	1.0	6.12	63.49	Coarse Sand
0.3550	1.5	9.20	72.69	Medium Sand
0.2500	2.0	9.92	82.61	ivieululii Jaliu
0.1800	2.5	7.41	90.02	Fine Sand
0.1250	3.0	4.62	94.64	rille Saliu
0.0900	3.5	1.35	95.99	V.Fine Sand
0.0630	4.0	0.14	96.13	v.riile Jaliu
0.0440	4.5	0.09	96.22	Coarse Silt
0.0315	5.0	0.34	96.56	Coarse siit
0.0220	5.5	0.44	97.00	Medium Silt
0.0156	6.0	0.39	97.39	Wediam Sit
0.0110	6.5	0.40	97.78	Fine silt
0.0078	7.0	0.43	98.21	rille sit
0.0055	7.5	0.45	98.66	V.Fine Silt
0.0039	8.0	0.40	99.06	v.rille Silt
0.0028	8.5	0.31	99.37	
0.0020	9.0	0.22	99.59	Coarse Clay
0.0014	9.5	0.16	99.75	
0.0010	10.0	0.11	99.86	Medium Clay
< 0.001	>10.0	0.15	100.00	Fine Clay

<0.001	>10.0	0.15	100.00	Fine Clay
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		1.981	8.725	-0.987
Median		2.084		-1.059
Wentworth Classif	Classification V. Coarse S		se Sand	
Sorting		Value	Inference	
Coefficient		2.64	Very Poorly Sorted	
Skewness		0.08	Symmetrical	
Kurtosis		0.59	Very Platykurtic	
Fines (%)		3.88%		
Sands (%)		45.89%		
Gravel (%)		50.24%		

BGS Mod. Folk Classification	Sandy Gravel	
Mod. Folk for Habitat Classification	Coarse Sediments	

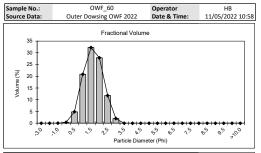


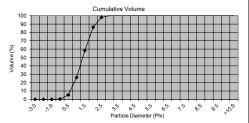


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.58	0.58	Pebble
4.0000	-2.0	1.56	2.14	rebble
2.0000	-1.0	8.84	10.98	Granule
1.0000	0.0	16.18	27.16	V.Coarse Sand
0.7100	0.5	7.06	34.22	Coarse Sand
0.5000	1.0	13.64	47.86	Coarse Sariu
0.3550	1.5	17.25	65.11	Medium Sand
0.2500	2.0	16.52	81.62	iviculum sanu
0.1800	2.5	10.65	92.28	Fine Sand
0.1250	3.0	5.39	97.67	riile Jaliu
0.0900	3.5	0.93	98.60	V.Fine Sand
0.0630	4.0	0.00	98.60	v.riile Saliu
0.0440	4.5	0.09	98.69	Coarse Silt
0.0315	5.0	0.33	99.02	Coarse siit
0.0220	5.5	0.30	99.32	Medium Silt
0.0156	6.0	0.18	99.50	Wediain Siit
0.0110	6.5	0.16	99.66	Fine silt
0.0078	7.0	0.16	99.82	rille silt
0.0055	7.5	0.14	99.97	V.Fine Silt
0.0039	8.0	0.04	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.576	1.128	0.796
Median	0.482		1.053
Wentworth Classification		Coarse Sand	
Sorting	Value	Inference	
Coefficient	1.39	Poorly Sorted	
Skewness	-0.26	Negative (Fine)	
Kurtosis	0.93	Mesokurtic	
Fines (%)	1.40%		
Sands (%)	87.63%		
Gravel (%)	10.98%		

BGS Mod. Folk Classification	Gravelly Sand
Mod. Folk for Habitat Classification	Coarse Sediments

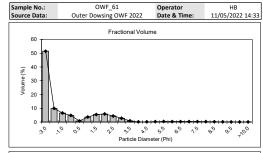


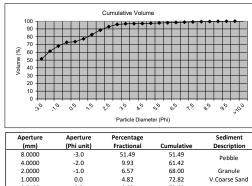

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	42.64	42.64	Pebble
4.0000	-2.0	10.24	52.88	rebble
2.0000	-1.0	6.29	59.17	Granule
1.0000	0.0	6.94	66.11	V.Coarse Sand
0.7100	0.5	3.71	69.83	Coarse Sand
0.5000	1.0	6.57	76.40	coarse saria
0.3550	1.5	7.35	83.75	Medium Sand
0.2500	2.0	6.85	90.60	iviculum Janu
0.1800	2.5	4.84	95.44	Fine Sand
0.1250	3.0	2.90	98.34	riile Saliu
0.0900	3.5	0.71	99.05	V.Fine Sand
0.0630	4.0	0.02	99.06	v.riile Jailu
0.0440	4.5	0.01	99.07	Coarse Silt
0.0315	5.0	0.15	99.22	Coarse siit
0.0220	5.5	0.19	99.41	Medium Silt
0.0156	6.0	0.12	99.53	Wedium Sit
0.0110	6.5	0.10	99.63	Fine silt
0.0078	7.0	0.11	99.74	rille sitt
0.0055	7.5	0.11	99.85	V.Fine Silt
0.0039	8.0	0.09	99.94	v.rille Silt
0.0028	8.5	0.06	100.00	
0.0020	9.0	0.01	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	3.211	9.771	-1.683
Median	5.124		-2.357
Wentworth Classification		Granule	
Sorting	Value	Infor	anco

Sorting	Value	Inference
Coefficient	2.48	Very Poorly Sorted
Skewness	0.37	Very Positive (Coarse)
Kurtosis	0.59	Very Platykurtic
Fines (%)	0.94%	
Sands (%)	39.89%	
Gravel (%)	59.17%	

BGS Mod. Folk Classification	Sandy Gravel	
Mod. Folk for Habitat Classification	Coarse Sediments	

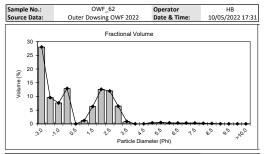


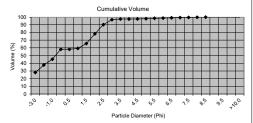


Aperture	Aperture	n		Sediment
		Percentage	C	
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.00	0.00	
2.0000	-1.0	0.04	0.04	Granule
1.0000	0.0	0.39	0.42	V.Coarse Sand
0.7100	0.5	4.86	5.28	Coarse Sand
0.5000	1.0	20.84	26.13	
0.3550	1.5	32.21	58.33	Medium Sand
0.2500	2.0	27.87	86.20	Wicaram Sana
0.1800	2.5	11.77	97.98	Fine Sand
0.1250	3.0	2.03	100.00	Tine Sand
0.0900	3.5	0.00	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jaliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rine siit
0.0055	7.5	0.00	100.00	V. Fine Silt
0.0039	8.0	0.00	100.00	V.Fine Silt
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Mean (MZ)	0.394	0.201	1.345
Median	0.393		1.349
Wentworth Classification		Medium Sand	
Sorting	Value	Infere	ence
Coefficient	0.59	Moderately Well Sorted	
Skewness	0.02	Symmetrical	
Kurtosis	0.95	Mesokurtic	
Fines (%)	0.00%		
Sands (%)	99.97%		

Gravel (%)	0.04%	
BGS Mod. Folk Classification		Sand
Mod. Folk for Habitat Classific	cation	Sand and Muddy Sand

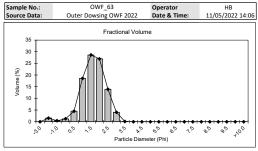


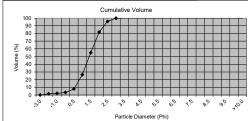

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	51.49	51.49	Pebble
4.0000	-2.0	9.93	61.42	i ebbic
2.0000	-1.0	6.57	68.00	Granule
1.0000	0.0	4.82	72.82	V.Coarse Sand
0.7100	0.5	0.82	73.63	Coarse Sand
0.5000	1.0	3.65	77.28	coarse sand
0.3550	1.5	5.43	82.71	Medium Sand
0.2500	2.0	5.85	88.56	Wicaram Sana
0.1800	2.5	4.41	92.98	Fine Sand
0.1250	3.0	2.79	95.76	Tille Salia
0.0900	3.5	0.85	96.62	V.Fine Sand
0.0630	4.0	0.16	96.78	v.rine sand
0.0440	4.5	0.16	96.94	Coarse Silt
0.0315	5.0	0.30	97.25	Codi se siit
0.0220	5.5	0.37	97.62	Medium Silt
0.0156	6.0	0.34	97.97	Wicdiaini Siic
0.0110	6.5	0.35	98.32	Fine silt
0.0078	7.0	0.36	98.68	Tille sile
0.0055	7.5	0.35	99.03	V.Fine Silt
0.0039	8.0	0.30	99.33	v.i iiic Siic
0.0028	8.5	0.22	99.55	
0.0020	9.0	0.15	99.70	Coarse Clay
0.0014	9.5	0.11	99.81	
0.0010	10.0	0.07	99.88	Medium Clay
< 0.001	>10.0	0.12	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi	
Mean (MZ)	3.993	11.628	-1.997	
Median	8.601		-3.105	
Wentworth Classification		Granule		

Sorting	Value	Inference
Coefficient	2.67	Very Poorly Sorted
Skewness	0.56	Very Positive (Coarse)
Kurtosis	0.64	Very Platykurtic
Fines (%)	3.22%	
Sands (%)	28.79%	
Gravel (%)	68.00%	

BGS Mod. Folk Classification	Muddy Sandy Gravel
Mod. Folk for Habitat Classification	Mixed Sediments

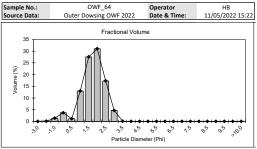

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	28.03	28.03	Pebble
4.0000	-2.0	9.59	37.61	Pennie
2.0000	-1.0	7.63	45.24	Granule
1.0000	0.0	12.90	58.15	V.Coarse Sand
0.7100	0.5	0.00	58.15	Coarse Sand
0.5000	1.0	1.18	59.33	Coarse Sanu
0.3550	1.5	6.32	65.65	Medium Sand
0.2500	2.0	12.61	78.26	iviculum sanu
0.1800	2.5	11.99	90.25	Fine Sand
0.1250	3.0	6.46	96.71	riile Jaliu
0.0900	3.5	0.87	97.58	V.Fine Sand
0.0630	4.0	0.00	97.58	v.riile Saliu
0.0440	4.5	0.01	97.59	Coarse Silt
0.0315	5.0	0.37	97.96	Coarse Silt
0.0220	5.5	0.49	98.45	Medium Silt
0.0156	6.0	0.35	98.80	Wedium Sit
0.0110	6.5	0.29	99.09	Fine silt
0.0078	7.0	0.29	99.39	rille sit
0.0055	7.5	0.27	99.66	V.Fine Silt
0.0039	8.0	0.20	99.86	v.riile Siit
0.0028	8.5	0.12	99.98	
0.0020	9.0	0.02	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

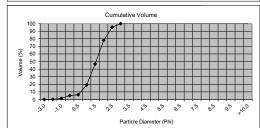

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	1.663	7.391	-0.734
Median	1.631		-0.706
Wentworth Classification		V. Coarse Sand	
Sorting	Value	Infer	ence
Coefficient	2.53	Very Poor	ly Sorted
Skewness	0.00	Symme	etrical
Kurtosis	0.56	Very Platykurtic	
Fines (%)	2.42%		
Sands (%)	52.34%		
Gravel (%)	4E 249/		

Sandy Gravel Coarse Sediments

BGS Mod. Folk Classification

Mod. Folk for Habitat Classification

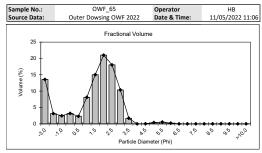


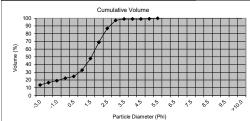


Aperture	Aperture	Percentage		Sediment	
(mm)	(Phi unit)	Fractional	Cumulative	Description	
8.0000	-3.0	0.00	0.00	Pebble	
4.0000	-2.0	1.58	1.58	rebble	
2.0000	-1.0	0.46	2.04	Granule	
1.0000	0.0	1.28	3.32	V.Coarse Sand	
0.7100	0.5	4.53	7.85	Coarse Sand	
0.5000	1.0	18.57	26.42	Coarse Sana	
0.3550	1.5	28.61	55.03	Medium Sand	
0.2500	2.0	26.93	81.96	iviculum sanu	
0.1800	2.5	13.90	95.86	Fine Sand	
0.1250	3.0	4.06	99.92	riile Jaliu	
0.0900	3.5	0.08	100.00	V.Fine Sand	
0.0630	4.0	0.00	100.00	v.riile Jailu	
0.0440	4.5	0.00	100.00	Coarse Silt	
0.0315	5.0	0.00	100.00	Coarse siit	
0.0220	5.5	0.00	100.00	Medium Silt	
0.0156	6.0	0.00	100.00	Wediam Sit	
0.0110	6.5	0.00	100.00	Fine silt	
0.0078	7.0	0.00	100.00	riile siit	
0.0055	7.5	0.00	100.00	V.Fine Silt	
0.0039	8.0	0.00	100.00	V.Fine Silt	
0.0028	8.5	0.00	100.00		
0.0020	9.0	0.00	100.00	Coarse Clay	
0.0014	9.5	0.00	100.00		
0.0010	10.0	0.00	100.00	Medium Clay	
< 0.001	>10.0	0.00	100.00	Fine Clay	

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.383	0.248	1.383
Median	0.380		1.394
Wentworth Classification		Medium Sand	
Sorting	Value	Infere	ence
Coefficient	0.69	Moderately \	Well Sorted
Skewness	-0.05	Symme	trical
Kurtosis	1.04	Mesok	urtic
Fines (%)	0.00%		
Sands (%)	97.96%		

BGS Mod. Folk Classification	Slightly Gravelly Sand
Mod. Folk for Habitat Classification	Sand and Muddy Sand

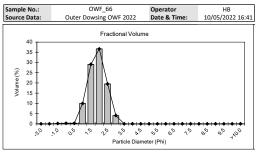


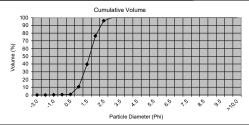

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.11	0.11	Pennie
2.0000	-1.0	1.38	1.48	Granule
1.0000	0.0	3.70	5.19	V.Coarse Sand
0.7100	0.5	1.14	6.32	Coarse Sand
0.5000	1.0	12.99	19.31	Coarse Sanu
0.3550	1.5	27.57	46.88	Medium Sand
0.2500	2.0	31.07	77.95	ivieuluiii Saliu
0.1800	2.5	17.30	95.25	Fine Sand
0.1250	3.0	4.69	99.94	riile Jaliu
0.0900	3.5	0.06	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Saliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse Silt
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wedium Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille sit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

<0.001	>10.0	0.00	100.00	Fine Clay
Graphical Mean (MZ)		mm 0.350	StDev (mm) 0.283	Phi 1,513
Median		0.344		1.538
Wentworth Classificat	ion		Medium Sand	
Sorting		Value	Infe	rence
Coefficient		0.71	Moderately	Well Sorted
Skewness		-0.16	Negative (Fine)	
Kurtosis		1.22	Leptokurtic	
Fines (%)		0.00%		
Sands (%)		98.52%		
Gravel (%)		1.48%		
BGS Mod. Folk Classifi	cation		Slightly Gr	avelly Sand

Mod. Folk for Habitat Classification

Sand and Muddy Sand

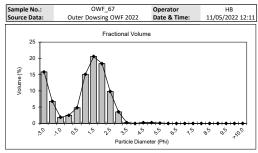


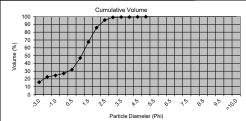


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	13.56	13.56	Pebble
4.0000	-2.0	3.12	16.67	rebble
2.0000	-1.0	2.47	19.15	Granule
1.0000	0.0	3.18	22.33	V.Coarse Sand
0.7100	0.5	2.33	24.66	Coarse Sand
0.5000	1.0	8.12	32.77	coarse sand
0.3550	1.5	15.00	47.77	Medium Sand
0.2500	2.0	21.00	68.77	ivieulum sanu
0.1800	2.5	18.02	86.79	Fine Sand
0.1250	3.0	10.35	97.14	riile Jaliu
0.0900	3.5	1.70	98.85	V.Fine Sand
0.0630	4.0	0.00	98.85	v.riile Jailu
0.0440	4.5	0.01	98.86	Coarse Silt
0.0315	5.0	0.39	99.25	Coarse siit
0.0220	5.5	0.52	99.77	Medium Silt
0.0156	6.0	0.23	100.00	ivieululii Siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille sitt
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.rille Silt
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.683	6.896	0.549
Median	0.344		1.540
Wentworth Classification		Coarse Sand	
Sorting	Value	Inference	
Coefficient	2.25	Very Poor	ly Sorted
Skewness	-0.63	Very Negative(fine)	
Kurtosis	1.79	Very Lep	tokurtic
Fines (%)	1.16%		
Sands (%)	79.70%		
Gravel (%)	19.15%		

BGS Mod. Folk Classification	Gravelly Sand
Mod Folk for Habitat Classification	Coarse Sediments

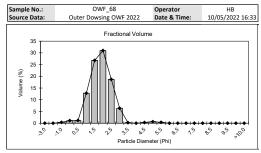


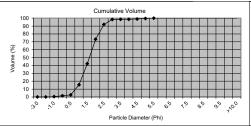


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.01	0.01	rebble
2.0000	-1.0	0.14	0.14	Granule
1.0000	0.0	0.27	0.41	V.Coarse Sand
0.7100	0.5	0.27	0.68	Coarse Sand
0.5000	1.0	9.98	10.66	Coarse Sariu
0.3550	1.5	29.11	39.77	Medium Sand
0.2500	2.0	36.66	76.43	ivieululii Saliu
0.1800	2.5	19.50	95.94	Fine Sand
0.1250	3.0	4.06	100.00	riile Jailu
0.0900	3.5	0.00	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jaliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wedium Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille silt
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

<0.001	>10.0	0.00	100.00	Fine Clay
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		0.325	0.157	1.621
Median		0.326		1.618
Wentworth Class	ification		Mediu	m Sand
Sorting		Value	Infer	ence
Coefficient		0.54	Moderately	Well Sorted
Skewness		-0.02	Symmetrical	
Kurtosis		0.95	Mesokurtic	
Fines (%)		0.00%		
Sands (%)		99.86%		
Gravel (%)		0.14%		

BGS Mod. Folk Classification	Sand
Mod. Folk for Habitat Classification	Sand and Muddy Sand

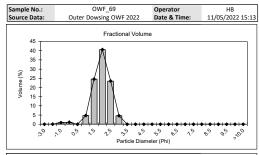


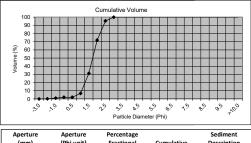


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	15.81	15.81	Pebble
4.0000	-2.0	6.81	22.62	rebble
2.0000	-1.0	1.87	24.49	Granule
1.0000	0.0	2.50	26.99	V.Coarse Sand
0.7100	0.5	4.80	31.79	Coarse Sand
0.5000	1.0	15.08	46.88	Coarse Sana
0.3550	1.5	20.57	67.45	Medium Sand
0.2500	2.0	18.38	85.82	ivieululii 3aliu
0.1800	2.5	9.82	95.64	Fine Sand
0.1250	3.0	3.55	99.19	riile Janu
0.0900	3.5	0.24	99.43	V.Fine Sand
0.0630	4.0	0.00	99.43	v.riile Jailu
0.0440	4.5	0.24	99.68	Coarse Silt
0.0315	5.0	0.24	99.91	Coarse siit
0.0220	5.5	0.09	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rine sit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.rille Silt
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.994	5.600	0.009
Median	0.478		1.065
Wentworth Classification		Coarse Sand	
Sorting	Value	Inference	
Coefficient	2.18	Very Poorly Sorted	
Skewness	-0.60	Very Negative(fine)	
Kurtosis	1.02	Mesokurtic	
Fines (%)	0.57%		
Sands (%)	74.94%		
Gravel (%)	24.49%		

BGS Mod. Folk Classification	Gravelly Sand
Mod. Folk for Habitat Classification	Coarse Sediments

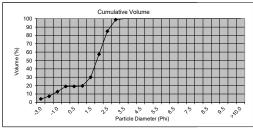



Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.01	0.01	rebble
2.0000	-1.0	0.37	0.38	Granule
1.0000	0.0	1.12	1.50	V.Coarse Sand
0.7100	0.5	1.19	2.68	Coarse Sand
0.5000	1.0	12.79	15.48	Coarse Sanu
0.3550	1.5	26.80	42.28	Medium Sand
0.2500	2.0	31.01	73.28	Wedium Sand
0.1800	2.5	18.71	91.99	Fine Sand
0.1250	3.0	6.39	98.39	rille Saliu
0.0900	3.5	0.24	98.63	V.Fine Sand
0.0630	4.0	0.00	98.63	v.riile Jaliu
0.0440	4.5	0.33	98.96	Coarse Silt
0.0315	5.0	0.64	99.60	Coarse siit
0.0220	5.5	0.39	99.99	Medium Silt
0.0156	6.0	0.01	100.00	Wediain Siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.rine siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.325	0.189	1.622
Median	0.329		1.605
Wentworth Classification		Mediun	n Sand

Sorting	Value	Inference
Coefficient	0.63	Moderately Well Sorted
Skewness	0.04	Symmetrical
Kurtosis	0.99	Mesokurtic
Fines (%)	1.38%	
Sands (%)	98.24%	
Gravel (%)	0.38%	

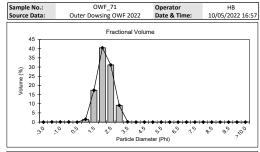
BGS Mod. Folk Classification	Sand
Mod. Folk for Habitat Classification	Sand and Muddy Sand

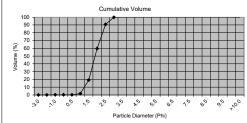

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.01	0.01	Pebble
4.0000	-2.0	0.04	0.05	rebble
2.0000	-1.0	0.87	0.92	Granule
1.0000	0.0	1.10	2.02	V.Coarse Sand
0.7100	0.5	0.00	2.02	Coarse Sand
0.5000	1.0	4.75	6.77	coarse saria
0.3550	1.5	24.55	31.32	Medium Sand
0.2500	2.0	40.60	71.92	iviculum Janu
0.1800	2.5	23.45	95.38	Fine Sand
0.1250	3.0	4.62	99.99	riile Saliu
0.0900	3.5	0.01	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jaliu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse Silt
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	iviculum siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rine siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.rine siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

<0.001	>10.0	0.00	100.00	Fine Clay
Graphical		mm	StDev (mm)	Phi
Mean (MZ)		0.308	0.143	1.699
Median		0.307		1.705
Wentworth Classifica	tion		Medium Sand	
Sorting		Value	Inference	
Coefficient		0.52	Moderately	Well Sorted
Skewness		-0.06	Symmetrical	
Kurtosis		0.97	Mesokurtic	
Fines (%)		0.00%		
Sands (%)		99.08%		
Gravel (%)		0.92%		
BGS Mod. Folk Classif	ication		Sa	nd

Mod. Folk for Habitat Classification

Sand and Muddy Sand

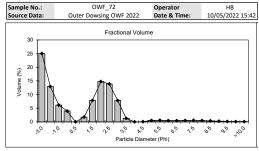

Sample No.:	OWF_70	Operator	HB
Source Data:	Outer Dowsing OWF 2022	Date & Time:	10/05/2022 17:09
	Fractional Volun	ne	
30			
25 -	/ \		
€ 20	/ /		
%) 15 - 15 - 10 - 10 - 10 - 10 - 10 - 10 -	/		
≥ 10	∱ \		
5	mt / \		
اللبال ،	╎ ┖╎┞╏╻ ┍ ╅┤╏╎╏╎╏╎╏		• • • • • • • • •
20 ;	10 00 10 50 30 10	00 00 10	8,5 8,5 100
	Particle Diam	neter (Phi)	7

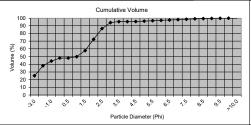


A		n		Sediment
Aperture	Aperture	Percentage		
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	4.10	4.10	Pebble
4.0000	-2.0	3.15	7.26	
2.0000	-1.0	5.56	12.82	Granule
1.0000	0.0	6.23	19.05	V.Coarse Sand
0.7100	0.5	0.00	19.05	Coarse Sand
0.5000	1.0	0.52	19.56	course suria
0.3550	1.5	10.51	30.07	Medium Sand
0.2500	2.0	27.41	57.48	Wicalalli Salia
0.1800	2.5	27.53	85.01	Fine Sand
0.1250	3.0	13.74	98.75	Tine Sand
0.0900	3.5	1.26	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jailu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Siit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille sitt
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.423	2.256	1.241
Median	0.279		1.843
Wentworth Classification		Medium Sand	
Sorting	Value	Inference	
Coefficient	1.61	Poorly Sorted	
Skewness	-0.62	Very Negative(fine)	
Kurtosis	2.19	Very Leptokurtic	
Fines (%)	0.00%		
Sands (%)	87.19%		
Gravel (%)	12.82%		

Gravel (%)	12.82%	
BGS Mod. Folk Classification		Gravelly Sand
Mod. Folk for Habitat Classifi	cation	Coarse Sediments

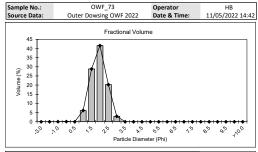


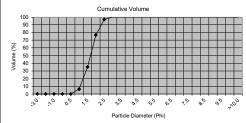


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.09	0.09	rebble
2.0000	-1.0	0.07	0.16	Granule
1.0000	0.0	0.06	0.22	V.Coarse Sand
0.7100	0.5	0.00	0.22	Coarse Sand
0.5000	1.0	1.52	1.74	Coarse Sana
0.3550	1.5	17.37	19.11	Medium Sand
0.2500	2.0	40.47	59.58	ivieululii 3aliu
0.1800	2.5	31.13	90.71	Fine Sand
0.1250	3.0	9.14	99.84	riile Janu
0.0900	3.5	0.16	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jailu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rine siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clav

< 0.001	>10.0	0.00	100.00	Fine Clay	
Graphical		mm	StDev (mm)	Phi	
Mean (MZ)		0.273	0.117	1.871	
Median		0.275		1.863	
Wentworth Classi	fication		Medium Sand		
Sorting		Value	Infe	rence	
Coefficient		0.49	Well 9	Sorted	
Skewness		0.03	Symmetrical		
Kurtosis		1.01	Mesokurtic		
Fines (%)		0.00%			
Sands (%)		99.84%			
Gravel (%)		0.16%			

BGS Mod. Folk Classification	Sand
Mod Folk for Habitat Classification	Sand and Muddy Sand

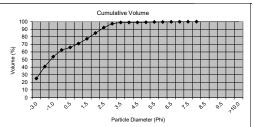



Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	25.03	25.03	Pebble
4.0000	-2.0	12.97	38.00	rebble
2.0000	-1.0	6.14	44.13	Granule
1.0000	0.0	3.96	48.09	V.Coarse Sand
0.7100	0.5	0.00	48.09	Coarse Sand
0.5000	1.0	1.78	49.87	Coarse Sanu
0.3550	1.5	7.84	57.71	Medium Sand
0.2500	2.0	14.77	72.48	Wedium Sand
0.1800	2.5	13.89	86.36	Fine Sand
0.1250	3.0	7.83	94.19	riile Janu
0.0900	3.5	1.27	95.46	V. Fine Sand
0.0630	4.0	0.01	95.47	v.riile Jaliu
0.0440	4.5	0.07	95.54	Coarse Silt
0.0315	5.0	0.49	96.03	Coarse siit
0.0220	5.5	0.60	96.63	Medium Silt
0.0156	6.0	0.44	97.07	Wediain Sit
0.0110	6.5	0.44	97.51	Fine silt
0.0078	7.0	0.51	98.02	rille sit
0.0055	7.5	0.55	98.57	V.Fine Silt
0.0039	8.0	0.48	99.06	v.riile siit
0.0028	8.5	0.35	99.41	
0.0020	9.0	0.24	99.65	Coarse Clay
0.0014	9.5	0.15	99.81	
0.0010	10.0	0.10	99.90	Medium Clay
<0.001	>10.0	0.10	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	1.010	6.106	-0.014
Median	0.498		1.007
Wentworth Classification		V. Coarse Sand	
Sorting	Value	Infere	ence
Coefficient	2.53	Very Poor	ly Sorted
Skewness	-0.44	Very Negative(fine)	
Kurtosis	0.57	Very Platykurtic	
Fines (%)	4.53%		
Sands (%)	51.34%		
Gravel (%)	44.13%		
BGS Mod. Folk Classification		Sandy (Gravel

Coarse Sediments

Mod. Folk for Habitat Classification


Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.00	0.00	Pebble
4.0000	-2.0	0.01	0.01	rebble
2.0000	-1.0	0.04	0.05	Granule
1.0000	0.0	0.06	0.11	V.Coarse Sand
0.7100	0.5	0.00	0.11	Coarse Sand
0.5000	1.0	6.18	6.29	Coarse Sand
0.3550	1.5	28.84	35.13	Medium Sand
0.2500	2.0	41.64	76.77	Wicalalli Salla
0.1800	2.5	20.27	97.04	Fine Sand
0.1250	3.0	2.96	100.00	Title Salia
0.0900	3.5	0.00	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.i iiic Saila
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse siit
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	Time site
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.i ille siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

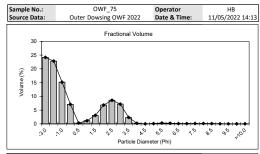
Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.318	0.133	1.652
Median	0.318		1.655
Wentworth Classification		Medium Sand	
Sorting	Value	Infere	ence
Coefficient	0.48	Well Sorted	
Skewness	-0.01	Symmetrical	
Kurtosis	0.94	Mesokurtic	
Fines (%)	0.00%		
Sands (%)	99.96%		
Gravel (%)	0.05%		
BGS Mod. Folk Classification		Sar	ıd

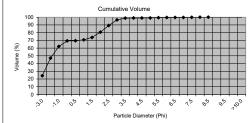
Mod. Folk for Habitat Classification

Sand and Muddy Sand

Sample No.:	OWF_74	Operator	НВ
Source Data:	Outer Dowsing OWF 2022	Date & Time:	11/05/2022 11:54
30	Fractional Volu	me	
25 20 20 15 15 10 5	Particle Dian		e ⁵ e ⁵ 30

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	25.01	25.01	Pebble
4.0000	-2.0	15.77	40.79	Pennie
2.0000	-1.0	12.94	53.72	Granule
1.0000	0.0	8.90	62.62	V.Coarse Sand
0.7100	0.5	3.38	66.00	Coarse Sand
0.5000	1.0	5.11	71.12	Coarse Sariu
0.3550	1.5	6.23	77.35	Medium Sand
0.2500	2.0	7.64	84.99	iviculum sanu
0.1800	2.5	7.10	92.09	Fine Sand
0.1250	3.0	5.22	97.32	riile Jaliu
0.0900	3.5	1.61	98.92	V.Fine Sand
0.0630	4.0	0.08	99.00	v.riile Jailu
0.0440	4.5	0.00	99.00	Coarse Silt
0.0315	5.0	0.17	99.18	Coarse Sitt
0.0220	5.5	0.28	99.46	Medium Silt
0.0156	6.0	0.17	99.63	Wediain Siit
0.0110	6.5	0.10	99.73	Fine silt
0.0078	7.0	0.09	99.82	rille siit
0.0055	7.5	0.10	99.91	V.Fine Silt
0.0039	8.0	0.08	99.99	v.riile siit
0.0028	8.5	0.01	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay


Graphical	mm	StDev (mm)	Phi
Mean (MZ)	1,912	5.524	-0.935
Median	2.576		-1.365
Wentworth Classification		V. Coarse Sand	
Sorting	Value	Inference	
Coefficient	2.30	Very Poorly Sorted	
Skewness	0.26	Positive(Coarse)	
Kurtosis	0.62	Very Platykurtic	
Fines (%)	1.00%		
Sands (%)	45.28%		
Gravel (%)	53.72%		

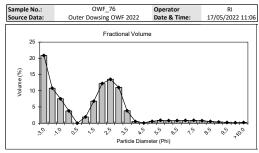

Sandy Gravel

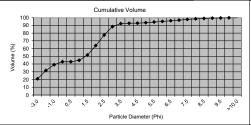
Coarse Sediments

BGS Mod. Folk Classification

Mod. Folk for Habitat Classification

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	24.20	24.20	Pebble
4.0000	-2.0	22.82	47.01	1 CODIC
2.0000	-1.0	15.15	62.17	Granule
1.0000	0.0	7.11	69.28	V.Coarse Sand
0.7100	0.5	0.28	69.56	Coarse Sand
0.5000	1.0	1.12	70.68	coarse sand
0.3550	1.5	3.07	73.75	Medium Sand
0.2500	2.0	6.84	80.59	Wicalalli Salla
0.1800	2.5	8.60	89.19	Fine Sand
0.1250	3.0	7.19	96.38	riile Saliu
0.0900	3.5	2.33	98.71	V.Fine Sand
0.0630	4.0	0.19	98.90	v.riile Jaliu
0.0440	4.5	0.00	98.90	Coarse Silt
0.0315	5.0	0.10	99.00	Coarse siit
0.0220	5.5	0.29	99.29	Medium Silt
0.0156	6.0	0.19	99.48	Wiculain Siic
0.0110	6.5	0.09	99.57	Fine silt
0.0078	7.0	0.09	99.66	Tille sile
0.0055	7.5	0.12	99.78	V.Fine Silt
0.0039	8.0	0.12	99.90	v.riile Siit
0.0028	8.5	0.09	99.99	
0.0020	9.0	0.02	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

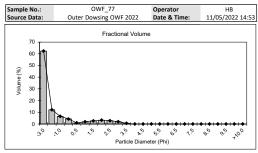

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	1.963	4.896	-0.973
Median	3.606		-1.850
Wentworth Classification		V. Coarse Sand	
Sorting	Value	Inference	
Coefficient	2.32	Very Poorly Sorted	
Skewness	0.48	Very Positive (Coarse)	
Kurtosis	0.58	Very Platykurtic	
Fines (%)	1.10%		
Sands (%)	36.73%		
Gravel (%)	62 179/		

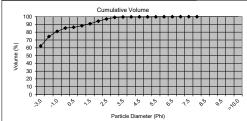

Sandy Gravel

Coarse Sediments

BGS Mod. Folk Classification

Mod. Folk for Habitat Classification

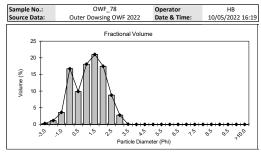


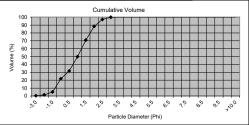

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	20.87	20.87	Pebble
4.0000	-2.0	10.80	31.67	rebble
2.0000	-1.0	7.53	39.20	Granule
1.0000	0.0	3.80	42.99	V.Coarse Sand
0.7100	0.5	0.00	42.99	Coarse Sand
0.5000	1.0	1.93	44.92	Coarse Sand
0.3550	1.5	6.78	51.70	Medium Sand
0.2500	2.0	12.22	63.93	Wicaram Sana
0.1800	2.5	13.52	77.45	Fine Sand
0.1250	3.0	11.01	88.46	Title Salia
0.0900	3.5	3.82	92.27	V.Fine Sand
0.0630	4.0	0.53	92.80	v.rine sand
0.0440	4.5	0.09	92.89	Coarse Silt
0.0315	5.0	0.58	93.48	Coarse Silt
0.0220	5.5	0.88	94.36	Medium Silt
0.0156	6.0	0.80	95.15	Wediain 3iit
0.0110	6.5	0.80	95.95	Fine silt
0.0078	7.0	0.85	96.80	rine siit
0.0055	7.5	0.89	97.69	V.Fine Silt
0.0039	8.0	0.76	98.45	v.riile siit
0.0028	8.5	0.55	99.00	
0.0020	9.0	0.37	99.37	Coarse Clay
0.0014	9.5	0.24	99.61	
0.0010	10.0	0.15	99.76	Medium Clay
<0.001	>10.0	0.24	100.00	Fine Clay

0.0010	10.0	0.13	33.70	ivieululli Clay	
< 0.001	>10.0	0.24	100.00	Fine Clay	
Graphical		mm	StDev (mm)	Phi	
Mean (MZ)		0.827	5.807	0.274	
Median		0.391		1.353	
Ventworth Classif	ication		Coarse Sand		
Sorting		Value	Inference		
Coefficient		2.98	Very Poorly Sorted		
Skewness		-0.30	Negative (Fine)		
Kurtosis		0.78	Platykurtic		
Fines (%)		7.20%			
Sands (%)		53.61%			
Gravel (%)		39.20%			
GS Mod. Folk Cla	ssification		Muddy S	andy Gravel	

Mod. Folk for Habitat Classification

Mixed Sediments

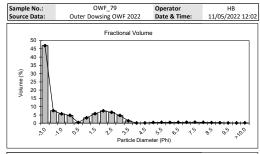


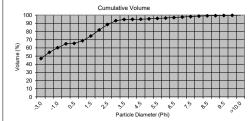

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	62.29	62.29	Pebble
4.0000	-2.0	12.20	74.49	rebble
2.0000	-1.0	6.59	81.08	Granule
1.0000	0.0	4.30	85.38	V.Coarse Sand
0.7100	0.5	0.97	86.35	Coarse Sand
0.5000	1.0	1.92	88.27	coarse saria
0.3550	1.5	2.69	90.95	Medium Sand
0.2500	2.0	3.27	94.22	Wicalalli Salia
0.1800	2.5	2.83	97.05	Fine Sand
0.1250	3.0	1.97	99.02	Tille Salia
0.0900	3.5	0.60	99.62	V.Fine Sand
0.0630	4.0	0.03	99.66	
0.0440	4.5	0.00	99.66	Coarse Silt
0.0315	5.0	0.07	99.73	Coarse Sin
0.0220	5.5	0.10	99.82	Medium Silt
0.0156	6.0	0.05	99.88	Wiculain Sile
0.0110	6.5	0.03	99.91	Fine silt
0.0078	7.0	0.03	99.94	Tille site
0.0055	7.5	0.03	99.97	V.Fine Silt
0.0039	8.0	0.03	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	7.168	11.372	-2.842
Median	12.029		-3.588
Wentworth Classification		Pebble	
Sorting	Value	Inference	

Sorting	Value	Inference
Coefficient	2.07	Very Poorly Sorted
Skewness	0.60	Very Positive (Coarse)
Kurtosis	1.17	Leptokurtic
Fines (%)	0.35%	
Sands (%)	18.58%	
Gravel (%)	81.08%	

BGS Mod. Folk Classification	Gravel
Mod. Folk for Habitat Classification	Coarse Sediments

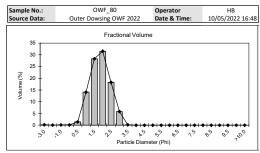


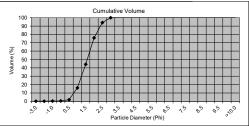

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.29	0.29	Pebble
4.0000	-2.0	1.17	1.46	rebble
2.0000	-1.0	3.63	5.10	Granule
1.0000	0.0	16.73	21.83	V.Coarse Sand
0.7100	0.5	9.88	31.71	Coarse Sand
0.5000	1.0	18.10	49.81	Coarse Sand
0.3550	1.5	21.04	70.85	Medium Sand
0.2500	2.0	17.47	88.33	Wicaram Sana
0.1800	2.5	8.79	97.12	Fine Sand
0.1250	3.0	2.79	99.91	Tille Salia
0.0900	3.5	0.09	100.00	V.Fine Sand
0.0630	4.0	0.00	100.00	v.i ilic Salia
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	coarse sin
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wicalam Site
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	Title site
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.rine site
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
< 0.001	>10.0	0.00	100.00	Fine Clay

< 0.001	>10.0	0.00	100.00	Fine Clay	
Graphical		mm	StDev (mm)	Phi	
Mean (MZ)		0.570	0.704	0.810	
Median		0.499		1.004	
Wentworth Classi	fication		Coarse Sand		
Sorting		Value	Inference		
Coefficient		1.08	Poorly Sorted		
Skewness		-0.23	Negative (Fine)		
Kurtosis		0.95	Mesokurtic		
Fines (%)		0.00%			
Sands (%)		94.90%			
Gravel (%)		5.10%			
BGS Mod. Folk Cla	ssification		Gravel	ly Sand	

Mod. Folk for Habitat Classification

Coarse Sediments




Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	46.93	46.93	Pebble
4.0000	-2.0	7.59	54.52	reppie
2.0000	-1.0	5.66	60.17	Granule
1.0000	0.0	4.80	64.97	V.Coarse Sand
0.7100	0.5	0.45	65.42	Coarse Sand
0.5000	1.0	3.27	68.70	Coarse Sana
0.3550	1.5	5.76	74.45	Medium Sand
0.2500	2.0	7.48	81.93	iviculum sana
0.1800	2.5	6.65	88.58	Fine Sand
0.1250	3.0	4.67	93.25	Title Salia
0.0900	3.5	1.45	94.70	V.Fine Sand
0.0630	4.0	0.16	94.87	v.i inc sand
0.0440	4.5	0.17	95.04	Coarse Silt
0.0315	5.0	0.43	95.46	coarse sire
0.0220	5.5	0.54	96.00	Medium Silt
0.0156	6.0	0.50	96.50	Wediam Sit
0.0110	6.5	0.54	97.04	Fine silt
0.0078	7.0	0.59	97.64	rine sit
0.0055	7.5	0.61	98.25	V.Fine Silt
0.0039	8.0	0.53	98.78	v.riile siit
0.0028	8.5	0.40	99.18	
0.0020	9.0	0.28	99.45	Coarse Clay
0.0014	9.5	0.19	99.64	
0.0010	10.0	0.13	99.77	Medium Clay
< 0.001	>10.0	0.24	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	3.283	13.059	-1.715
Median	6.381		-2.674
Wentworth Classification		Gran	nule
Sorting	Value	Infer	ence

Sorting	Value	Inference
Coefficient	3.09	Very Poorly Sorted
Skewness	0.47	Very Positive (Coarse)
Kurtosis	0.65	Very Platykurtic
Fines (%)	5.14%	
Sands (%)	34.69%	
Gravel (%)	60.17%	

BGS Mod. Folk Classification	Muddy Sandy Gravel
Mod. Folk for Habitat Classification	Mixed Sediments

Aperture	Aperture	Percentage		Sediment
(mm)	(Phi unit)	Fractional	Cumulative	Description
8.0000	-3.0	0.21	0.21	Pebble
4.0000	-2.0	0.02	0.23	rebbie
2.0000	-1.0	0.14	0.37	Granule
1.0000	0.0	0.13	0.50	V.Coarse Sand
0.7100	0.5	1.43	1.93	Coarse Sand
0.5000	1.0	14.09	16.02	Coarse Sana
0.3550	1.5	28.25	44.27	Medium Sand
0.2500	2.0	31.50	75.78	ivieululii Saliu
0.1800	2.5	18.26	94.04	Fine Sand
0.1250	3.0	5.81	99.85	rille Saliu
0.0900	3.5	0.15	100.00	V. Fine Sand
0.0630	4.0	0.00	100.00	v.riile Jailu
0.0440	4.5	0.00	100.00	Coarse Silt
0.0315	5.0	0.00	100.00	Coarse Silt
0.0220	5.5	0.00	100.00	Medium Silt
0.0156	6.0	0.00	100.00	Wediam Sit
0.0110	6.5	0.00	100.00	Fine silt
0.0078	7.0	0.00	100.00	rille siit
0.0055	7.5	0.00	100.00	V.Fine Silt
0.0039	8.0	0.00	100.00	v.riile siit
0.0028	8.5	0.00	100.00	
0.0020	9.0	0.00	100.00	Coarse Clay
0.0014	9.5	0.00	100.00	
0.0010	10.0	0.00	100.00	Medium Clay
<0.001	>10.0	0.00	100.00	Fine Clay

Graphical	mm	StDev (mm)	Phi
Mean (MZ)	0.332	0.183	1.589
Median	0.336		1.574
Wentworth Classification		Mediun	n Sand
Sorting	Value	Infere	ence
Coefficient	0.60	Moderately \	Well Sorted
Skewness	0.02	Symme	etrical
Kurtosis	0.95	Mesok	urtic
Fines (%)	0.00%		
Sands (%)	99.63%		

Gravel (%)	0.37%	
BGS Mod. Folk Classification		Sand
Mod. Folk for Habitat Classifica	tion	Sand and Muddy Sand

APPENDIX F – SAMPLE LOG SHEETS

					Geodetics: WGS84 UTM31N 3°E										
Cast#	Station	Sampler Used	Depth (m)	Time (UTC; hh:mm)	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Sediment Colour	Description Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
1	OWF_80	HG	22	15:33	03/04/2022	80%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	2.5Y 4/4	Coarse sand with silty component	-	402 906.56	5 933 512.67
2	OWF_80	HG	22	16:01	03/04/2022	90%	F1	1L Bucket	-	201.2mV @7.5°C	2.5Y 4/4	Coarse sand with silty component	Polychaetes, amphipods	402 906.75	5 933 515.50
3	OWF_77	HG	18	17:15	03/04/2022	30%	N/S	-	Deck slate says 15:15 instead of 17:15	-	-	Gravelly Sand w/ pebbles and cobbles	-	400 472.31	5 933 645.99
4	OWF_77	HG	18	17:27	03/04/2022	20%	N/S	-	-	-	-	Gravelly Sand w/ pebbles and cobbles	-	400 472.28	5 933 646.08
5	OWF_77	HG	19	17:38	03/04/2022	50%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	2.5Y 4/4	Gravelly Sand w/ pebbles and cobbles	-	400 472.14	5 933 647.41
6	OWF_77	HG	18	17:55	03/04/2022	60%	F1	1L Bucket	Redox not taken as sediment is too pebbly and could damage probe	-	2.5Y 4/4	Gravelly Sand w/ pebbles and cobbles	Crab, whelk	400 472.89	5 933 647.05
7	OWF_73	HG	17	19:35	03/04/2022	90%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3	Coarse sand with silty component	Sandeel - picture taken	398 488.40	5 931 847.23
8	OWF_73	HG	18	19:57	03/04/2022	80%	F1	1L Bucket	-	158.2mV @7.4	10YR 4/3	Coarse sand with silty component	Amphipods, polychaetes, worms	398 489.42	5 931 847.09
9	OWF_73	SG	18	20:37	03/04/2022	60%	Contaminants	2x 1L glass jars	-	-	10YR 4/3	Coarse sand with silty component	-	398 488.64	5 931 846.02
10	OWF_67	HG	25	21:23	03/04/2022	70%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3	Coarse sand with small pebbles	Sandeel	396 319.72	5 931 265.14
11	OWF_67	HG	25	21:36	03/04/2022	60%	F1	3L Bucket	-	188.mV @7.3°C	10YR 4/3	Coarse sand with small pebbles	Polychaetes, brittle star	396 318.68	5 931 265.40
12	OWF_63	HG	17	22:10	03/04/2022	80%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3	Coarse sand with silt	-	394 359.53	5 930 657.28
13	OWF_63	HG	17	22:24	03/04/2022	70%	F1	1L Bucket	Wrong station number on deck slate (67)	192.2mV @7.4°C	10YR 4/3	Coarse sand with silt	Juvenile fish	394 360.39	5 930 656.64
14	OWF_62	HG	21	00:11	04/04/2022	<30%	N/S	-	-	-	-	-	-	394 093.76	5 933 200.42
15	OWF_62	HG	21	00:19	04/04/2022	30%	F1 (Held)	1L Bucket	Down on weather after this station	65.3mV @7.1°C	10YR 4/3	Gravelly muddy sand	Small crab, ascidians	394 095.83	5 933 199.29
16	OWF_62	HG	21	00:35	04/04/2022	<30%	N/S	-	No sample (>10%)	-	-	Gravelly muddy sand	-	394 094.66	5 933 198.84
17	OWF_62	HG	21	00:45	04/04/2022	<30%	N/S	-	No sample (>10%)	-	-	Gravelly muddy sand	-	394 095.47	5 933 197.61
18	OWF_62	HG	18	00:55	04/04/2022	40%	PC	3x Ziplock bags (TOC, Spare, PSA)	Slight organic smell	-	10YR 4/5	Gravelly muddy sand, some pebbles	-	394 095.44	5 933 197.76
19	OWF_62	HG	18.8	10:20	04/04/2022	0%	N/S	-	Sampler did not trigger	-	-	-	-	394 091.02	5 933 195.65
20	OWF_62	HG	18.8	10:30	04/04/2022	<5%	N/S	-	No sample, wrong sample in deck slate photo, deck slate incorrectly labelled as Shipek	-	-	-	-	394 096.36	5 933 198.32
21	OWF_62	SG	18	12:15	04/04/2022	<5%	N/S	-	Insufficient material for any sample	-	-	-	Bryozoan, finger bryozoan	394 095.31	5 933 197.16

Document No. UK4855H-824-RR-01 Page 228 of 292

	<u> </u>	I	I		I	I		I	Geodetics: WGS84 UTM31N 3°E	ı	6 "				I
Cast#	Station	Sampler Used	Depth (m)	Time (UTC;	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Sediment D	Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
		Osed	(111)	hh:mm)		Recovered				Redux (4cm)	Coloui	Sediment Description/Stratification	Tauria, Comments	(111)	(111)
22	OWF_62	SG	18	12:29	04/04/2022	<5%	N/S	-	Insufficient material for any sample	-	-	-	Anemone, bryozoan	394 091.42	5 933 197.38
23	OWF_62_A	SG	19	12:53	04/04/2022	<5%	N/S	-	Location moved 25m NE Residues taken for primary contaminant. Due to maximum amount of attempts station abandoned	-	-	-	-	394 108.92	5 933 218.29
24	OWF_60	HG	17	14:46	04/04/2022	95%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3	Coarse sand with silty component and shell fragments	-	393 245.55	5 931 743.33
25	OWF_60	HG	17	15:04	04/04/2022	70%	F1	1L Bucket	Weight removed	137.2mV @ 7.7°C	10YR 4/3	Coarse sand with silty component and shell fragments	Urchin fragments	393 248.27	5 931 742.22
26	OWF_61	HG	18	16:01	04/04/2022	30%	N/S	-	-	-	-	Coarse sand with silt component and shell fragments	Anemone	393 412.88	5 935 266.52
27	OWF_61	HG	18	16:51	04/04/2022	50%	PC	3x Ziplock bags (TOC, Spare, PSA)	Mixed sediment, Redox reading not taken to prevent contamination and fauna sample was marginal	-	10YR 4/3	Coarse sand with silt component and shell fragments	Anemone on cobble	393 411.00	5 935 264.00
28	OWF_61	HG	18	17:06	04/04/2022	<5%	N/S	-	-	-	-	-	-	393 411.00	5 935 262.00
29	OWF_61	HG	18	17:16	04/04/2022	30%	F1	3L Bucket	Marginal sample retained in case of next N/S, Labelled "H" (held) on grab photo	-	-	Mixed sediment Muddy sand with shell and pebbles	Polychaetes	393 415.00	5 935 262.00
30	OWF_61	HG	18	17:29	04/04/2022	<5%	N/S	-	Residues - scraped the seabed	-	10YR 4/3	Mixed sediment Muddy sand with shell and pebbles	-	393 415.00	5 935 261.00
31	OWF_61	HG	18	17:42	04/04/2022	<5%	N/S	-	Last attempt at fauna, Marginal 30% sample @ 17:16 accepted	-	10YR 4/3	Mixed sediment Muddy sand with shell and pebbles	-	393 406.00	5 935 265.00
32	OWF_70	HG	22	19:37	04/04/2022	40%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Coarse sand with large pebbles	-	397 298.00	5 935 576.00
33	OWF_70	HG	22	19:52	04/04/2022	20%	N/S	-	-	-	-	-	-	397 297.00	5 935 576.00
34	OWF_70	HG	22	20:07	04/04/2022	30%	N/S	-	-	-	-	-	-	397 298.00	5 935 576.00
35	OWF_70	HG	22	20:20	04/04/2022	60%	F1	1L Bucket	Deck slate = 20:22	189.9mV @ 7.5°C	10YR 4/2	Coarse sand with silt component and small pebbles	-	397 298.00	5 935 582.00
36	OWF_71	HG	21	21:02	04/04/2022	80%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	-	-	398 094.00	5 937 269.00
37	OWF_71	HG	21	21:18	04/04/2022	95%	F1	1L Buckets	-	177.7mV @7.5°C	-	-	Nephtyid	398 093.00	5 937 270.00
38	OWF_76	HG	26	23:58	04/04/2022	90%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	70.1mV @ 7.5°C	10YR 4/2	Muddy sand with pebbles and cobbles	Sabellaria	399 997.00	5 935 262.00
39	OWF_76	HG	26	00:14	05/04/2022	<30%	N/S	-	Cobble in jaw	-	-	-	-	399 997.00	5 935 262.00
40	OWF_76	HG	24.5	00:23	05/04/2022	65%	F1	5L Bucket	Sabellaria within sample	-	10YR 4/2	Muddy sandy gravel with Sabellaria	Sea star, Flustra, hermit crab, anemone, barnacle, anemone	399 998.00	5 935 262.00
41	OWF_79	HG	24.3	00:59	05/04/2022	70%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Gravelly muddy sand	-	401 370.00	5 936 295.00
42	OWF_79	HG	24	01:14	05/04/2022	70%	F1	5L and 3L Buckets	-	108.4mV @ 7.5°C	10YR 4/2	Mix of cobbles and pebbles with fragmented Sabellaria	-	401 369.00	5 936 295.00
43	OWF_79	SG	23	01:39	05/04/2022	10%	N/S	-	-	-	10YR 4/2	Gravelly muddy sand with pebbles	-	401 369.00	5 936 296.00

Document No. UK4855H-824-RR-01 Page 229 of 292

Geodetics: WGS84 UTM31N 3°E Sediment Description												I			
Cast#	Station	Sampler Used	Depth (m)	Time (UTC;	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Colour	Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
44	OWF_79	SG	23	01:48	05/04/2022	20%	Held contaminant	1L glass jar	Low sample retention - 250ml sediment sampled as spare/potential		10YR 4/2	-	-	401 370.00	5 936 295.00
45	OWF_79	SG	23	02:01	05/04/2022	20%	Held contaminant	1L glass jar	Low sample retention - 250ml sediment sampled as spare/potential	-	10YR 4/2	-	-	401 371.00	5 936 295.00
46	OWF_78	HG	23	2:49	05/04/2022	80%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Gravelly muddy sand	-	400 605.00	5 940 261.00
47	OWF_78	HG	23	03:04	05/04/2022	90%	F1	3L Bucket	-	157.1mV @7.5°C	10YR 4/2	Gravelly muddy sand	-	400 604.89	5 940 261.34
48	OWF_75	HG	23	05:56	05/04/2022	70%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3	Gravelly muddy sand	Sabellaria	399 546.10	5 940 260.95
49	OWF_75	HG	23	06:11	05/04/2022	45%	F1	3L Bucket	-	193.2mV @ 7.5°C	10YR 4/3	Gravelly muddy sand	No visible fauna	399 547.07	5 940 261.12
50	OWF_69	HG	26	07:31	05/04/2022	90%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	2.5Y 5/2	Coarse sand	-	397 270.42	5 941 078.99
51	OWF_69	HG	26	07:46	05/04/2022	90%	F1	1L Bucket	-	184.5mV @ 7.5°C	2.5Y 5/2	Coarse sand	Polychaete	397 272.54	5 941 080.25
52	OWF_09	HG	21	14:02	05/04/2022	90%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	2.5Y 5/2	Gravelly (shelly) sand with pebbles	-	392 179.74	5 940 379.75
53	OWF_09	HG	21	14:22	05/04/2022	50%	F1	1L and 3L Buckets	-	146.3mV @ 7.7°C	2.5Y 5/2	Gravelly (shelly) sand with pebbles	Polychaetes	392 178.99	5 940 380.15
54	OWF_55	HG	14	14:58	05/04/2022	80%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	2.5Y 4/3	Gravelly (shelly) sand	-	390 497.27	5 939 123.11
55	OWF_55	HG	14	15:40	05/04/2022	80%	F1	5L Bucket	-	195.3mV @ 7.6°C	2.5Y 4/3	Gravelly (shelly) sand	Sandeels and polychaetes	390 498.13	5 939 124.54
56	OWF_55	SG	14	16:13	05/04/2022	95%	Contaminants	2x 1L glass jars	-	-	2.5Y 4/3	Gravelly (shelly) sand	-	390 499.03	5 939 122.90
57	OWF_59	HG	23	19:03	05/04/2022	<5%	N/S	-	No sample, reduce winch speed	-	2.5Y 4/3	Sand with pebbles	-	393 196.59	5 942 429.96
58	OWF_59	HG	23	19:16	05/04/2022	<10%	N/S	-	No sample, reduce winch speed	-	2.5Y 4/3	Sand with pebbles	-	393 195.88	5 942 427.52
59	OWF_59	HG	23	19:27	05/04/2022	<30%	F1 (Held)	3L Bucket	Unable to obtain Redox measurement due to sub surface pebbles		2.5Y 4/3	Sand with pebbles	Sabellaria	393 192.03	5 942 431.33
60	OWF_59	HG	23	19:44	05/04/2022	0%	N/S	-	Empty grab	-	-	-	-	393 198.11	5 942 434.26
61	OWF_59	HG	23	19:58	05/04/2022	40	PC	3x Ziplock bags (TOC, Spare, PSA)	No more macrofauna sample attempts	-	2.5Y 4/3	Sand with pebbles	No visible fauna	393 190.12	5 942 430.41
62	OWF_58	HG	24	22:02	05/04/2022	95%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10Y 4/3	Coarse sand with shell fragments	-	392 721.00	5 945 815.97
63	OWF_58	HG	24	22:30	05/04/2022	80	F1	5L and 3L Buckets	-	125.8mV @ 7.6°C	10Y 4/3	Sandy gravel	No visible fauna	392 721.32	5 945 817.44
64	OWF_64	HG	26	00:24	06/04/2022	85	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10Y 4/2	Fine sand	-	394 729.29	5 945 870.79
65	OWF_64	HG	26	00:38	06/04/2022	75%	F1	1L Bucket	-	175.5mV @ 7.6°C	10Y 4/2	Fine sand	No visible fauna	394 730.53	5 945 870.67

Document No. UK4855H-824-RR-01 Page 230 of 292

	1		I	T	I	I		ı	Geodetics: WGS84 UTM31N 3°E	1	Carllana a L	No. of the control of		I	
Cast#	Station	Sampler Used	Depth (m)	Time (UTC;	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Sediment I Colour	Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
66	OWF_72	HG	28	hh:mm) 01:33	06/04/2022	85%	PC	3x Ziplock bags	<u>-</u>	- Neuox (4cm)	10YR 3/2	Muddy gravelly sand with cobbles and		398 433.81	5 947 803.09
67	OWF 72	HG	27	01:48	06/04/2022	70%	F1	(TOC, Spare, PSA) 2x 3L Buckets		183.6mV @ 7.5°C	10YR 3/2	subsurface clay layer Gravelly mud	Polychaetes	398 433.76	5 947 802.60
	OW1_72	110	27	01.40	00/04/2022	70%	11	ZX 3L BUCKEIS		183.0111 @ 7.5 C	10111 3/2	Graveny muu	rolychaetes	330 433.70	3 347 802.00
68	OWF_72	SG	27	02:09	06/04/2022	<30	N/S	-	-	-	10YR 3/2	Fine sand	-	398 432.82	5 947 807.91
69	OWF_72	SG	27	02:21	06/04/2022	55%	Contaminants	2x 1L glass jars	-	-	10YR 3/2	Fine sand	-	398 433.32	5 947 801.93
70	OWF_74	HG	26.9	03:06	06/04/2022	45%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Gravelly sand	-	399 146.68	5 945 631.35
71	OWF_74	HG	26.8	03:21	06/04/2022	5%	N/S	-	Small amount of gravel in bucket	-	10YR 4/2	Gravelly sand	-	399 147.35	5 945 630.70
72	OWF_74	HG	26.9	03:29	06/04/2022	50%	N/S	-	Cobble in jaw caused washout	-	-	Gravelly sand	-	399 149.72	5 945 631.32
73	OWF_74	HG	26.9	03:39	06/04/2022	65%	F1	5L Bucket	-	174.4mV @ 7.6°C	-	Gravelly sand	Polychaetes, Sabellaria	399 150.13	5 945 632.15
74	OWF_68	HG	24.6	04:58	06/04/2022	90%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	147.8mV @ 7.6°C	10YR 4/2	Slightly gravelly sand	Asterias rubens	397 373.83	5 944 017.98
75	OWF_68	HG	24.8	05:13	06/04/2022	90%	F1	3L Bucket	-	-	10YR 4/2	Slightly gravelly sand	Brittle star, anemone, Polychaetes	397 375.52	5 944 017.33
76	OWF_68	SG	24.3	05:32	06/04/2022	<10%	N/S	-	-	-	10YR 4/2	-	-	397 375.85	5 944 017.99
77	OWF_68	SG	25.5	05:42	06/04/2022	50%	Contaminants	2x 1L glass jars	-	-	10YR 4/2	Slightly gravelly sand	-	397 372.74	5 944 018.96
78	OWF_66	HG	25.8	06:45	06/04/2022	90%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Fine sand	-	395 949.26	5 947 272.84
79	OWF_66	HG	25.6	07:01	06/04/2022	90%	F1	1L Bucket	-	178.6mV @ 7.6°C	10YR 4/2	Fine sand	Annelids, polychaete	395 949.22	5 947 271.50
80	OWF_08	HG	25	07:59	06/04/2022	90%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 3/2	Gravelly sand	-	399 171.24	5 942 280.31
81	OWF_08	HG	25.3	08:10	06/04/2022	90%	F1	3L Bucket	-	185.2mV @ 7.6°C	10YR 3/2	Gravelly sand	-	399 172.63	5 942 281.06
82	OWF_65	HG	26.9	09:55	06/04/2022	0%	N/S	-	Grab empty - no photo obtained	-	-	-	-	394 833.49	5 939 259.93
83	OWF_65	HG	26.3	10:03	06/04/2022	60%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	77.4mV @ 7.6°C	-	Gravelly sand	-	394 835.48	5 939 254.20
84	OWF_65	HG	26.2	10:20	06/04/2022	60%	F1	5L Bucket	-	-	-	Gravelly sand with pebbles and subsurface clay layer	-	394 835.82	5 939 255.71
85	OWF_65	SG	26.2	10:34	06/04/2022	20%	N/S	-	-	-	-	Gravelly sand with pebbles and subsurface clay layer	-	394 836.69	5 939 253.31
86	OWF_65	SG	26.1	10:45	06/04/2022	30%	N/S	1L glass jar	Low retention, 1x 500ml sampled	-	-	Gravelly sand with pebbles and subsurface clay layer	-	394 837.74	5 939 255.21
87	OWF_65	SG	25.6	10:58	06/04/2022	<20%	N/S	-	-	-	-	Gravelly sand with pebbles and subsurface clay layer	-	394 836.21	5 939 254.04

Document No. UK4855H-824-RR-01 Page 231 of 292

				Time					Geodetics: WGS84 UTM31N 3°E		Codingont				
Cast#	Station	Sampler Used	Depth (m)	Time (UTC;	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Sediment [Colour	Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
88	OWF_65	HG	19	hh:mm) 12:24	06/04/2022	60%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3	Sand with pebbles	-	392 596.04	5 937 977.62
89	OWF_65	HG	19	12:37	06/04/2022	20%	N/S	-	Low grab retention	-	10YR 4/3	Sand with pebbles	-	392 597.04	5 937 975.78
90	OWF_26	HG	19	12:47	06/04/2022	50%	F1	5L Bucket	Redox not taken as below 2cm pebbles matrix found	-	10YR 4/3	Sand with pebbles	Polychaetes	392 595.98	5 937 977.90
91	OWF_54	HG	19	13:33	06/04/2022	95%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3	Coarse sand with shell fragments	-	389 703.51	5 935 683.13
92	OWF_54	HG	19	13:46	06/04/2022	95%	F1	3L Bucket	-	181.5mV @ 7.4°C	10YR 4/3	Coarse sand with shell fragments	-	389 703.80	5 935 685.79
93	OWF_57	HG	18	15:23	06/04/2022	60%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3	Coarse sand with shell fragments and gravel, pebbles and lumps of hard clay	Alcyonidium diaphanum	390 624.31	5 932 906.64
94	OWF_57	HG	18	15:42	06/04/2022	40%	F1	5L Bucket	-	129.5mV @ 7.7°C	10YR 4/3	Coarse sand with shell fragments and gravel, pebbles and lumps of hard clay	Alcyonidium diaphanum, Polychaetes	390 623.51	5 932 905.96
95	OWF_51	HG	18	19:03	06/04/2022	60%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Muddy sand with shell fragments and pebbles	-	388 515.26	5 933 803.14
96	OWF_51	HG	18	19:19	06/04/2022	60%	F1	5L and 1L Buckets	Redox not taken due to coarse sediment	-	10YR 4/2	Coarse mixed sediment with pebbles, gravel and shell fragments	Barnacles	388 515.29	5 933 801.81
97	OWF_48	HG	19	20:35	06/04/2022	80%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Sand with shell fragments	-	387 376.88	5 939 388.03
98	OWF_48	HG	19	20:49	06/04/2022	80%	F1	3L Bucket	-	158.7mV @ 7.6°C	10YR 4/2	Sand with shell fragments	-	387 375.73	5 939 387.34
99	OWF_56	HG	19	12:11	08/04/2022	90%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Sand with shell fragments	-	390 746.75	5 941 518.27
100	OWF_56	HG	19	12:36	08/04/2022	90%	F1	1L Bucket	-	166.9mV @ 7.5°C	10YR 4/2	Sand with shell fragments	Polychaetes	390 745.84	5 941 517.01
101	OWF_53	HG	22	13:37	08/04/2022	10%	N/S	-	-	-	-	-	-	389 149.56	5 944 651.66
102	OWF_53	HG	22	13:48	08/04/2022	60%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Sand with shell fragments	-	389 147.22	5 944 653.75
103	OWF_53	HG	22	14:01	08/04/2022	50%	F1	5L Bucket	-	131.3 @ 7.5°C	10YR 4/2	Sand with shell fragments	Nephtyidae	389 147.66	5 944 652.65
104	OWF_50	HG	18	15:19	08/04/2022	20%	N/S	-	-	-	-	Sand with pebbles	-	387 946.69	5 942 706.78
105	OWF_50	HG	21.6	15:29	08/04/2022	30%	F1	3L Bucket	Retained as marginal F1	-	-	Sand with pebbles	Polychaetes, Bryozoa	387 948.08	5 942 711.94
106	OWF_50	HG	21.8	15:40	08/04/2022	10%	N/S	-	-	-	-	-	Polychaetes, Bryozoa	387 946.45	5 942 710.26
107	OWF_50	HG	21	15:53	08/04/2022	5%	N/S	-	-	-	-	-	-	387 945.13	5 942 708.95
108	OWF_50	HG	21	16:00	08/04/2022	40%	PC	3x ziplock bags (TOC, Spare, PSA)	Unable to record redox due to subsurface gravel	-	10yr 4/4	Sand	-	387 946.05	5 942 698.90
109	OWF_50	SG	20	16:26	08/04/2022	<5%	N/S	-	No sample taken, due to insufficient retention (<50ml)	-	-	-	-	387 944.25	5 942 702.26

Document No. UK4855H-824-RR-01 Page 232 of 292

				- :-					Geodetics: WGS84 UTM31N 3°E		C 11				
Cast#	Station	Sampler Used	Depth (m)	Time (UTC;	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Sediment D	escription Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
		Oscu	(111)	hh:mm)		Recovered				Redox (4cm)	Coloui	Seament Description/Stratmcation	rauna/comments	(111)	(,,,,
110	OWF_50	SG	20.2	16:35	08/04/2022	<5%	N/S	-	No sample taken, due to insufficient retention (<50ml)	-	-	-	-	387 942.94	5 942 701.64
111	OWF_50	SG	20.1	16:47	08/04/2022	20%	N/S	1L glass jar	Marginal sample (300ml) only one contaminant taken	-	10YR 4/4	Sand with shell fragments	-	387 951.59	5 942 708.51
112	OWF_42	HG	21.6	18:15	08/04/2022	90%	PC	3x ziplock bags (TOC, Spare, PSA)	Deck slate labelled wrongly as Shipek	-	10YR 4/2	Sand	Sandeel	384 941.74	5 943 991.16
113	OWF_42	HG	21.4	18:28	08/04/2022	80%	F1	1L Bucket	-	163.9mV @ 7.5°C	10YR 4/2	Sand	Sandeels, Ophelia sp., Nephyidae	384 941.85	5 943 991.48
114	OWF_44	HG	21	19:29	08/04/2022	70%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 3/3	Slightly gravelly sand with pebbles	-	385 577.04	5 940 949.18
115	OWF_44	HG	21	19:42	08/04/2022	60%	F1	5L Bucket	-	156.9mV @ 7.5°C	10YR 3/3	Slightly gravelly sand with pebbles	-	385 577.18	5 940 950.67
116	OWF_39	HG	21	20:25	08/04/2022	80%	PC	-	-	-	10YR 4/2	Muddy gravelly sand with pebbles and subsurface clay	Asterias rubens	384 808.04	5 940 130.34
117	OWF_39	HG	24	20:43	08/04/2022	80%	F1	5L Bucket	-	92.5mV @ 7.5°C	10YR 4/2	Muddy gravelly sand with pebbles and subsurface clay	Golfingia, barnacles, sand mason worm casts, finger bryozoans	384 810.68	5 940 128.54
118	OWF_39	SG	24	21:04	08/04/2022	10%	N/S	-	-	-	-	-	-	384 808.16	5 940 129.21
119	OWF_39	SG	24	21:16	08/04/2022	20%	N/S	1L glass jar	Partial sample A (460ml)	-	-	-	-	384 810.16	5 940 128.69
120	OWF_39	SG	24	21:31	08/04/2022	15%	N/S	1L glass jar	Partial sample B (300ml)	-	-	-	Flustra, barnacles, juvenile crabs	384 807.71	5 940 122.97
121	OWF_33	HG	25.8	07:08	09/04/2022	70%	PC	3x Ziplock bags (TOC, Spare, PSA)	-	66.1mV @ 7.5°C	10YR 4/2	Muddy gravelly sand with pebbles and cobbles	-	382 665.92	5 940 286.89
122	OWF_33	HG	26.0	07:24	09/04/2022	60%	F1	5L Bucket	Black sediment, deck slates may say 8th (should be 9th)	-	10YR 4/2	Muddy gravelly sand with pebbles and cobbles	Sabellaria fragments, juvenile Munida rugosa, barnacles	382 666.26	5 940 285.47
123	OWF_29	HG	27.6	08:08	09/04/2022	50%	PC	3x ziplock bags (TOC, Spare, PSA)	-	26.0mV @ 7.5°C	10YR 4/2	Muddy gravelly sand	<i>Munida rugosa,</i> nephtyidae	382 189.66	5 942 983.29
124	OWF_29	HG	26.7	08:28	09/04/2022	5%	N/S	-	-	-	-	-	-	382 190.74	5 942 983.47
125	OWF_29	HG	26.8	08:36	09/04/2022	10%	N/S	-	-	-	-	-	-	382 192.05	5 942 986.70
126	OWF_29	HG	27.5	08:45	09/04/2022	60%	F1	5L Bucket	-	-	10YR 4/2	Muddy sandy gravel with pebbles and cobbles	Nereididae (bivalves), barnacles, dead man's fingers, Bryozoa, Alcyonidium	382 187.82	5 942 984.47
127	OWF_23	HG	25.8	11:04	09/04/2022	80%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Muddy sandy gravel with pebbles and cobbles	-	379 012.17	5 943 302.63
128	OWF_23	HG	25.8	11:22	09/04/2022	40%	F1	3L Bucket	Deck slate grab photo says 08/04/22	174.8mV @ 7.5°C	10YR 4/2	Muddy sandy gravel	Polychaetes	379 012.83	5 943 304.93
129	OWF_23	SG	25	11:55	09/04/2022	25%	Partial contaminant	1L glass jar	Grab retention not enough for 2 full samples - one contaminant taken	-	10YR 4/2	Muddy sandy gravel	-	379 014.18	5 943 302.79
130	OWF_23	SG	24.8	12:12	09/04/2022	25%	Partial contaminant	1L glass jar	Grab retention not enough for 2 full samples - one contaminant taken	-	10YR 4/2	Muddy sandy gravel	-	379 014.48	5 943 304.24

Document No. UK4855H-824-RR-01 Page 233 of 292

	1	I		Time	I	I		I	Geodetics: WGS84 UTM31N 3°E	I	Sediment D	Accepintion		T	I
Cast#	Station	Sampler Used	Depth (m)	Time (UTC; hh:mm)	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Colour	Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
131	OWF_23	SG	25	12:23	09/04/2022	25%	N/S	-	2x 500ml collected from previous grabs - 3rd attempt to see if it can be improved	-	10YR 4/2	Muddy sandy gravel	-	379 014.10	5 943 305.41
132	OWF_15	HG	20.3	13:50	09/04/2022	70%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Muddy sandy gravel	-	376 342.44	5 942 245.61
133	OWF_15	HG	19.8	14:11	09/04/2022	85%	F1	1L Bucket	-	213.7mV @ 7.5°C	10YR 4/2	Slightly muddy sand	Sea potato, Flustra	376 341.39	5 942 245.75
134	OWF_12	HG	21.8	15:05	09/04/2022	85%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3	Sand with shell fragments	-	375 072.54	5 939 862.53
135	OWF_12	HG	21.8	15:18	09/04/2022	85%	F1	1L Bucket	-	193.4mV @ 7.6°C	10YR 4/3	Sandy gravel	Ophelia	375 071.24	5 939 860.91
136	OWF_12	SG	20.8	15:37	09/04/2022	45%	Contaminant	3x ziplock bags (TOC, Spare, PSA)	Labelled as N/S on deck slate but had enough retention	-	10YR 4/3	Sand with shell fragments	-	375 071.74	5 939 864.62
137	OWF_17	HG	17.9	17:52	09/04/2022	90%	PC	3x ziplock bags		-	10YR 4/2	Sand	-	376 766.08	5 939 971.42
138	OWF_17	HG	18.3	18:10	09/04/2022	60%	F1	1L Bucket	-	200.9mV @ 7.7°C	10YR 4/2	Sand with some shell fragments	Sea potato	376 766.09	5 939 971.59
139	OWF_17	SG	16.1	18:35	09/04/2022	50%	Contaminant	2x 1L glass jars	-	-	10YR 4/2	Sandy	-	376 764.92	5 939 971.22
140	OWF_13	HG	19	19:33	09/04/2022	90%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3	Gravelly sand with shell fragments	-	375 787.96	5 937 614.29
141	OWF_13	HG	19	19:42	09/04/2022	95%	F1	5L Bucket	Sediment too firm to get redox	-	10YR 4/3	Sand with shell fragments	Polychaetes	375 787.48	5 937 615.90
142	OWF_05	HG	21	20:31	09/04/2022	80%	N/S	-	Sample washout	-	10YR 4/2	Sand with shell	-	372 032.52	5 937 086.33
143	OWF_05	HG	21	20:38	09/04/2022	95%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Sand with shell	-	372 031.64	5 937 084.92
144	OWF_05	HG	21	20:51	09/04/2022	50%	F1	3L Bucket	-	176.4mV @ 7.7°C	10YR 4/2	Sand with shell	-	372 030.30	5 937 086.41
145	OWF_04	HG	19	21:39	09/04/2022	70%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/2	Slightly muddy sand with shell	-	371 113.69	5 934 755.95
146	OWF_04	HG	19	21:53	09/04/2022	30%	N/S	-	-	-	10YR 4/2	Slightly muddy sand with shell	-	371 113.76	5 934 754.86
147	OWF_04	HG	19	22:07	09/04/2022	70%	F1	5L Bucket	-	179.0mV @ 7.8°C	10YR 4/2	Slightly muddy sand with shell and pebbles	Slipper limpet, Bryozoa, barnacles, Polychaetes, spider crab, chiton	371 113.53	5 934 754.49
148	OWF_10	HG	21.3	23:46	09/04/2022	30%	N/S	-	-	-	-	-	-	374 490.88	5 934 093.98
149	OWF_10	HG	23.5	23:54	09/04/2022	50%	F1	3L Bucket	-	-	10YR 4/2	Muddy gravelly sandeels	Polychaetes (possible lugworm)	374 491.47	5 934 096.85
150	OWF_10	HG	23.9	00:04	10/04/2022	50%	PC	3x ziplock bags (TOC, Spare, PSA)	-	90.7mV @ 7.7°C	10YR 4/2	Muddy gravelly sand with pebbles	-	374 490.82	5 934 096.76
151	OWF_10	SG	22.7	00:31	10/04/2022	30%	Contaminant	1L glass jar	500ml of retained for first contaminant sample	-	10YR 4/2	Muddy gravelly sand with pebbles	-	374 492.29	5 934 095.44
152	OWF_10	SG	24	00:43	10/04/2022	30%	Contaminant	1L glass jar	500ml retained for second contaminant sample, Shipek unable to penetrate shelly subsurface layers	-	10YR 4/2	Muddy gravelly sand with pebbles	-	374 492.80	5 934 095.09

Document No. UK4855H-824-RR-01 Page 234 of 292

	T			Timo		I	I		Geodetics: WGS84 UTM31N 3°E		Sediment [Occerintian		I	
Cast#	Station	Sampler Used	Depth (m)	Time (UTC; hh:mm)	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Colour	Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
153	OWF_10	SG	23.5	01:06	10/04/2022	30%	N/S	-	30% retention - not needed due to previous samples	-	-	Muddy gravelly sand with pebbles	-	374 493.50	5 934 093.99
154	OWF_16	HG	23.7	01:42	10/04/2022	<5%	N/S	-	Less than 5% retention	-	-	Gravelly shells	-	376 474.59	5 934 624.89
155	OWF_16	HG	23.9	01:49	10/04/2022	<5%	N/S	-	Cobble in jaw	-	-	Gravelly shells	-	376 475.23	5 934 624.99
156	OWF_16	HG	20	01:56	10/04/2022	50%	PC	3x ziplock bags (TOC, Spare, PSA)	-	157.2mV @ 7.7°C	10YR 4/2	Muddy gravel with varying colours	-	376 474.65	5 934 625.65
157	OWF_16	HG	24.1	02:09	10/04/2022	N/S	-	-	Less than 5% retention	-	-	-	-	376 474.82	5 934 624.35
158	OWF_16	HG	24.3	02:16	10/04/2022	N/S	F1	1L Bucket	10% held as best sample	-	10YR4/2	Muddy gravel	Juvenile crab	376 475.78	5 934 626.02
159	OWF_16	HG	24.6	02:23	10/04/2022	N/S	-	-	Less than 5% retention	-	-	-	-	376 475.24	5 934 623.56
160	OWF_19	HG	42.1	03:54	10/04/2022	95%	PC	3x ziplock bags (TOC, Spare, PSA)	Varying colours	-	7.5YR 5/3 7.5YR 5/2	Sandy gravel	-	377 955.78	5 933 910.72
161	OWF_19	HG	42.3	04:09	10/04/2022	95%	F1	5L Bucket	-	221.0mV @ 7.7°C	-	-	-	377 957.49	5 933 911.15
162	OWF_19	SG	42.7	04:57	10/04/2022	80%	Contaminant	2x 1L glass jars		-	-	-	-	377 953.18	5 933 911.47
163	OWF_25	HG	21.7	09:44	10/04/2022	80%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR 4/3 10YR 5/3	Slightly gravelly sand	-	379 700.01	5 935 603.99
164	OWF_25	HG	21.4	09:56	10/04/2022	80%	F1	1L Bucket	-	217.6mV @ 7.8°C	-	-	-	379 704.66	5 935 605.09
165	OWF_18	HG	22.2	10:37	10/04/2022	75%	PC	3x ziplock bags (TOC, Spare, PSA)	Mixed colour layer and finer sediment	-	7.5 YR 4/2 10YR 5/2	Gravel with shells	-	377 424.53	5 936 529.24
166	OWF_18	HG	22.2	11:33	10/04/2022	50%	F1	3L Bucket	-	195.8mV 7.7°C	-	Gravel with shells	-	377 424.94	5 936 527.56
167	OWF_20	HG	19	12:08	10/04/2022	70%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	2.5Y 4/3	Muddy sand	Polychaetes	378 434.11	5 938 541.91
168	OWF_20	HG	19.3	12:27	10/04/2022	70%	F1	1L Bucket	-	181.8mV @ 7.7°C	2.5Y 4/3	Muddy sand	Polychaetes, trivia shell	378 434.47	5 938 541.81
169	OWF_22	HG	23	13:08	10/04/2022	30%	N/S	-	-	-	2.5Y 4/4	Muddy sand	-	378 962.78	5 940 391.27
170	OWF_22	HG	23	13:21	10/04/2022	45%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	2.5Y 4/4	Muddy sand	-	378 963.26	5 940 391.12
171	OWF_22	HG	23	13:39	10/04/2022	55%	F1	3L Bucket	-	201.9mV @ 7.7°C	2.5Y 4/4	Muddy sand with cobbles, pebbles and shell fragments	Bryozoans Anemone Polychaetes	378 963.52	5 940 392.50
172	OWF_27	HG	19	18:11	10/04/2022	80%	PC	3x ziplock bags (TOC, Spare, PSA)		-	2.5Y 4/4	Coarse sand with shell fragments	-	381 289.35	5 938 699.75
173	OWF_27	HG	19	18:24	10/04/2022	80%	F1	5L Bucket	Difficult to get Munsell colour of sediment due to shell content	220.0mV @ 7.8°C	-	Coarse sand with shell fragments	Polychaetes	381 289.23	5 938 700.87
174	OWF_27	SG	19	18:47	10/04/2022	50%	Contaminant	2x 1L glass jars	Difficult to get Munsell colour of sediment due to shell content	-	-	Coarse sand with shell fragments	-	381 287.82	5 938 702.07

Document No. UK4855H-824-RR-01 Page 235 of 292

	, ,			ı	T	ı			Geodetics: WGS84 UTM31N 3°E					ı	
Cast#	Station	Sampler Used	Depth (m)	Time (UTC;	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Sediment [Colour	Description Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
175	OWF_30	HG	20	hh:mm) 20:11	10/04/2022	80%	PC	3x ziplock bags (TOC, Spare, PSA)		-	2.5Y 4/4	Coarse sand with shell gravel	-	382 215.01	5 936 873.71
176	OWF_30	HG	20	20:45	10/04/2022	60%	F1	5L Bucket	-	250.0mV @ 7.8°C	2.5Y 4/4	Coarse sand with shell gravel	Polychaetes	382 215.31	5 936 873.28
177	OWF_30	SG	20	21:22	10/04/2022	50%	Contaminant	2x 1L glass jars	-	-	2.5Y 4/4	Coarse sand with shell gravel	-	382 214.73	5 936 874.60
178	OWF_35	SG	19	22:06	10/04/2022	N/S	N/S	-	Less than 10% retention	-	-	Sand	-	383 117.01	5 935 026.10
179	OWF_35	SG	19	22:15	10/04/2022	N/S	N/S	-	Less than 5% retention (dead man's fingers trapped in jaw)	-	-	Sand	Alcyonium digitatum	383 116.68	5 935 026.23
180	OWF_35	SG	19	22:24	10/04/2022	N/S	Contaminant	1L glass jar	Less than 15% retention. 200ml of residue kept	-	-	Sand	-	383 117.81	5 935 024.09
181	OWF_35	HG	23.9	23:33	10/04/2022	N/S	N/S	-	5% retention	-	-	Cobble and some sand	-	383 118.67	5 935 025.57
182	OWF_35	HG	23.9	00:00	11/04/2022	5%	N/S	-	-	-	-	Cobble, some sand and shell fragments	-	383 118.90	5 935 025.70
183	OWF_35	HG	23.9	00:07	11/04/2022	10%	N/S	-	No fauna sample was obtained from this station	-	-	-	-	383 118.73	5 935 025.68
184	OWF_35	HG	24.6	00:17	11/04/2022	40%	PC	3x ziplock bags (TOC, Spare, PSA)	-	204.4mV @ 7.8°C	10YR 4/2	Muddy gravel (thin veneer of shell) and clumps of clay)	-	383 117.70	5 935 025.23
185	OWF_38	HG	24.7	00:52	11/04/2022	30%	F1	3L Bucket	30% retention but grabbed clay layer so sampled 100% of fauna layer	-	-	Muddy gravel with clay	No visible fauna	384 544.37	5 934 494.88
186	OWF_38	HG	24.4	01:01	11/04/2022	20%	N/S	-	Cobble in jaw layer of clay obtained	-	-	Muddy gravel with layer of clay	-	384 544.41	5 934 494.41
187	OWF_38	HG	24.6	01:11	11/04/2022	10%	N/S	-	Large cobble in jaw	-	-	-	-	384 545.07	5 934 493.91
188	OWF_38	HG	24.7	01:21	11/04/2022	40%	PC	3x ziplock bags (TOC, Spare, PSA)	Varying colours	193.0mV @ 7.8°C	7.5YR 4/2 10YR 4/3	Muddy gravel with clay layer	-	384 543.26	5 934 491.34
189	OWF_38	SG	24.3	01:44	11/04/2022	15%	N/S	-	-	-	-	-	-	384 543.66	5 934 490.93
190	OWF_38	SG	23.8	01:54	11/04/2022	5%	N/S	-	-	-	-	-	-	384 543.73	5 934 490.35
191	OWF_38	SG	24.8	02:06	11/04/2022	30%	Contaminant	1L glass jar	500ml retention (minimal retention on all deployments) (this 3rd attempt is the best one)	-	-	Gravelly sand with pebbles	-	384 542.90	5 934 493.61
192	OWF_47	HG	41.2	03:43	11/04/2022	80%	PC	3x ziplock bags (TOC, Spare, PSA)	-	221.5mV @ 7.8°C	-	Gravelly sand	-	386 555.26	5 935 791.46
193	OWF_47	HG	41.1	04:00	11/04/2022	80%	F1	3L Bucket	-	-	-	Gravelly sand	Sandeel, annelid, bivalve shell (potential <i>Arcopagia</i> crassa)	386 554.11	5 935 790.97
194	OWF_47	SG	41.0	04:18	11/04/2022	50%	Contaminant	2x 1L glass jars	-	-	-	-	-	386 555.64	5 935 789.78
195	OWF_43	HG	26.7	08:48	11/04/2022	60%	PC	2x 1L glass jars	-	186.4mV @ 7.8°C	7.5Y 4/2	Slightly gravelly muddy sand with pebbles and cobbles	-	384 965.79	5 938 223.03

Document No. UK4855H-824-RR-01

				Time				T.	Geodetics: WGS84 UTM31N 3°E		Sediment D	escription			
Cast#	Station	Sampler Used	Depth (m)	(UTC; hh:mm)	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Colour	Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
196	OWF_43	HG	27.2	09:04	11/04/2022	50%	F1	5L Bucket	-	-	-	-	Polychaetes Anemones Bryozoan fingers Bryozoa	384 965.37	5 938 223.47
197	OWF_37	HG	23.1	10:08	11/04/2022	80%	PC	2x 1L glass jars	-	213.0mV @ 7.8°C	-	Gravel	-	384 463.04	5 936 267.44
198	OWF_37	HG	23.1	10:20	11/04/2022	90%	F1	2x 5L Buckets	-	-	Mix of colours Mostly 7.5	Gravel	Polychaetes	384 462.95	5 936 266.31
199	OWF_36	HG	20	13:18	11/04/2022	60%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	Mix of colours Mostly 7.5	Sandy gravel with small pebbles	-	384 015.74	5 933 223.35
200	OWF_36	HG	20	13:50	11/04/2022	60%	F1	5L and 1L Buckets	Unable to record redox due to gravel	-	Mix of colours 7.5	Sandy gravel with small pebbles	Bivalves, razor clam, barnacles	384 014.66	5 933 222.49
201	OWF_36	SG	18	14:16	11/04/2022	50%	Contaminant	2x 1L glass jars		-	Mix of colours Mostly 7.5	Sandy gravel with small pebbles	-	384 016.26	5 933 222.49
202	OWF_32	HG	20	16:27	11/04/2022	10%	N/S	-	Low retention	-	-	Muddy sand with shell	-	382 663.54	5 933 671.56
203	OWF_32	HG	20	16:43	11/04/2022	45%	F1	5L Bucket	Labelled 'H' on deck slate but further inspection revealed 45%	-	-	Muddy sand with shell	No visible fauna	382 664.00	5 933 672.00
204	OWF_32	HG	20	16:57	11/04/2022	40%	PC	3x ziplock bags (TOC, Spare, PSA)		-	-	Muddy sand with shell	-	382 669.42	5 933 673.88
205	OWF_32	SG	20	17:50	11/04/2022	20%	Contaminant	1L glass jar	500ml contaminant taken	-	-	Muddy sand with shell	-	382 670.82	5 933 674.75
206	OWF_32	SG	20	18:06	11/04/2022	<10%	N/S	-	<100ml sediment	-	-	-	Alcyonidium diaphanum	382 662.00	5 933 674.00
207	OWF_32	SG	20	18:19	11/04/2022	0%	N/S	-	Grab failed to trigger	-	-	-	-	382 664.96	5 933 673.61
208	OWF_34	HG	20	19:37	11/04/2022	50%	PC	3x ziplock bags (TOC, Spare, PSA)		-	10YR, 4/4	Coarse sand with shell	-	383 061.00	5 931 425.00
209	OWF_34	HG	20	20:02	11/04/2022	35%	N/S	-	-	-	10YR, 4/5	Coarse sand	-	383 060.78	5 931 425.01
210	OWF_34	HG	20	20:14	11/04/2022	15%	N/S	-	-	-	10YR, 4/6	Coarse sand	-	383 061.03	5 931 424.16
211	OWF_34	HG	20	20:36	11/04/2022	45%	F1	1L Bucket	-	201.2mV @7.9°C	10YR, 4/7	Coarse sand	Crab	383 062.88	5 931 423.34
212	OWF_34	SG	20	20:51	11/04/2022	20%	Partial contaminant	1L glass jar	500ml contaminant A taken	-	10YR, 4/8	Coarse sand	-	383 062.29	5 931 423.71
213	OWF_34	SG	20	21:05	11/04/2022	20%	Partial contaminant	1L glass jar	500ml contaminant B taken	-	10YR, 4/9	Coarse sand	-	383 063.02	5 931 424.48
214	OWF_34	SG	20	21:17	11/04/2022	20%	N/S			-	10YR 4/10	Coarse sand	-	383 060.40	5 931 419.92
215	OWF_41	SG	18	22:02	11/04/2022	<5%	N/S	-	mostly pebbles, very little sand	-	-	-	-	384 914.79	5 931 425.76
216	OWF_41	SG	18	22:12	11/04/2022	<10%	N/S	-	Partial contaminant taken, 200ml retained	-	-	-	-	384 912.26	5 931 424.48

Document No. UK4855H-824-RR-01 Page 237 of 292

	T	I	I	Time	I		I	I	Geodetics: WGS84 UTM31N 3°E		Cadimant D				
Cast#	Station	Sampler Used	Depth (m)	Time (UTC; hh:mm)	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Sediment D Colour	Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
217	OWF_41	SG	18	22:30	11/04/2022	<5%	N/S	-	Just pebbles, very little sand to retain.	-	-	-	-	384 915.69	5 931 420.89
218	OWF_41	HG	23.3	23:52	11/04/2022	20%	N/S	-	Cobbles and pebbles in jaw	-	-	Sandy, muddy gravel with pebbles	-	384 918.15	5 931 426.38
219	OWF_41	HG	23.2	00:00	12/04/2022	15%	N/S	-	Cobbles and pebbles in jaw	-	-	-	-	384 912.10	5 931 420.82
220	OWF_41	HG	23.6	00:09	12/04/2022	40%	F1	5L and 1L Buckets	-	-	-	muddy, gravel, pebbles	-	384 912.46	5 931 422.31
221	OWF_41	HG	23.6	00:21	12/04/2022	<5%	N/S	-	-	-	-	Large whelk, sea star	-	384 913.69	5 931 423.56
222	OWF_41	HG	23.8	00:33	12/04/2022	<5%	N/S	-	-	-	-	-	-	384 914.74	5 931 424.53
223	OWF_41	HG	23.5	00:41	12/04/2022	40%	PC	3x ziplock bags (TOC, Spare, PSA)	Unable to take redox due to pebbles and gravel	-	mix of colours 7.5YR, 4/2, 5/2, 4/1	Muddy gravel	-	384 915.19	5 931 422.97
224	OWF_49	HG	23.0	01:39	12/04/2022	20%	N/S	-	-	-	-	-	-	387 848.55	5 930 602.24
225	OWF_49	HG	22.9	01:45	12/04/2022	50%	PC	3x ziplock bags (TOC, Spare, PSA)	No redox due to pebbles and gravel	-	-	-	-	387 851.45	5 930 601.99
226	OWF_49	HG	23.6	02:01	12/04/2022	1%	N/S	-	Grab sampled in water	-	-	-	-	387 852.84	5 930 601.67
227	OWF_49	HG	23.3	02:10	12/04/2022	40%	F1	-	Clay layer	-	7.5YR, 4/2, 10YR, 4/2	Muddy gravel, large cobble	Alcyonidium diaphanum	387 851.06	5 930 601.90
228	OWF_52	HG	27.6	02:47	12/04/2022	60%	PC	3x ziplock bags (TOC, Spare, PSA)		251.6mV @ 7.9°C	10YR, 4/2	-	-	389 066.22	5 930 894.06
229	OWF_52	HG	28.0	03:05	12/04/2022	70%	F1	5L and 1L Buckets	-	-	-	-	Razor shell and polychaetes	389 066.37	5 930 893.59
230	OWF_52	SG	27.3	03:20	12/04/2022	<10%	N/S	-	-	-	-	-	-	389 067.77	5 930 891.54
231	OWF_52	SG	27.5	03:29	12/04/2022	25%	Contaminant	1L glass jar	500ml sample retained	-	-	Gravelly sand	-	389 069.42	5 930 895.30
232	OWF_52	SG	27.8	03:43	12/04/2022	<10%	N/S	-	-	-	-	-	-	389 069.63	5 930 894.90
233	OWF_45	HG	21.2	09:31	12/04/2022	40%	PC	3x ziplock bags (TOC, Spare, PSA)		148.7mV @ 8.0°C	10YR, 4/3	-	-	385 840.69	5 929 678.27
234	OWF_45	HG	20.9	09:46	12/04/2022	50%	F1	-	-	-	-	Gravelly sand	Polychaetes, bivalves, razor shell, amphipods, tube worm	385 839.31	5 929 676.25
235	OWF_45	SG	21.0	09:59	12/04/2022	10%	N/S	-	-	-	-	-	-	385 838.20	5 929 678.73
236	OWF_45	SG	20.6	10:09	12/04/2022	20%	Contaminant	1L glass jar	<500ml sample taken for Contaminant A, no spare	-	-	-	-	385 838.79	5 929 679.48
237	OWF_45	SG	21.0	10:21	12/04/2022	10%	N/S	-	-	-	-	-	-	385 838.37	5 929 678.42
238	OWF_46	HG	20	11:27	12/04/2022	45%	PC	3x ziplock bags		-	10YR, 4/3	Slightly muddy, gravelly sand with shel	-	386 508.36	5 928 374.73

Document No. UK4855H-824-RR-01 Page 238 of 292

	1	I	I		I	I	I		Geodetics: WGS84 UTM31N 3°E	I	Coding of B			I	T
Cast#	Station	Sampler Used	Depth (m)	Time (UTC;	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Sediment D Colour	Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
239	OWF_46	HG	20	hh:mm) 11:41	12/04/2022	45%	F1	5L Bucket	-	238.2mV @ 8.0°C	10YR, 4/3	Slightly muddy, gravelly sand with shell	Mya truncata, bivalves	386 509.02	5 928 378.70
240	OWF_46	SG	20	12:03	12/04/2022	<20%	Partial contaminant	1L glass jar	500ml for contaminant A	-	10YR, 4/3	Slightly muddy, gravelly sand with shell	-	386 508.08	5 928 378.22
241	OWF_46	SG	20	12:20	12/04/2022	<20%	Partial contaminant	1L glass jar	500ml for contaminant B	-	-	-	Alcyonidium diaphanum	386 508.22	5 928 377.87
242	OWF_46	SG	20	12:36	12/04/2022	5%	N/S		-	-	-	-	Alcyonidium diaphanum	386 505.99	5 928 378.33
243	OWF_40	HG	15	13:12	12/04/2022	85%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR, 5/3	-	-	384 834.84	5 928 514.11
244	OWF_40	HG	15	13:39	12/04/2022	80%	F1	1L Bucket	-	216.2mV @ 8.1°C	-	Sand	Polychaetes (Ophelia)	384 834.20	5 928 513.40
245	OWF_31	HG	17	14:54	12/04/2022	50%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR, 4/3	Mixed sediment Slightly muddy gravelly sand	-	382 453.62	5 928 327.45
246	OWF_31	HG	17	15:15	12/04/2022	40%	F1	3L Bucket	Sample too coarse for redox probe	-	10YR, 4/3	Mixed sediment Slightly muddy gravelly sand	Polychaetes	382 454.50	5 928 327.25
247	OWF_28	HG	17	16:00	12/04/2022	35%	F1	3L Bucket	On hold (kept)	-	10YR, 4/4	Mixed sediment Slightly muddy gravelly sand	Barnacles, painted top shell, <i>Sabellaria</i> , crab	381 897.24	5 931 026.11
248	OWF_28	HG	18	16:11	12/04/2022	<5%	N/S	-	-	-	-	-	-	381 897.31	5 931 025.07
249	OWF_28	HG	18	16:22	12/04/2022	<5%	N/S	-	3rd N/S for fauna attempt, accepted first sample	-	-	-	-	381 900.93	5 931 029.81
250	OWF_28	HG	18	16:36	12/04/2022	50%	PC	3x ziplock bags (TOC, Spare, PSA)	Too firm for redox probe	-	-	Slightly muddy sand with pebbles	-	381 892.83	5 931 029.64
251	OWF_24	HG	21	17:40	12/04/2022	30%	N/S	-	Insufficient sample	-	-	Sand	-	379 491.83	5 932 722.32
252	OWF_24	HG	21	17:54	12/04/2022	50%	PC	3x ziplock bags (TOC, Spare, PSA)	-	-	10YR, 4/4	-	-	379 488.80	5 932 717.66
253	OWF_24	HG	21	18:11	12/04/2022	30%	N/S	-	Cobble in jaws, sample washout	-	-	-	-	379 488.15	5 932 718.43
254	OWF_24	HG	21	18:22	12/04/2022	50%	F1	5L Bucket	-	218.9mV @ 8.1°C	10YR, 4/4	Muddy sand with gravel and shell	Polychaetes, crab, barnacles	379 488.58	5 932 719.63
255	OWF_21	HG	10	20:41	12/04/2022	70%	PC	3x ziplock bags (TOC, Spare, PSA)		-	Difficult to determine colour of pea gravel		-	378 587.65	5 928 937.87
256	OWF_21	HG	10	20:50	12/04/2022	70%	F1	5L and 3L Buckets	-	224.2mV @ 8.4°C	Difficult to determine colour of pea gravel		Bivalve	378 590.08	5 928 938.72
257	OWF_21	SG	10	21:01	12/04/2022	90%	Contaminant	2x 1L glass jars	500ml for both contaminants	-	Difficult to determine colour of pea gravel		-	378 588.96	5 928 939.84
258	OWF_14	HG	19.5	23:46	12/04/2022	90%	PC	3x ziplock bags (TOC, Spare, PSA)	-	260.3mV @ 8.1°C	Mixed	muddy gravel	-	375 563.97	5 930 200.97
259	OWF_14	HG	19.4	00:04	13/04/2022	50%	F1	5L bucket	-	-	-	muddy gravel	No visible fauna	375 563.76	5 930 201.13
260	OWF_11	HG	22.9	01:30	13/04/2022	60%	PC	3x ziplock bags (TOC, Spare, PSA)	-	233.0mV @ 8.1°C	7.5YR, 4/2	Fine sand	-	374 805.63	5 932 217.68

Document No. UK4855H-824-RR-01 Page 239 of 292

			Τ	Time	I	1	1		Geodetics: WGS84 UTM31N 3°E	<u> </u>	Sediment De	escription		I	
Cast#	Station	Sampler Used	Depth (m)	(UTC; hh:mm)	Date	Volume Recovered	Sample Name	Container Type and Quantity	Comments	Redox (4cm)	Colour	Sediment Description/Stratification	Conspicuous Fauna/Comments	Easting (m)	Northing (m)
261	OWF_11	HG	23.0	01:43	13/04/2022	60%	F1	1L Bucket	-	-	7.5YR, 4/2	Fine sand	-	374 807.49	5 932 218.06
262	OWF_11	SG	22.8	01:59	13/04/2022	10%	N/S	-	-	-	-	-	-	374 808.23	5 932 215.90
263	OWF_11	SG	22.8	02:12	13/04/2022	15%	Contaminant	1L glass jar	500ml sampled from different grabs	-	-	Fine sand	-	374 808.48	5 932 215.61
264	OWF_11	HG	23.0	02:26	13/04/2022	15%	Contaminant	1L glass jar	500ml sampled from different grabs	-	-	-	-	374 808.98	5 932 215.65
265	OWF_07	HG	22.6	03:07	13/04/2022	70%	PC	3x ziplock bags (TOC, Spare, PSA)	-	212.9mV @ 8.1°C	10YR 4/2 very mixed	Fine sand layer over gravel	-	373 062.27	5 931 766.26
266	OWF_07	HG	22.4	03:22	13/04/2022	70%	F1	2x 5L Buckets	-	-	10YR 4/2 very mixed	-	Polychaete	373 062.77	5 931 766.38
267	OWF_06	HG	25.5	04:01	13/04/2022	60%	PC	3x ziplock bags (TOC, Spare, PSA)	-	251.0mV @ 8.1°C	10YR, 5/2, 4/2	-	-	373 189.19	5 929 296.50
268	OWF_06	HG	25.6	04:17	13/04/2022	5%	F1	-	-	-	10YR, 5/2, 4/2	-	-	373 189.49	5 929 295.47
269	OWF_06	SG	24.8	04:33	13/04/2022	10%	N/S	-	-	-	-	-	-	373 190.50	5 929 292.76
270	OWF_06	SG	24.6	04:42	13/04/2022	15%	Contaminant	1L glass jar	Partial sample	-	-	-	-	373 188.85	5 929 296.20
271	OWF_06	SG	24.7	04:52	13/04/2022	10%	N/S	-	-	-	-	-	-	373 188.59	5 929 296.64
272	OWF_02	HG	25.8	05:57	13/04/2022	10%	N/S	-	-	-	-	-	-	370 678.92	5 931 582.54
273	OWF_02	HG	25.5	06:04	13/04/2022	<5%	N/S	-	Large cobble in jaw	-	-	-	-	370 679.54	5 931 582.32
274	OWF_02	HG	25.3	06:10	13/04/2022	<5%	N/S	-	Cobbles and pebbles in jaw	-	-	-	-	370 678.22	5 931 584.22
275	OWF_02	HG	25.1	06:17	13/04/2022	40%	PC	3x ziplock bags (TOC, Spare, PSA)	No F1 sample	148.9mV @ 8.2°C	-	Black layer in sediment (potentially anoxic)	-	370 676.89	5 931 586.71
276	OWF_03	HG	15.5	10:22	13/04/2022	70%	PC	3x ziplock bags (TOC, Spare, PSA)	-	199.3mV @ 8.1°C	10YR 4.5/3	Fine sand	-	370 788.53	5 928 857.35
277	OWF_03	HG	15.2	10:33	13/04/2022	90%	F1	1L Bucket	-	-	10YR 4.5/4	Fine sand	Polychaetes	370 786.24	5 928 856.57
278	OWF_01	HG	17:8	13:31	13/04/2022	90%	PC	3x ziplock bags (TOC, Spare, PSA)		-	10YR, 4/2	-	-	368 324.95	5 933 909.91
279	OWF_01	HG	18.1	13:44	13/04/2022	80%	F1	1L Bucket	-	252.7mV @ 8.1°C	10YR, 4/2	Fine sand	Shell fragments and polychaetes	368 324.50	5 933 910.88
280	OWF_01	SG	15.8	13:59	13/04/2022	80%	Contaminant	2x 1L glass jars	-	-	10YR, 4/2	Fine sand	-	368 324.48	5 933 909.18

Document No. UK4855H-824-RR-01

APPENDIX G – CAMERA TRANSECT LOG SHEET

						Vide	o qualit		deo										C	onspicuo	ıs faun	prese	nce/a	bsenc	ce								
Station	Date	Time (UTC)	Easting (m)	Northing (m)	Length of section (m)	роод	Satisfactory	Poor	Not visible	Water depth (m) (LAT)	Sediment type	Actiniaria sp.	Actiliopterygii Agonus cataphractus	Alcyonidium diaphanum Alcyonium digitatum	Ammodytidae sp.	Asterias rubens	Brachyura sp. Bryozoan/ Hydrozoan turf Buccinum undatum Callionymus lyra	caridea	Cheilostomatida	Crepidula fornicata Cirripedia	<i>Urticina felina</i> Echichthys vipera	Ensis sp.	Flustra foliacea	Hyas sp.	Lanice conchilega	Liocarcinus sp.	Nemertesia sp.	Ophiuroidea	Pagurus sp. Pleuronectes platessa	Pleuronectiformes	Poritera Sabellaria spinulosa	Serpulidae Sertulariidae	ser unantuae Tubularia sp. Vesicularia spinosa
OWF_VID_01	13/04/2022 13/04/2022	13:13:02 13:19:33	368334.6 368314.5	5933885.4 5933938.4	- 56.7	64	36	0	0	10.16 10.63	Rippled sand with rare shell fragments	F	P		Р																		
OWF_VID_03	13/04/2022 13/04/2022	10:04:02 10:10:11	370794.7 370775.9	5928832.2 5928884.3	55.3	71	29	0	0	10.07 10.07	Rippled sand with rare shell fragments	F	P		Р		Р				Р								Р				
OWF_VID_11	13/04/2022 13/04/2022	01:11:18 01:17:07	374799.3 374816.2	5932242.7 5932190.2	55.2	83	3	14	0	19.97 20.01	Rippled sand with rare fragments				Р	Р	P P						Р						Р			Р	,
OWF_VID_14	12/04/2022 12/04/2022	22:22:27	375554.2 375574.0	5930226.3 5930168.1	61.4	53	27	20	0	17.12 17.77	Rippled sandy gravel with abundant shell fragments			Р	Р														Р				
OWF_VID_15	09/04/2022	13:24:07 13:30:05	376353.9 376332.0	5942222.8 5942271.3	53.2	50	30	10	10	18.20 18.31	Rippled sand with rare shell fragments					Р													Р				
OWF_VID_17	09/04/2022	17:27:40 17:33:50	376762.8 376764.0	5939942.4 5939997.6	55.2	68	32	0	0	16.93 16.81	Rippled sand with rare shell fragments				Р																		
OWF_VID_19	10/04/2022	03:27:06 03:38:01	377960.1 377948.5	5933886.2 5933938.1	53.2	28	43	9	20	40.29 40.07	Rippled sand with abundant shell fragments and surface fine organic matter that form distinct bands	F	P			Р								Р					Р				
	09/04/2022	09:49:55 09:55:12	379021.4 379006.3	5943292.7 5943336.2	46.1	53	37	10	0	23.42	Rippled sand with abundant shell fragments and rare pebbles and cobbles			Р		Р																	P
OWF_VID_23	09/04/2022	09:55:12	379006.3	5943336.2	7.5	34	44	22	0	23.03	Rippled sand with abundant shell fragments and an increased abundance of pebbles and			P			P			P													Р
OWF_VID_25	09/04/2022 10/04/2022	09:56:19 09:17:46	379003.0 379694.8	5943343.0 5935627.2	51.7	25	30	45	0	23.03 18.28	cobbles Rippled sand with rare shell fragments				P															++	+	+	
OWI_VID_23	10/04/2022 06/04/2022	09:28:07 11:57:32	379712.2 392625.1	5935578.5 5937985.1	51.7	84	16	0	0	16.01 21.56	Rippled sand with frequent pebbles		+	D	+++	D				р			-							++	+	\vdash	P
OWF_VID_26	06/04/2022 06/04/2022	12:03:05 12:03:05	392577.1 392577.1	5937967.1 5937967.1						21.48 21.48	Rippled sand with a reduced occurrence of			P		r														++	+	P	++-
	06/04/2022 10/04/2022	12:03:54 19:47:09	392569.5 382206.8	5937964.9 5936897.0	7.8	83	17	0	0	21.40 19.54	pebbles (rippled sand boundary) Rippled sand with abundant shell fragments			P																++	_	 	
OWF_VID_30	10/04/2022	19:53:04	382224.7	5936846.7	53.4	33	51	16	0	19.55	forming peaks and small pebbles within the troughs			Р	Р	Р								Р									
OWF_VID_31	12/04/2022 12/04/2022	14:31:29 14:37:38	382462.2 382444.6	5928305.7 5928357.5	54.6	77	13	10	0	19.08 19.08	Mosaic of small pebbles and relic shell fragments			Р		Р	P P		Р	Р	Р	Р										P P	,
	11/04/2022 11/04/2022	15:50:30 15:55:38	382677.2 382660.9	5933650.4 5933692.4	45.0	62	16	22	0	19.86 19.87	Rippled sand with frequent shell fragments, pebbles, and occasional cobbles			Р		Р	Р			Р	Р		Р										Р
OWF_VID_32	11/04/2022 11/04/2022	15:55:38 15:55:42	382660.9 382660.3	5933692.4 5933693.0	0.8	100	0	0	0	19.87 19.87	Increased abundance of cobbles, pebbles, and shell fragments			Р							Р										Р		
	11/04/2022 11/04/2022	15:55:42 15:56:36	382660.3 382656.5	5933693.0 5933700.0	8.0	72	28	0	0	19.87 19.82	Rippled sand with frequent shell fragments, pebbles, and occasional cobbles			Р							Р												
OWF_VID_33	09/04/2022 09/04/2022	06:50:28 06:55:40	382670.6 382656.6	5940266.7 5940316.4	51.6	70	21	3	6	22.85 23.03	Mosaic of small pebbles and relic shell fragments			P P		Р	Р			Р	Р		Р)			Р					P P	,
OWF_VID_37	11/04/2022	09:47:02 09:58:02	384455.4 384472.4	5936291.2 5936240.3	53.6	52	42	6	0	18.79 18.39	Rippled slightly sandy gravel with abundant shell fragments					Р													Р				
OWF_VID_45	12/04/2022	09:02:27 09:08:43	385833.4 385851.0	5929702.1 5929650.4	- 54.6	95	5	0	0	18.94 19.23	Mosaic of small pebbles and relic shell fragments (same as 32)			Р		Р	P			Р	Р	Р	P F	>								P P	,

						Vide	o quality p													Consp	icuou	s faun	a prese	nce/abs	ence								
Station	Date	Time (UTC)	Easting (m)	Northing (m)	Length of section (m)	Good	Satisfactory	Not visible	Water depth (m) (LAT)	Sediment type	Actiniaria sp. Actinopterygii	Agonus cataphractus	Alcyonidium diaphanum	Alcyonium digitatum	Asterias rubens	Brachyura sp.	Bryozoan, Hydrozoan turr Buccinum undatum	Callionymus lyra	Caridea	Cheilostomatida <i>Crepidula fornicata</i>	Cirripedia	<i>Urticina felina</i> Echichthys vipera	Ensis sp.	Flustra foliacea Haleciidae	Hyas sp. Lanice conchilega	Liocarcinus sp.	Necora puber Nemertesia sp.	Ophiuroidea	Pleuronectes platessa	Pleuronectiformes Porifera	Sabellaria spinulosa Serpulidae	Sertulariidae	Tubularia sp. Vesicularia spinosa
	11/04/2022 11/04/2022	03:09:39 03:10:33	386566.2 386563.0	5935766.2 5935774.8	9.1	100	0	0 0	35.06	Abundant shell fragments form peaks between rippled sand troughs			Р																				
	11/04/2022	03:10:33 03:11:30	386563.0 386561.9	5935774.8 5935777.2	2.6	100	0	0 0	35.48 35.76	Rippled sand with an increased abundance of surface shell fragments and bands of organic matter			Р																	Р			
OWF_VID_47	11/04/2022	03:11:30	386561.9 386561.1	5935777.2 5935778.3	1.4	5	81	4 0	35.76	Period of time when camera was relatively stationary					Р																		
	11/04/2022	03:14:50	386561.1	5935778.3	3.4	95	5	0 0	35.69	Rippled sand with an increased abundance of surface shell fragments and bands of organic					Р																+		
	11/04/2022 11/04/2022 11/04/2022	03:18:03 03:18:03 03:23:19	386560.1 386560.1 386545.7	5935775.0 5935775.0 5935816.2	43.6	82	18	0 0	35.50 35.50 37.74	Abundant shell fragments form peaks between rippled sand troughs		Р	Р		P	Р			Р					P				P P			+	Р	P
	08/04/2022 08/04/2022	14:49:27 14:49:44	387947.4 387947.5	5942679.1 5942682.5	3.4	100	0	0	20.20	Mosaic of cobbles and pebbles overlaying sand			Р	Р		ı	Р				Р	Р		Р									
	08/04/2022 08/04/2022	14:49:44 14:50:53	387947.5 387946.4	5942682.5 5942690.6	8.1	57	29 :	.4 0	20.18	Occasional cobbles interspersed across rippled sand with frequent shell fragments			Р	Р		ı	Р															Р	
	08/04/2022	14:50:53 14:51:09	387946.4 387946.3	5942690.6 5942691.9	1.4	33	67	0 0	20.23	Mosaic of cobbles and pebbles overlaying sand			Р		Р	1	Р				Р											$\perp \downarrow$	
OWF_VID_50	08/04/2022	14:51:09 14:51:38	387946.3 387945.7	5942691.9 5942695.5	3.7	67	33	0	20.23	Occasional pebbles interspersed across rippled sand with frequent shell fragments Frequent pebbles and cobbles interspersed			Р																		\perp	\coprod	
	08/04/2022	14:51:38 14:53:04	387945.7 387944.7	5942695.5 5942702.4	6.9	50	50	0	20.26	across rippled sand with frequent shell fragments			Р								Р	Р		Р								Р	
	08/04/2022 08/04/2022 08/04/2022	14:53:04 14:53:40 14:53:40	387944.7 387943.9 387943.9	5942702.4 5942705.2 5942705.2	2.9	75	25	0	20.26 20.27 20.27	Occasional pebbles interspersed across rippled sand with frequent shell fragments Frequent pebbles and cobbles interspersed			Р											P							_	$\frac{1}{1}$	
	08/04/2022	14:59:05 11:45:24	387943.1 390756.1	5942737.2 5941496.0	32.0	46	36	2 6		across rippled sand with frequent shell fragments			Р	Р	Р	1	Р				Р	Р		P P			Р	Р		Р	_	P	P P
OWF_VID_56	08/04/2022 06/04/2022	11:51:34 14:54:49	390735.8 390615.4	5941546.8 5932929.6	54.7	81	19	0	19.81	Rippled sand with rare shell fragments Abundant cobbles and pebbles and a single																					+	$\frac{1}{1}$	
OWF_VID_57	06/04/2022 06/04/2022	14:58:11 14:58:11	390625.9 390625.9	5932902.3 5932902.3	29.3	100		0	20.53	boulder surrounded by rippled sand with abundant shell fragments Increased abundance of cobbles, pebbles and			Р	Р	P	'	P	P			Р	P		P			P P				P P		P
OWF_VID_58	06/04/2022 05/04/2022	15:01:37 21:38:10	390635.2 392729.7	5932878.4 5945792.8	25.6 55.2	70		0 0	20.49 25.14	shell fragments Rippled sand with abundant shell fragments			P	Р	P		P	F	<u> </u>		Р	P P		P P			P			P	P	P	P
_ =====	05/04/2022 04/04/2022 04/04/2022	21:44:06 14:15:44 14:16:26	392710.3 393238.5 393240.8	5945844.5 5931764.5 5931760.8	4.4	75	25	0 0	24.93	and pebbles accumulated in the troughs Rippled sand with rare shell fragments																					+	+	
OWF_VID_60	04/04/2022	14:16:26 14:16:54	393240.8 393242.3	5931760.8 5931756.6	4.4	100	0	0 0	20.45	Rippled sand with an abundant shell fragments and pebbles																					+		+
	04/04/2022 04/04/2022	14:16:54 14:20:00	393242.3 393252.9	5931756.6 5931731.2	27.5	87	13	0	20.38	Rippled sand with rare shell fragments	Р														Р								

						Vide		ty per vi ent (%)	ideo												Con	spicuo	us faı	ına pre	esence	/abser	nce								
Station	Date	Time (UTC)	Easting (m)	Northing (m)	Length of section (m)	роо5	Satisfactory	Poor	Not visible	Water depth (m) (LAT)	Sediment type	Actiniaria sp.	Agonus cataphractus	Alcyonidium diaphanum	Alcyonium digitatum	Ammodytidae sp. Asterias rubens		Bryozoan/Hydrozoan turf Buccinum undatum	Callionymus lyra	Caridea	Cheilostomatida Crenidula fornicata	Cirripedia	Urticina felina	Echichthys vipera Ensis sp.	Flustra foliacea	Haleciidae	nyus sp. Lanice conchilega	Liocarcinus sp. Necora puber	Nemertesia sp.	Ophiuroidea <i>Pagurus</i> sp.	Pleuronectes platessa	Pleuronectiformes Porifera	Sabellaria spinulosa	Serpulidae	Tubularia sp. Vesicularia spinosa
	06/04/2022 06/04/2022	00:04:31 00:08:13	394723.1 394734.3	5945894.6 5945862.4	34.1	83	17	0	0	24.62	Rippled sand with frequent shell fragments and pebbles accumulated in the troughs and			Р		Р	Р								Р					Р		Р			
OWF_VID_64	06/04/2022	00:08:13	394734.3 394740.4	5945862.4 5945843.4	19.9	94	6	0	0	23.92	rare cobbles Increased abundance of pebbles and shell fragments in the troughs of the sand ripples					P															Р				
	06/04/2022 06/04/2022 06/04/2022	00:10:39 09:28:20 09:29:24	394740.4 394855.5 394850.5	5939296.9 5939286.4	11.7	100	0	0	0	23.11	Rippled sand with frequent cobbles, pebbles and shell fragments	Р		Р	Р	Р						Р	Р		P	Р						P			P
OWF_VID_65	06/04/2022	09:29:24 09:30:09	394850.5 394847.3	5939286.4 5939280.0	7.1	67	33	0	0	23.08	Rippled sand with increased abundance of cobbles and pebbles			Р	Р	Р		Р				Р	Р		Р										P
	06/04/2022 06/04/2022	09:30:09 09:34:31	394847.3 394830.3	5939280.0 5939242.9	40.8	72	28	0	0	23.09 23.04	Rippled sand with common cobbles, pebbles and abundant shell fragments			Р	Р	Р		Р				Р	Р		Р					Р					Р
OWF_VID_69	05/04/2022 05/04/2022	07:08:17 07:15:19	397272.3 397271.6	5941056.8 5941113.7	56.9	84	16	0	0	22.14 22.19	Rippled sand with rare shell fragments					P P											Р								
OWF_VID_70	04/04/2022	18:53:15 18:59:23	397304.6 397287.9	5935554.1 5935604.2	52.8	92	8	0	0	22.74	Rippled sand with frequent shell fragments and gravel in troughs	ı	,	Р		Р											Р								
OWF_VID_73	03/04/2022	19:09:19 19:15:34	398497.5 398479.6	5931823.4 5931873.6	53.4	100	0	0	0	19.15	Rippled sand with rare shell fragments					Р																			Р
OWF_VID_75	05/04/2022	05:33:11 05:39:21	399555.4 399536.7	5940235.5 5940287.9	55.6	54	34	12	0	23.07	Rippled sand with abundant shell fragments and pebbles accumulated in the troughs			Р		P P		Р					Р		Р			Р						P P	P
	04/04/2022	22:17:53 22:18:12 22:18:12	399987.6 399988.5 399988.5	5935227.8 5935230.3 5935230.3	2.6	100	0	0	0	23.13 23.13 23.13	Rippled sand with shell fragments and occasional cobbles and pebbles Sand with abundant aggregations of	Р			Р	Р							Р		Р				Р			Р		P	P
OWF VID 76	04/04/2022	22:18:12	399988.5	5935230.3	8.9	100	0	0	0	23.13	Sahd with abundant aggregations of Sabellaria overlying frequent cobbles and pebbles	Р		Р	Р	Р		Р					Р		Р			Р	Р	Р		Р	Р	P P	Р
OWI_VID_70	04/04/2022	22:19:16 22:23:45	399991.5 400000.8	5935238.7 5935280.0	42.3	92	8	0	0	23.09	Increased abundance of pebbles and cobbles forming a mosaic with frequent aggregations of Sabellaria	Р		Р	Р	Р	Р	Р			P	Р	Р	Р	Р	Р	Þ	Р		P P			Р	P P	PP
	04/04/2022	22:23:45	400000.8 400005.8	5935280.0 5935295.4	16.2	91	9	0	0	23.11	Decreased abundance of cobbles and increased abundance of pebbles	ı	,	Р				P					Р		Р			Р		Р				P P	
OWF_VID_79	08/04/2022	09:13:56 09:19:53	401359.2 401340.2	5936262.6 5936311.5	52.4	78	17	5	0	22.25 22.20	Rippled sand with abundant shell fragments and pebbles and occasional cobbles.	Р	Р	Р	Р	Р			Р			Р	Р		Р				Р			Р	Р	P P	Р
OWF_VID_80	03/04/2022 03/04/2022	14:57:33 15:04:19	402895.9 402916.7	5933538.2 5933486.4	55.8	81	19	0	0	24.35 22.63	Rippled sand with rare shell fragments					Р																			

APPENDIX H – EPIBENTHIC TRAWL LOGS

Epibenthic Trawl Deck Log Observations

Cast#	Station	Sampler Used	Water Depth (m)	Time	Length of Trawl (m)	Date	Volume Recovered (L)	Comments	Conspicuous Fauna
1	OWF_T7	Beam Trawl	22	10:58 (time on seabed)	-	05/04/2022	-	Due to incorrect positioning this small part of a transect was a "practice run"	Flustra foliacea, weaverfish, comb jelly
2	OWF_T7	Beam Trawl	22	12:17 (started hauling)	677	05/04/2022	15	Small amount of plastic	High abundance of weaverfish (over 100) and Alcyonidium diaphanum, one brittle star
3	OWF_T6	Beam Trawl	20	17:36 (started hauling)	796	06/04/2022	4	Not enough sample to count as a sample (needs to be at least 5L), twine was re-tied around codend as a new addition ready to deploy again	Flustra foliacea, Alcyonidium diaphanum
4	OWF_T6_A	Beam Trawl	20	19:10 (started hauling)	702	06/04/2022	80	This position was moved 50m east from the original trawl line after the first attempt was unsuccessful. Transit to shelter after this station due to weather becoming un-workable	3 large boulders recovered in this trawl colonised with Alcyonidium digitatum (24.5kilos) also present was Alcyonidium diaphanum, scorpion fish, flatfish including Pleuronectes platessa and velvet swimming crabs
5	OWF_T3	Beam Trawl	38	In: 06:14 SOL: 06:18 EOL: 06:38	723	10/04/2022	320 (including high amount of sediment)	-	Razor clams
6	OWF_T2	Beam Trawl	15	Shoot: 15:58 SOL: 16:02 EOL: 16:23	588	10/04/2022	4 (N/S)	Not enough sample to count as a sample (needs to be at least 5L). Location moved 50m west	Weaverfish, Flustra foliacea, Alcyonidium diaphanum
7	OWF_T2_A	Beam Trawl	15	Shoot: 17:22 SOL: 17:27 EOL: 17:53	671	10/04/2022	5.5	-	Merlangius merlangus
8	OWF_T5	Beam Trawl	20	Shoot: 07:29 SOL:07:33 EOL: 07:47	508	11/04/2022	100	-	Asterias rubens, Merlangius merlangus, Alcyonidium diaphanum, Alcyonidium digatatum
9	OWF_T4	Beam Trawl	20	Shoot: 12:42 SOL: EOL: 13:09	621	11/04/2022	100	-	50L of Alcyonidium diaphanum
10	OWF_T9	Beam Trawl	22m	Shoot: 07:40 Seabed: 07:44 EOL: 08:00	517.64	12/04/2022	140	-	Large rocks, some with Alcyonidium digitatum
11	OWF_T1	Beam Trawl	10m	Shoot: 15:36 On seabed: 15:39 SOL: 15:43 EOL: 16:10	812.59	13/04/2022	40	-	Abundance of weaverfish and Alcyonidium diaphanum

Epibenthic Trawl Field Weight Logs

			Geodetics: WGS	84 UTM31N 3	°E			
Station Name	OWF_T1	Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)
Fix Name		Ref sp. Kept?	Υ	Shoot	15:36	1	368 472.2	5 933 352.6
Distance		Photographed?	Υ	Lock	15:43	3	368 460.1	5 933 585.0
Vessel Speed		Sieve Mesh Size	5mm	Haul	16:10	4	368 150.2	5 934 336.2
Trawl Length (m)	812.59	Sample Volume	40L					
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam Trawl		Water Depth (m)	9.8 – 10.4
Notes								
Storage Equipment Weights	Bag = 7g 1L bucket = 35g 3L bucket = 90g 5L bucket = 140g 10L bucket = 300g							
			Bulk Tra	awl Data				
Taxon			Kept (Y/N)	Count	Weight (g)*	Sub Vol.	Raised Count	Raised Weight
Alcyonidium diaphanum			N	Р	13700 (6x5L)			
	Flustra foliac	еа	N	Р	960 (5L)			
Hydrozoa		N	Р	920 (10L)				
	Gastropoda		N	Р	/			
Ascidiacea			Y	5	50 (1L)			
Sepiola atlantica			N	7	50 (1L)			
Pisidia longicornis			N N	138	50 (1L) 260 (3L)			
Crangon crangon Shrimp #1			N	2	40(1L)			
Liocarcinus holsatus			N	1	60 (1L)			
Munida			Y	3	40 (1L)			
Echiichthys vipera			N N	414	1000 (5L)			
Agonus cataphractus			N	1	50 (1L)			
Pomatoschistus pictus			N	2	40 (1L)			
Hyperoplus lanceolatus			N	1	140 (3L)			
Sandeel #1			Υ	44	240 (3L)			
Pleuronectes platessa			N	9	200 (3L)			
Microstomus kitt		N	1	120 (3L)	1			
Sandeel #2		Y	5	50 (1L)				
Limanda limanda			Y	10	650 (5L)	1		
Flatfish #J			Υ	6	50 (3L)			
Macropodia ?			Υ	5	40 (1L)	1		
Inachus			Y	2	40 (1L0			1

300 (3L)

Arnoglossus Laterna?

st Taxon weights include the weight of containers, i.e. buckets or bags, used to weigh the organisms.

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

			Geodetics: WGS	84 UTM31N 3	°E				
Station Name	OWF_T2_A	Processed?	Y	0 1 0 11113 111 3	Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)	
Fix Name		Ref sp. Kept?	Υ	Shoot	17:21	1	376 724.5	5 940 437.8	
Distance		Photographed?	Υ	Lock	17:27	3	376 725.2	5 940 395.8	
Vessel Speed		Sieve Mesh Size	5mm	Haul	17:49	4	376 705.9	5 939 724.6	
Trawl Length (m)	671.45	Sample Volume	5.5L						
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	13.8 - 15.8	
Notes	Plastic litter present.								
Storage Equipment Weights	Bag = 7g 1L bucket = 35g 3L bucket = 90g 5L bucket = 140g 10L bucket = 300g Bulk Trawl Data								
			Bulk ITa	IWI Dala	Weight	Sub	Raised	Raised	
	Taxon		Kept (Y/N)	Count	(g)*	Vol.	Count	Weight	
A	lcyonidium diap	hanum	N	Р	1200 (3L)				
	Flustra foliac	rea	N	Р	300 (5L)				
Hydrozoa			N	P	140 (3L)				
Sepiola atlantica		N	7	60 (1L)					
Pleurobranchia pileus		N	2	40 (1L)					
Macropodia		Y	1	40 (1L)					
Asterias rubens			N	7	420 (3L)				
Balanus crenatus			N	4	/				
Liocarcinus depurator			N	3	180 (3L)				
Liocarcinus holsatus			N N	6 202	200 (3L) 400 (3L)				
Crangon crangon			N N	305	1100 (3L)				
Echiichthys vipera Pholis gunnellus			N	1	120 (3L)				
Merlangius merlangus			Y	1	260 (3L)				
Sandeel #J			Y	35	100 (1L)				
Pomatoschistus pictus			N	4	20 (1L)	<u> </u>			
Solea solea		N	4	60 (1L)					
Platichthys flesus			N	13	200 (3L)				
Limanda limanda			N	9	440 (3L)				
Pleuronectes platessa			N	4	200 (3L)				
Microstomus kitt			N	3	120 (120)				
			+	+ -	· · · · · · · · · · · · · · · · · · ·	 	1	+	

^{*} Taxon weights include the weight of containers, i.e. buckets or bags, used to weigh the organisms.

Flatfish #J

Benthic Ecology OWF Area Results Report (Vol. 1)

UK4855H-824-RR-01

			Geodetics: WG	\$84 LITM31N 3	3°F				
Station Name	OWF_T3	Processed?	Y	504 01W31W	Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)	
Fix Name		Ref sp. Kept?	Υ	Shoot	07:14	1	377 899.0	5 934 181.8	
Distance		Photographed?	Υ	Lock	07:18	3	377 917.3	5 934 078.0	
Vessel Speed		Sieve Mesh Size	5mm	Haul	07:38	4	378 073.7	5 933 371.8	
Trawl Length (m)	723.33	Sample Volume	320L						
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam 1	rawl	Water Depth (m)	38-40	
Notes	Bag + Label (B+L) = 2g								
Storage Equipment Weights	Bag = 7g 1L bucket = 35g 3L bucket = 90g 5L bucket = 140g 10L bucket = 300g Bulk Trawl Data								
				dWI Dala	Weight	Sub	Raised	Raised	
	Taxon		Kept (Y/N)	Count	(g)*	Vol.	Count	Weight	
Al	cyonidium diap		N	Р	2900 (5L)				
Flustra foliacea			N	Р	500 (3L)				
	Hydrozoa		N	Р	300 (3L)				
	Gastropoda		N	р	60 (1L)				
Bryozoa (Dead?)			Y N	P P	20 (11)				
Alcyonidium parasiticum Porifera			Y	P	20 (1L) 100 (1L)				
	Serpulidae	2	N	7	/				
Ophelia			Y	2	7 (Bag)				
Nephtyidae			Y	13	80 (1L)				
Actiniaria			N	5	120 (1L)				
Sepiola atlantica			N	8	60 (1L)				
Ensis			Y®	7	130 (2x1L)				
Nudibranchia			N	1	8 (Bag)				
Clausinella fasciata			Υ	1	9 (Bag)				
Abra prismatica			Y	2	3 (B+L)				
Moerella donacina			Υ	2	4 (B+L)				
Mactridae			Y	57	140 (1L)				
Sipuncula ?			Y	2	3 (B+L)				
Holothuroidea			Y	1	2 (B+L)	-			
Echinocyamus pusillus			N N	3 19	2 (B+L) 1000 (5L)				
Asterias rubens			Y	19	2 (B+L)				
Ophiura Inachus			Υ	1	3 (B+L)				
Ebalia			Y	3	4 (B+L)				
Liocarcinus depurator			Y	31	500 (5L)				
Balanus crenatus			N	Hundreds	,				
	Crepidula fornicata			3	3 (B+L)				
	Crangon crangon			85	300 (5L)				
Liocarcinus holsatus			Y	14	260 (5L)				
Liocarcinus #J		Y	27	60 (1L)	ļ				
Shrimp #1			N	9	60 (1L)	ļ			
Pagurus bernhardus			Y	25	320 (3L)				
Branchiostoma lanceolata			Y	4	50 (1L)	-			
Callionymus lyra			Y	7	300 (5L)	 			
Eutrigla gurnardus			Υ	1	120 (3L)		İ	İ	

			Geodetics: WGS	884 UTM31N	3°E					
Station Name	OWF_T3	Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)		
Fix Name		Ref sp. Kept?	Y	Shoot	07:14	1	377 899.0	5 934 181.8		
Distance		Photographed?	Υ	Lock	07:18	3	377 917.3	5 934 078.0		
Vessel Speed		Sieve Mesh Size	5mm	Haul	07:38	4	378 073.7	5 933 371.8		
Trawl Length (m)	723.33	Sample Volume	320L							
Log method	Distance	stance Log frequency 1 Second Sampling Device 2m Beam Trawl Water Depth (m)								
Notes		Bag + Label (B+L) = 2g								
Storage Equipment Weights	Bag = 7g 1L bucket = 35g 3L bucket = 90g 5L bucket = 140g 10L bucket = 300g									
			Bulk Tra	awl Data	_					
	Taxon		Kept (Y/N)	Count	Weight (g)*	Sub Vol.	Raised Count	Raised Weight		
,	Agonus cataphr	actus	Υ	36	280(3L)					
Н	yperoplus lance	eolatus	Y	13	600 (5L)			.0		
	Sandeel #1	•	Υ	1	120 (3L)					
F	Pomatoschistus	pictus	Υ	2	40 (1L)					
F	Pleuronectes pla		N	1	180 (3L)					
	Microstomus		N	1	140 (3L)					
	Solea solea		N	11	500 (3L)					
	Limanda		Υ	2	160 (3L)					
	Limanda liman		Υ	13	780 (5L)					
	Platichthys fle	rsus .	Υ	4	300 (3L)		1			

^{*} Taxon weights include the weight of containers, i.e. buckets or bags, used to weigh the organisms.

	Geodetics: WGS84 UTM31N 3°E											
Station Name	OWF_T4	Processed?	Y	564 611013110 5	Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)				
Fix Name		Ref sp. Kept?	Y	Shoot	12:42	1	384 558.1	5 935 982.1				
Distance		Photographed?	Y	Lock	12:46	3	384 544.8	5 936 017.4				
Vessel Speed		Sieve Mesh Size	5mm	Haul	13:09	4	384 349.2	5 936 607.4				
Trawl Length (m)	621.57	Sample Volume	100L									
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	16.9-17.5				
Notes			_		•							
Storage Equipment Weights			-	Bag = 7g 1L bucket = 3 3L bucket = 9 5L bucket = 14 10L bucket = 3	0g 40g							
			Bulk Tra	awl Data	NA/-1-l-t	Cul	Battand	Batterial				
	Taxon		Kept (Y/N)	Count	Weight (g)*	Sub Vol.	Raised Count	Raised Weight				
Al	cyonidium dia _l	ohanum	N	Р	30200 (12x5L)		Count					
	Flustra folia	сеа	N	Р	2420 (2x5L)							
Hydrozoa			N	Р	2820 (2x5L)							
Ald	cyonidium pard	asiticum	N	Р	120 (3L)							
	Gastropoda		N	Р	/							
	Animalia #		N	P	/							
	Ascidiacea Porifera	#J	N N	1 P	40 (1L) 140 (1L)							
	Fucus?		Y	P	50 (1L)							
	Edwardsiida	ne?	Y	1	40 (1L)							
	Platyhelmint		N	1	50 (1L)							
	Sepiola atlan	ntica	N	4	50 (1L)							
	Ensis		Υ	117	740 (2x3L)							
	Mactridae		Y	222	800 (3L)							
	Arcopagia cro Clausinella fas		Y	16 9	440 (3L) 50 (1L)							
	Venus Venus	sciutu	Y	1	70 (1L)							
	Dosinia		Y	2	50 (1L)							
	Tellinidae	2	Υ	12	50 (1L)							
	Astartidae	?	Υ	1	40 (1L)							
	Euspira niti		Υ	4	40 (1L)							
	Naticidae		Y	1	40 (1L)							
	Asterias rubens		N Y	3	840 (5L) 50 (1L)							
	Macropodia Inachus?		Y	2	40 (1L)							
L	iocarcinus dep		N	5	120 (3L)			1				
	Liocarcinus ho		N	5	140 (3L)							
	Idotea		Υ	2	40 (1L)							
-	Pagurus bernh		Υ	17	280 (3L)							
	Balanus cren		N	Tens	/							
	Crangon crar		N	39	60 (1L)							
	Shrimp #3		Y	8 83	40 (1L) 300 (1L)		+	+				
Nephtyidae		I	رن	300 (TL)	1	1	1					

			Geodetics: WGS	84 UTM31N 3	3°E			
Station Name	OWF_T4	Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m
Fix Name		Ref sp. Kept?	Υ	Shoot	12:42	1	384 558.1	5 935 982.1
Distance		Photographed?	Υ	Lock	12:46	3	384 544.8	5 936 017.4
Vessel Speed		Sieve Mesh Size	5mm	Haul	13:09	4	384 349.2	5 936 607.4
Trawl Length (m)	621.57	Sample Volume	100L					
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	16.9-17.5
Notes								
Storage Equipment				Bag = 7g 1L bucket = 3 3L bucket = 9				
Weights				5L bucket = 14 LOL bucket = 3	10g			
			Bulk Tra	awl Data				
	Taxon		Kept (Y/N)	Count	Weight (g)*	Sub Vol.	Raised Count	Raised Weight
Bro	anchiostoma lai	nceolata	N	3	40 (1L)			
	Agonus cataphi	ractus	N	2	160 (3L)			
	Callionymuys	lyra	N	10	200 (3L)			
Н	yperoplus lance		Υ	2	220 (3L)			
	Sandeel #1		Υ	8	180 (3L)			
	omatoschistus	•	N	7	50 (L)			
F	Pleuronectes pla		Y	16	400 (3L)			
	Limanda lima	nda	Υ	2	200 (3L)			

^{*} Taxon weights include the weight of containers, i.e. buckets or bags, used to weigh the organisms.

			Geodetics: WG	884 UTM31N 3	°E			
Station Name	OWF_T5	Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)
Fix Name		Ref sp. Kept?	Υ	Shoot	07:29	1	387 965.0	5 942 333.5
Distance		Photographed?	Υ	Lock	07:33	3	387 954.3	5 942 500.6
Vessel Speed		Sieve Mesh Size	5mm	Haul	07:47	4	387 930.7	5 943 008.9
Trawl Length (m)	508.85	Sample Volume	100L					
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam ¹	Γrawl	Water Depth (m)	18.6-19.2
Notes			Pl	astic litter pres	sent.			
Storage Equipment Weights		Bag = 7g 1L bucket = 35g 3L bucket = 90g 5L bucket = 140g 10L bucket = 300g						
			Bulk Tr	awl Data				
	Taxon		Kept (Y/N)	Count	Weight (g)*	Sub Vol.	Raised Count	Raised Weight
Ald	cyonidium diap	phanum	N	Р	18800 (7x5L)			
A	Alcyonium digi	tatum	N	Р	22400 (7x5L)			
Alcyonidium parasiticum			N	Р	12 (Bag)			
Porifera		N	Р	2400 (3L)				
Flustra foliacea		N	Р	1100 (5L)				
	Hydrozoa Animalia #		N N	P P	400 (5L)			
	Asterias rub		N	190	7000 (2x5L)			
	Ascidiacea	3	Υ	13	140 (1L)			
	Nudibranch		N	28	60 (1L)			
	Sepiola atlan	tica	N	4	40 (1L)			
	Hiatella arct		Υ	8	40 (1L)			
	Mytilus edu		Υ	1	40 (1L)			
	Venerupis corr		Υ	4	40 (1L)			
<i>H</i>	Rhizorus acumi		N	2	40 (1L)			
	Gastropod Mytilidae #		Y N	2	40 (1L) 40 (1L)			
	Ophiothrix fro		Y	2	40 (1L)			
	Bryozoa	.g	Y	P	/			
	Mytilidae		Υ	1	3 (B+L)			
	Sabellaria spin		Y	Hundreds	/			
	Scale worr		Y	3	3 (B+L)			
	Balanus cren		N	Tens	/			
	Macropodi	18	Y	5 8	80 (2x1L)			
	Hyas Pisidia longica	ornis	N N	4	55 (2x1L) 40 (1L)			
	Actiniaria		N	2	40 (1L) 40 (1L)			
	Munida		Y	1	3 (B+L)			
	Necora pub	er	N	16	3200 (5L)			
L	iocarcinus dep		N	8	220 (3L)			
	Liocarcinus	#J	N	1	40 (1L)			
	Cancer pagu	rus	N	8	1900 (2x5L + 1x3L)			

			Geodetics: WGS	884 UTM31N 3	°E					
Station Name	OWF_T5	Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)		
Fix Name		Ref sp. Kept?	Υ	Shoot	07:29	1	387 965.0	5 942 333.5		
Distance		Photographed?	Υ	Lock	07:33	3	387 954.3	5 942 500.6		
Vessel Speed		Sieve Mesh Size	5mm	Haul	07:47	4	387 930.7	5 943 008.9		
Trawl Length (m)	508.85	Sample Volume	100L							
Log method	Distance	Distance Log frequency 1 Second Sampling Device 2m Beam Trawl Water Depth (m)								
Notes		Plastic litter present.								
Storage Equipment Weights		Bag = 7g 1L bucket = 35g 3L bucket = 90g 5L bucket = 140g 10L bucket = 300g Bulk Trawl Data								
			Bulk III	dWI Data	Weight	Sub	Raised	Raised		
	Taxon		Kept (Y/N)	Count	(g)*	Vol.	Count	Weight		
	Crangon cran	aon	N	87	180 (3L)	V 01.	Count	Weight		
	Crepidula forni		N	1	40 (1L)					
	Pagurus bernho	ardus	Υ	1	40 (1L)					
	Shrimp #1		N	172	340 (3L)					
	Sandeel #1		Υ	1	40 (1L)					
	Pholis gunne		N	4	85 (1L)					
Λ	Aerlangius meri	langus	N	1	80 (1L)					
	Fish #1		Y	1	140 (1L)					
	Agonus cataphi		N	6	180 (3L)	1				
	lyoxocephalus s	•	N N	24	700 (3L)	1				
	Pomatoschistus pictus			2	45 (1L)					
<i>\</i>	Pleuronectes pla Microstomus		Y N	29 1	1100 (3L)					
	Limanda lima		N Y	1	180 (3L) 140 (3L)					
	Liiilulluu ilillu	iiuu	ī	1	140 (3L)	1	1			

Limanda limanda Y 1 14
* Taxon weights include the weight of containers, i.e. buckets or bags, used to weigh the organisms.

			Geodetic	s: WGS84 UTM	131N 3°E					
Statio n Name	OWF_T6_A	Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)		
Fix Name		Ref sp. Kept?	Υ	Shoot	18:44	1	390 563.2	5 933 272.7		
Distan ce		Photographed?	Υ	Lock	18:46	3	390 589.3	5 933 290.0		
Vessel Speed		Sieve Mesh Size	5mm	Haul	19:10	4	390 800.0	5 932 619.8		
Trawl Length (m)	702.59	Sample Volume	80L							
Log metho d	Distance	Log frequency	1 Second	Sampling Device	2m Beam 1	- Trawl	Water Depth (m)	19.4-19.1		
Notes	First attempt wa	as a no sample (4L ca the	• •				•	he beam down to		
Storag e Equip ment Weigh ts		the middle hole. One large <i>Cancer pagurus</i> and 3 boulders. Bag = 7g 1L bucket = 35g 3L bucket = 90g 5L bucket = 140g 10L bucket = 300g								

	В	ulk Trawl Dat	a			
Taxon	Kept (Y/N)	Count	Weight (g)*	Sub Vol.	Raised Count	Raised Weight
Flustra foliacea	N	Р	1530 (5L)			
Alcyonidium diaphanum	N	Р	13200 (5x5L)			
Alcyonium digitatum	Ν	Р	24,500 (6x5L + 1x3L)			
Hydrozoa (Sertulariidae present)	N	Р	440 (3L)			
Alcyonidium (?)	Υ	Р	220 (3L)			
Porifera	Υ	Р	1410 (2x3L)			
Alcyonidium parasiticum	N	Р	18 (bag)			
Animalia #E	N	Р	On Hydrozoa			
Ascidiacea	Y	6	37 (Bag)			
Actiniaria	Υ	10	100 (1L)			
Sepiola atlantica	N	4	40 (1L)			
Nudibranchia	Y	6	100 (1L)			
Hiatella arctica	Y	4	13 (Bag)			
Polititapes rhomboides	Υ	1	9 (Bag)			
Rhizorus Acuminatus (?)	Υ	1	10 (Bag)			
Sabellaria spinulosa	Υ	Tens	/			
Scaleworm	Υ	1	12 (Bag)			
Asterias rubens	N	114	3300 (5L)			
Microstomus kitt	Y	1	60 (1L)			
Cancer pagurus	Υ	2	480 (3L)			
Hyas areneus	N	1	140 (3L)			
Liocarcinus holsatus	Y	6	240 (3L)			
Necora puber	Υ	29	2300 (2x5L)			
Liocarcinus (?)	Υ	1	10 (Bag)			
Inachus (?)	Y	2	50 (1x1L + 1xBag)			
Crab #1	Y	1	11 (Bag)			
Macropodia	Υ	5	40 (1L)			
Crangon crangon	N	97	140 (1L)			_
Shrimp #1	Υ	134	300 (3L)			
Shrimp #2	Υ	1	10 (Bag)			

UK4855H-824-RR-01

			Geodetic	s: WGS84 UTN	131N 3°E				
Statio n Name	OWF_T6_A	Processed?	Υ		Time (UTC; hh:mm)	Fix#	Easting (m)	Northing (m)	
Fix Name		Ref sp. Kept?	Υ	Shoot	18:44	1	390 563.2	5 933 272.7	
Distan ce		Photographed?	Υ	Lock	18:46	3	390 589.3	5 933 290.0	
Vessel Speed		Sieve Mesh Size	5mm	Haul	19:10	4	390 800.0	5 932 619.8	
Trawl Length (m)	702.59	Sample Volume	80L						
Log metho d	Distance	Distance Log frequency 1 Second Sampling Device 2m Beam Trawl Water Depth (m) 19.4-1							
Notes	First attempt w	as a no sample (4L ca the			noved the shackl			he beam down to	
Storag e Equip ment Weigh ts				Bag = 7 1L bucket 3L bucket 5L bucket = 10L bucket	= 35g = 90g = 140g				
			В	ulk Trawl Data	1				
	Taxon	ı	Kept (Y/N)	Count	Weight (g)*	Sub Vol.	Raised Count	Raised Weight	
	Pleuronectes _I	platessa	N	9	375 (3L)				
	Solea so		N	1	200 (3L)				
	Pomatoschisti		Υ	5	50 (1L)				
	Pholis gunr		Υ	7	150 (1L)				
	Callionymu		Y	2	100 (1L)				
	Molva mo		Υ	1	50 (1L)				
	Agonus catap		Υ	1	60 (1L)				
	Taurulus bu	ıbalıs	Υ	16	400 (3L)	ļ			

10

430 (3L)

Limanda limanda

^{*} Taxon weights include the weight of containers, i.e. buckets or bags, used to weigh the organisms.

UK4855H-824-RR-01

			Geodetics: WG	S84 UTM31N 3	3°E			
Station Name	OWF_T7	Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)
Fix Name		Ref sp. Kept?	Υ	Shoot	11:49	1	397 234.8	5 940 639.
Distance		Photographed?	Υ	Lock	11:51	3	397 296.7	5 940 733.
Vessel Speed		Sieve Mesh Size	5mm	Haul	12:10	4	397 189.9	5 941 402.
Trawl Length (m)	677.67	Sample Volume	15L					
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam 1	[rawl	Water Depth (m)	22.2
Notes		Practice atte	empt before this	one was 1.5k	m from SOL. So	me plast	tic litter.	
Bag = 7g Storage								
	Taxon		Kept (Y/N)	Count	Weight (g)*	Sub	Raised	Raised
						Vol.	Count	Weight
	Flustra folia		Y	P	420 (3L)			
Alcyonidium diaphanum Alcyonidium parasiticum		Υ	P	4200 (5L)				
			Y	P P	110 (3L)			
Alcyonium digitatum		Y	P	190 (3L)				
		Y	P	140 (3L) 160 (3L)	-			
			Y	1	16 (Bag)			
			Y	1	7 (Bag)			
	Sertulariidae Hydrozoa Ascidiacea Ophiocten affinis Asterias rubens		Y	3	120 (1L)			
	Mactridae		Y	1	8 (Bag)			
	Pleurobrachia		Y	4	11 (Bag)			
	Sepiola atlan		Υ	8	60 (1L)			
	Pisidia longico		Υ	2	8 (Bag)			
	Macropodi	a	Υ	1	7 (Bag)			
	Liocarcinus hol	satus	Υ	3	55 (1L)			
	Hyas arene	us	Υ	1	130 (3L)			
	Hyas coarcta		Υ	1	200 (3L)			
	Crangon cran		Υ	70	210 (3L)			
	Shrimp #1		Υ	3	60 (1L)			
<u> </u>	Agonus cataphi		Υ	1	50 (3L)			
	Echiichthys vi		Υ	109	720 (3L)			
	Pleuronectes pl		Υ	4	280 (3L)	-		
	Solea sole		Υ	2	120 (3L)	1		1
	Arnoglossus la		Y	4	180 (3L)	 		
	Platichthys pl Microstomus		Y	3 6	160 (3L) 120 (3L)		-	
	Callionymus		Y	1	8 (Bag)	 	1	
	Serpulidae	-	Y	Tens	On Hyas coarctatus			
	Animalia #	 E	у	Р	On			

Hydrozoa

^{*} Taxon weights include the weight of containers, i.e. buckets or bags, used to weigh the organisms.

Geodetics: WGS84 UTM31N 3°E												
Station				384 UTIVISTIN	Time (UTC;		Easting	Northing				
Name	OWF_T7	Processed?	Υ		hh:mm)	Fix #	(m)	(m)				
Fix Name		Ref sp. Kept?	Υ	Shoot	11:49	1	397 234.8	5 940 639.5				
Distance		Photographed?	Υ	Lock	11:51	3	397 296.7	5 940 733.0				
Vessel Speed		Sieve Mesh Size	5mm	Haul	12:10	4	397 189.9	5 941 402.2				
Trawl Length (m)	677.67	Sample Volume	15L									
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	22.2				
Notes												
Storage Equipment Weights												
Ü			Fish Lei	ngth Data								
	Taxon		Kept (Y/N)	Length (cm)	Count							
	Agonus cataph	ractus	Y	10	1							
	Echiichthys vi		Y	10	10							
	Echiichthys vi	•	N	12	11							
	Echiichthys vi	•	N	13.5	1							
	Echiichthys vi	ipera	N	9	12							
Echiichthys vipera			N	13	2							
Echiichthys vipera			N	12.5	6							
Echiichthys vipera			N	11	3							
Echiichthys vipera			N	10.5	1							
	Echiichthys vi	ipera	N	2.5	2							
	Echiichthys vi	ipera	N	9.5	8							
	Echiichthys vi	ipera 💮 💮	N	11.5	1							
	Echiichthys vi		N	8	3							
	Echiichthys vi	•	N	7	5							
	Echiichthys vi		N	6	10							
	Echiichthys vi		N	3	11							
	Echiichthys vi		N	4	25							
	Echiichthys vi		N	6.5	1							
	Echiichthys vi		N	3.5	5							
	Echiichthys vi		N	5	1							
	Echiichthys vi		N	4.5	1							
	Pleuronectes pi		Y	19.5	1							
	Pleuronectes pi		Y	20	1							
	Pleuronectes pi			11 9	1							
	Pleuronectes pi Solea sole		Y	9.5	1 1							
			Y	9.5	1							
	Solea solea Arnoglossus laterna			14	1							
Arnogiossus laterna Arnogiossus laterna			Y	13.5	1							
	Arnoglossus la		Y	13.3	1							
	Arnoglossus la		Y	6.5	1							
	Arnoglossus la		Y	5	1							
	Platichthys p		Y	19	1							
	Platichthys p		Y	7.5	1							
	Platichthys p		Υ	8	1							
	Microstomus		Y	7	1							
	Microstomus		Υ	6	1							
	Microstomus	s kitt	Υ	4	1							

			Geodetics: WG	S84 UTM31N	3°E				
Station Name	OWF_T7	Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)	
Fix Name		Ref sp. Kept?	Υ	Shoot	11:49	1	397 234.8	5 940 639.5	
Distance		Photographed?	Υ	Lock	11:51	3	397 296.7	5 940 733.0	
Vessel Speed		Sieve Mesh Size	5mm	Haul	12:10	4	397 189.9	5 941 402.2	
Trawl Length (m)	677.67	Sample Volume	15L						
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Ream Trawl		Water Depth (m)	22.2	
Notes									
Storage Equipment Weights									
Fish Length Data									
	Taxon		Kept (Y/N)	Length (cm)	Count				
	Microstomus	kitt	Υ	8	1				
	Callionymus	lyra	Υ	3	1				

			Geodetics: WGS	84 UTM31N 3	R°F			
Station Name	OWF_T9	Processed?	Y	011113111	Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)
Fix Name		Ref sp. Kept?	Υ	Shoot	07:40	1	401 226.2	5 936 615.8
Distance		Photographed?	Υ	Lock	07:44	3	401 256.1	5 936 524.9
Vessel Speed		Sieve Mesh Size	5mm	Haul	08:00	4	401 451.7	5 936 045.6
Trawl Length (m)	517.64	Sample Volume	140L			•		
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	22.4-22.2
Notes					•			
Storage Equipment Weights			1	Bag = 7g 1L bucket = 3 3L bucket = 9 5L bucket = 14 10L bucket = 3	0g 40g			
			Bulk Tra	awl Data	NA/-1-l-t	Cul	Batterial	Between
	Taxon		Kept (Y/N)	Count	Weight (g)*	Sub Vol.	Raised Count	Raised Weight
Ald	cyonidium diap	phanum	N	Р	6500 (3x5L)			
A	Alcyonium digi	tatum	N	Р	24300 (7x5L)			
	Flustra folia	сеа	N	Р	2200 (10L)			
Hydrozoa			N	Р	1600 (10L)			
Alcyonidium parasiticum		N	Р	80 (1L)				
	Porifera		N	Р	2500 (5L)			
	Asterias rub		N	365	5400 (2x5L)			
	Ascidiacea		Y	27	200 (1L)			
	Actiniaria		N	32	120 (1L)			
	Sepiola atlan		N	6	60 (1L)			
	Nudibranch Rhizorus acum		N N	17 6	100 (2x1L)			
	Pectinidae		/®	1	40 (1L) 60 (1L)			
	Nephtyida		Y	1	40 (1L)			
	Actinopteryg		N	P	/			
	Animalia #		N	Р	/			
	Sabellaria spin	ulosa	Υ	Tens	/			
	Hiatella arct		N	11	50 (1L)			
	Abra alba	1	Y®	2	40 (1L)			
	Ebalia		Y	1	3 (B+L)	1	<u> </u>	
	olititapes rhom		Y	1	3 (B+L)			
F	Pycnogonum lit Pisidia longica		Y	2 36	3 (B+L)			
	Balanus bala		N N	Tens	80 (2x1L)			+
	Balanus cren		N	Tens	/			
	Bryozoa		Y	P	/			
Ps	sammechinus i	miliaris	Y®	1	4 (B+L)			
	Ophiocten af		N	1	2 (B+L)			
	Ophiothrix fro		N	10	40 (1L)			
	Pagurus bernh		N	1	25 (1L)			
<u> </u>	Necora pub	per	N	7	500 (5L)			
	Cancer pagu	rus	N	9	1160 (x3L + 1x5L)			

			Geodetics: WGS	84 LITM31N 3	₿°F			
Station Name	OWF_T9	Processed?	Y	04 011113111 3	Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)
Fix Name		Ref sp. Kept?	Υ	Shoot	07:40	1	401 226.2	5 936 615.8
Distance		Photographed?	Υ	Lock	07:44	3	401 256.1	5 936 524.9
Vessel Speed		Sieve Mesh Size	5mm	Haul	08:00	4	401 451.7	5 936 045.6
Trawl Length (m)	517.64	Sample Volume	140L					
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	22.4-22.2
Notes								
Storage Equipment Weights			1	Bag = 7g 1L bucket = 3 3L bucket = 9 5L bucket = 14 .0L bucket = 3	0g 10g			
			Bulk Tra	wl Data				
	Taxon		Kept (Y/N)	Count	Weight (g)*	Sub Vol.	Raised Count	Raised Weight
	Hyas arenei	IS	Υ	4	240 (1L)			
	Macropodi	a	Υ	16	1200 (3L)			
	Inachus		Υ	4	50 (1L)			
	Liocarcinus hol	satus	N	10	240 (3L)			
L	iocarcinus depu	ırator	N	7	100 (1L)			
	Liocarcinus	#J	N	4	40 (1L)			
	Munida		Υ	44	60m (1L)			
	Crangon cran	gon	N	116	248 (3L)			
	Polynoidae		Υ	1	2 (B+L)			
	Shrimp #1		N	223	230 (3L)			
	Shrimp #2		Υ	1	50 (1L)			
	Pholis gunne		N	1	60 (1L)			
P	omatoschistus		N	4	50 (1L)			
	Callionymus I		N	14	220 (1L)			
	yoxocephalus s		N	12	340 (1L)		<u> </u>	
, ,	Agonus cataphi		N	4	100 (1L)		<u> </u>	
	Solea solea		N	5	90 (1L)			
	Microstomus		N	1	160 (3L)			
F	Pleuronectes pla		N	8	500 (5L)			
	Limanda lima	nda	Υ	30	1400 (5L)			

^{*} Taxon weights include the weight of containers, i.e. buckets or bags, used to weigh the organisms.

APPENDIX I - MACROFAUNAL SPECIES LIST

Benthic Macrofauna Infauna Matrix

Benthic Macrofauna Infauna

Benthic Macrofauna Epifauna Matrix

Benthic Macrofauna Epifaur

Epibenthic Trawl Matrix

Epibenthic Trawl Matrix.pdf

Benthic Macrofauna Biomass Matrix

Benthic Macrofauna Biomas:

Epibenthic Trawl Biomass Matrix

Epibenthic Trawl Biomass Matrix.pdf

2210	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphiaID	Major Group	Authority	OWF_01_F1	OWF_03_F1	OWF_04_F1	OWF_05_F1	OWF_06_F1	OWF_07_F1	OWF_08_F1
-	Other minor phyla	-			0.1328	0.0007		0.0025	0.0001
1267	Cnidaria	Hatschek, 1888			0.0263				
882	Annelida	Lamarck, 1802 [as Annelides]							
883	Polychaeta	Grube, 1850	0.2759	0.2430	5.5308	0.1710	0.2108	1.4947	0.1573
2036	Oligochaeta	Grube, 1850			0.0013				
1065	Arthropoda	von Siebold, 1848			0.0018				
1066	Crustacea	Brünnich, 1772	0.0027		2.0415		0.0047		0.0074
51	Mollusca				28.2790	0.2468	0.8520	19.2917	0.0185
1806	Echinodermata	Klein, 1778			0.0247	0.0407			
1821	Chordata	Haeckel, 1874							
	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphialD	Major Group	Authority	OWF_09_F1	OWF_10_F1	OWF_11_F1	OWF_12_F1	OWF_13_F1	OWF_14_F1	OWF_15_F1
-	Other minor phyla	-	0.0037		0.0025			0.0001	
1267	Cnidaria	Hatschek, 1888							
	Annelida	Lamarck, 1802 [as Annelides]							
883	Polychaeta	Grube, 1850	0.4216	0.2016	0.2471	0.3608	0.1011	0.0580	0.1548
	Oligochaeta	Grube, 1850							
1065	Arthropoda	von Siebold, 1848		0.0008					
1066	Crustacea	Brünnich, 1772	0.0285	0.0117	0.0038	0.0177	0.0453		0.0367
51	Mollusca		0.0078	0.0008	0.0009		0.3861		0.5746
1806	Echinodermata	Klein, 1778							55.5300
1821	Chordata	Haeckel, 1874							
2210	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphiaID	Major Group	Authority	OWF_17_F1	OWF_18_F1	OWF_19_F1	OWF_20_F1	OWF_21_F1	OWF_22_F1	OWF_23_F1
-	Other minor phyla	-					0.0001		0.1045
1267	Cnidaria	Hatschek, 1888						0.0521	
882	Annelida	Lamarck, 1802 [as Annelides]							
883	Polychaeta	Grube, 1850	0.0909	0.2569	0.3838	0.6714	0.0650	0.4024	0.2902
	Oligochaeta	Grube, 1850							
1065	Arthropoda	von Siebold, 1848							
1066	Crustacea	Brünnich, 1772	0.0565	0.0006	0.0038	0.0668		0.0175	0.0030
51	Mollusca			0.0062	0.8101		1.3184	0.0088	0.1524
1806	Echinodermata	Klein, 1778	34.9221		0.0527				
1821	Chordata	Haeckel, 1874							

2210	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphiaID	Major Group	Authority	OWF_24_F1	OWF_25_F1	OWF_26_F1	OWF_27_F1	OWF_29_F1	OWF_30_F1	OWF_31_F1
-	Other minor phyla	-	0.0051			0.0001	0.0641		0.0065
1267	Cnidaria	Hatschek, 1888					0.0169		
882	Annelida	Lamarck, 1802 [as Annelides]					0.0001		
883	Polychaeta	Grube, 1850	0.4112	0.3236	0.3771	0.5933	1.7650	0.2674	0.3349
2036	Oligochaeta	Grube, 1850				0.0001	0.0001		
1065	Arthropoda	von Siebold, 1848							
1066	Crustacea	Brünnich, 1772	0.0232	0.0017	0.0012	0.0013	0.0472		
51	Mollusca		0.0060	0.0237	0.0640		3.5536	0.0195	20.4764
1806	Echinodermata	Klein, 1778					0.0538	0.0115	
1821	Chordata	Haeckel, 1874							
2210	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphiaID	Major Group	Authority	OWF_32_F1	OWF_33_F1	OWF_34_F1	OWF_36_F1	OWF_37_F1	OWF_39_F1	OWF_40_F1
-	Other minor phyla	-	0.0198	0.0056	0.0167	0.0017	0.0155		
1267	Cnidaria	Hatschek, 1888						0.3274	
882	Annelida	Lamarck, 1802 [as Annelides]		0.0010					
883	Polychaeta	Grube, 1850	0.1870	0.8225	0.7175	0.2606	0.7104	2.1208	0.3797
2036	Oligochaeta	Grube, 1850							
1065	Arthropoda	von Siebold, 1848	0.0002	0.0006				0.0005	
1066	Crustacea	Brünnich, 1772	0.0111	0.0910	0.0021	0.0334		0.0226	0.0044
51	Mollusca		0.2402	0.1326	0.0035	56.9002	0.0352	0.0525	
1806	Echinodermata	Klein, 1778	0.0035	0.0043		0.0373		0.0493	
1821	Chordata	Haeckel, 1874					0.1607	0.0052	
2210	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphiaID	Major Group	Authority	OWF_41_F1	OWF_42_F1	OWF_43_F1	OWF_44_F1	OWF_45_F1	OWF_46_F1	OWF_47_F1
-	Other minor phyla	-	0.0116	0.0001	0.0329	0.0223	0.1834		0.0001
1267	Cnidaria	Hatschek, 1888	0.0852		0.0043				
882	Annelida	Lamarck, 1802 [as Annelides]					0.0021	0.0027	
883	Polychaeta	Grube, 1850	1.8378	0.1519	1.2173	0.0427	1.0199	0.6358	0.2747
2036	Oligochaeta	Grube, 1850							0.0001
1065	Arthropoda	von Siebold, 1848	0.0001		0.0022				
1066	Crustacea	Brünnich, 1772	0.0964	0.0001	0.2356	0.0006	0.1073	0.0051	0.0188
51	Mollusca		0.3361	0.0071	0.5295	0.0318	8.6850	28.7390	24.4062
1806	Echinodermata	Klein, 1778	0.0041		0.2121			0.0008	
1821	Chordata	Haeckel, 1874		2.1320					12.1173

2210	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphialD	Major Group	Authority	OWF_48_F1	OWF_49_F1	OWF_51_F1	OWF_52_F1	OWF_53_F1	OWF_54_F1	OWF_55_F1
-	Other minor phyla	-			0.0049			0.0242	
1267	Cnidaria	Hatschek, 1888							
882	Annelida	Lamarck, 1802 [as Annelides]							
883	Polychaeta	Grube, 1850	0.2143	0.0861	0.2819	1.0303	0.1296	0.3738	0.0583
2036	Oligochaeta	Grube, 1850	0.0001						
1065	Arthropoda	von Siebold, 1848							
1066	Crustacea	Brünnich, 1772	0.0043	0.0072	0.0055	0.0253	0.0049	0.0067	
51	Mollusca		0.0175		0.6297	0.0434		0.0062	0.0150
1806	Echinodermata	Klein, 1778			0.0011			0.0001	
1821	Chordata	Haeckel, 1874							0.3649
	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphialD	Major Group	Authority	OWF_56_F1	OWF_57_F1	OWF_58_F1	OWF_60_F1	OWF_63_F1	OWF_64_F1	OWF_65_F1
-	Other minor phyla	-		0.0091	0.0001			0.0169	
1267	Cnidaria	Hatschek, 1888		0.3986					
882	Annelida	Lamarck, 1802 [as Annelides]							
883	Polychaeta	Grube, 1850	0.1478	1.8781	0.3546	0.2082	0.1841	0.2728	0.2474
	Oligochaeta	Grube, 1850			0.0001				
1065	Arthropoda	von Siebold, 1848		0.0001					
1066	Crustacea	Brünnich, 1772		0.0189	0.0075	0.0027	0.0043	0.0388	0.0217
51	Mollusca			0.0612	0.0877	0.4422		0.7019	
1806	Echinodermata	Klein, 1778				11.7803		0.0296	
1821	Chordata	Haeckel, 1874					0.3352		
	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphiaID	Major Group	Authority	OWF_66_F1	OWF_67_F1	OWF_68_F1	OWF_69_F1	OWF_70_F1	OWF_71_F1	OWF_72_F1
-	Other minor phyla	-		0.1989			0.0013		0.0010
1267	Cnidaria	Hatschek, 1888							
882	Annelida	Lamarck, 1802 [as Annelides]							
883	Polychaeta	Grube, 1850	0.2797	0.1937	0.4586	0.5600	0.5650	0.9981	0.7883
	Oligochaeta	Grube, 1850							
1065	Arthropoda	von Siebold, 1848							0.0001
	Crustacea	Brünnich, 1772	0.0030	0.0067	0.0172	0.0449	0.0130	0.1312	0.0140
51	Mollusca		0.1380			0.0016	0.0796		3.8637
1806	Echinodermata	Klein, 1778		0.0499	0.4175				
1821	Chordata	Haeckel, 1874							

2210	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphialD	Major Group	Authority	OWF_73_F1	OWF_74_F1	OWF_75_F1	OWF_76_F1	OWF_77_F1	OWF_78_F1	OWF_79_F1
-	Other minor phyla	-		0.0130	0.0020	0.0516	0.0161	0.0096	0.0136
	Cnidaria	Hatschek, 1888				7.1584			2.0205
882	Annelida	Lamarck, 1802 [as Annelides]							
883	Polychaeta	Grube, 1850	0.2499	0.3099	0.1259	7.2552	0.0798	0.2429	1.6094
2036	Oligochaeta	Grube, 1850					0.0001		
1065	Arthropoda	von Siebold, 1848				0.0015			
1066	Crustacea	Brünnich, 1772	0.0536	0.0059	0.0012	1.2484	0.0182	0.0022	0.0396
51	Mollusca				15.0120	0.4454	0.5222	0.0062	0.3866
1806	Echinodermata	Klein, 1778	0.0021			1.1956	0.0001		0.0030
1821	Chordata	Haeckel, 1874							
2210	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphialD	Major Group	Authority	OWF_80_F1						
-	Other minor phyla	-							
	Cnidaria	Hatschek, 1888							
882	Annelida	Lamarck, 1802 [as Annelides]							
883	Polychaeta	Grube, 1850	0.3912						
	Oligochaeta	Grube, 1850							
1065	Arthropoda	von Siebold, 1848							
	Crustacea	Brünnich, 1772	0.1716						
51	Mollusca		0.0384						
	Echinodermata	Klein, 1778							
1821	Chordata	Haeckel, 1874							
	Outer Dowsing OWF	Blotted Wet Weight (0.0001g)							
AphiaID	Major Group	Authority							
-	Other minor phyla	-							
1267	Cnidaria	Hatschek, 1888							
882	Annelida	Lamarck, 1802 [as Annelides]							
883	Polychaeta	Grube, 1850							
	Oligochaeta	Grube, 1850							
	Arthropoda	von Siebold, 1848							
	Crustacea	Brünnich, 1772							
51	Mollusca								
1806	Echinodermata	Klein, 1778							
1821	Chordata	Haeckel, 1874							

2210 Outer	Dousing Offshor	re Wind Farm - Macrofauna Epifaunal M	latrix																							
Aphia ID	Phylum	Таха	Authority	OWF_01_F1	OWF_03_F1	OWF_04_F1	OWF_05_F1	OWF_06_F1	OWF_07_F1	OWF_08_F1	OWF_09_F1	OWF_10_F1	OWF_11_F1	OWF_12_F1	OWF_13_F1	OWF_14_F1	OWF_15_F1	OWF_17_F1	OWF_18_F1	OWF_19_F1	OWF_20_F1	OWF_21_F1	OWF_22_F1	OWF_23_F1	OWF_24_F1	OWF_25_F1
Epifaunal S	pecies																									
110829	Bryozoa	Schizomavella	Canu & Bassler, 1917																							
111147	Bryozoa	Bicellariella ciliata	(Linnaeus, 1758)			l						l													l	
111196	Bryozoa	Callopora dumerilii	(Audouin, 1826)			l						l													l	
111250	Bryozoa	Scrupocellaria scruposa	(Linnaeus, 1758)			Р	Р	Р				l													l	
111304	Bryozoa	Chorizopora brongniartii	(Audouin, 1826)			l						l													l	
111314	Bryozoa	Cribrilina punctata	(Hassall, 1841)			l						l													l	
111351	Bryozoa	Conopeum reticulum	(Linnaeus, 1767)			l		Р															Р		l	
111355	Bryozoa	Electra pilosa	(Linnaeus, 1767)			l																			l	
111361	Bryozoa	Eucratea Ioricata	(Linnaeus, 1758)			l																	Р		l	
408266	Bryozoa	Fenestrulina delicia	Winston, Hayward & Craig, 2000			l																			l	
111367	Bryozoa	Flustra foliacea	(Linnaeus, 1758)			Р	Р	Р											Р				Р		Р	
111397	Bryozoa	Celleporella hyalina	(Linnaeus, 1767)			l																			l	
111398	Bryozoa	Haplota clavata	(Hincks, 1857)			l																			l	
111411	Bryozoa	Membranipora membranacea	(Linnaeus, 1767)			l																			l	
111421	Bryozoa	Microporella ciliata	(Pallas, 1766)			l																			l	
111484	Bryozoa	Escharella immersa	(Fleming, 1828)			l																			l	
111539	Bryozoa	Scruparia ambigua	(d'Orbigny, 1841)			l																			l	
111597	Bryozoa	Alcyonidium diaphanum	(Hudson, 1778)			Р	Р	Р																	l	
111604	Bryozoa	Alcyonidium parasiticum	(Fleming, 1828)			l	Р				Р													Р	Р	
111607	Bryozoa	Arachnidium fibrosum	Hincks, 1880			l	Р					l													l	
111669	Bryozoa	Vesicularia spinosa	(Linnaeus, 1758)			Р	Р																Р		l	
111032	Bryozoa	Crisia	Lamouroux, 1812			l																			l	
125333	Cnidaria	Alcyonium digitatum	Linnaeus, 1758			l																			l	
1599	Cnidaria	Corynidae	Johnston, 1836			Р																			l	
117093	Cnidaria	Eudendrium	Ehrenberg, 1834			l																			l	
1606	Cnidaria	Campanulariidae	Johnston, 1836			Р						l											l			
117368	Cnidaria	Clytia hemisphaerica	(Linnaeus, 1767)			l						l											l			
117034	Cnidaria	Obelia	Péron & Lesueur, 1810			l				l																
117399	Cnidaria	Rhizocaulus verticillatus	(Linnaeus, 1758)			l						l											l			
117402	Cnidaria	Calycella syringa	(Linnaeus, 1767)			l						l											l			
117103	Cnidaria	Halecium	Oken, 1815			l						l											l			
1613	Cnidaria	Plumulariidae	McCrady, 1859			Р						l											l			
117890	Cnidaria	Hydrallmania falcata	(Linnaeus, 1758)			Р						1											l			
117234	Cnidaria	Sertularia	Linnaeus, 1758			Р		Р				1											l			
111796	Entoprocta	Pedicellina	Sars, 1835			l	l			l	l	1									l		l		l	
132833	Porifera	Haliclona (Haliclona) oculata	(Linnaeus, 1759)			Р				l																
558	Porifera	Porifera	Grant, 1836	Г							Т	T													Т	\vdash

2210 Outer	Dousing Offshor	e Wind Farm - Macrofauna Epifaunal M	atrix																							
Aphia ID	Phylum	Таха	Authority	OWF_01_F1	OWF_03_F1	OWF_04_F1	OWF_05_F1	OWF_06_F1	OWF_07_F1	OWF_08_F1	OWF_09_F1	OWF_10_F1	OWF_11_F1	OWF_12_F1	OWF_13_F1	OWF_14_F1	OWF_15_F1	OWF_17_F1	OWF_18_F1	OWF_19_F1	OWF_20_F1	OWF_21_F1	OWF_22_F1	OWF_23_F1	OWF_24_F1	OWF_25_F1
Damaged S	pecies																									
939	Annelida	Polynoidae	Kinberg, 1856			1																				
985	Annelida	Sabellidae	Latreille, 1825																					i I		
988	Annelida	Serpulidae	Rafinesque, 1815																					i I		
101376	Arthropoda	Corophiidae	Leach, 1814																					i I		
101400	Arthropoda	Oedicerotidae	Lilljeborg, 1865																							
106674	Arthropoda	Caridea	Dana, 1852																					i I		
105	Mollusca	Bivalvia	Linnaeus, 1758																					i I		
101	Mollusca	Gastropoda	Cuvier, 1795																					ш	Ш	
Juvenile Sp	ecies																									
129243		Cirratulus	Lamarck, 1818																							
	Annelida	Glycera	Lamarck, 1818									l										1		1		
	Annelida	Nephtyidae	Grube, 1850			4		2			2	1		1											1	
	Annelida	Nereididae	Blainville, 1818					1																		
	Annelida	Orbiniidae	Hartman, 1942																					i I		
	Annelida	Sigalionidae	Kinberg, 1856			1																		i I	ı	
	Annelida	Terebellidae	Johnston, 1846																							
	Arthropoda	Cancer pagurus	Linnaeus, 1758			3																		i I	ı	
	Arthropoda	Galathea	J. C. Fabricius, 1793																					i I	ı	
	Arthropoda	Inachus	Weber, 1795			1																				
	Arthropoda	Ebalia	Leach, 1817			1									1									i I	ı	
	Arthropoda	Paguridae	Latreille, 1802			2																		i I	ı	
	Arthropoda	Liocarcinus	Stimpson, 1871			2																		i I	1	
	Arthropoda	Upogebia	Leach, 1814																					i I		
	Arthropoda	Decapoda	Latreille, 1802																					i I		
	Arthropoda	Pycnogonida	Latreille, 1810																					i I		
	Arthropoda	Cirripedia	Burmeister, 1834					1															5	i I		
	Chordata	Actinopterygii																								
	Chordata	Ascidiacea	Blainville, 1824																					2		
	Echinodermata	Spatangoida	L. Agassiz, 1840									l														
	Echinodermata	Ophiothrix Ophiuraidaa	Müller & Troschel, 1840																							
	Echinodermata Mollusca	Ophiuroidea Ensis	Gray, 1840 Schumacher, 1817				1		3																	
			Schumacher, 1817						3			l														
	Mollusca Mollusca	<i>Abra</i> Astartidae	Lamarck, 1818									l														
	Mollusca	Astartidae Myidae	d'Orbigny, 1844 (1840) Lamarck, 1809			6						l														
	Mollusca	Mytilidae	Rafinesque, 1815			2						l														
	Mollusca	Anomiidae	Rafinesque, 1815									l														
	Mollusca	Mactridae	Lamarck, 1809							1		l			1					1		1				
	Mollusca	Dosinia	Scopoli, 1777							1		l			1					<u> </u>			1			
	Mollusca	Veneridae	Rafinesque, 1815									l			1								4			
	Mollusca	Thracioidea	Stoliczka, 1870 (1839)							2	1	l			1								1			
	Mollusca	Naticidae	Guilding, 1834								1	l											4			
	Mollusca	Tritia	Risso, 1826									l														
240140		Animalia eggs							1	1														1		
		Animalia Eggs				\Box		Щ	1	1			Щ	ш	ш		ш		ш		\Box			_ +	ш	

2210 Outer	r Dousing Offshor	e Wind Farm - Macrofauna Epifaunal N	Natrix																							
Aphia ID	Phylum	Таха	Authority	OWF_26_F1	OWF_27_F1	OWF_29_F1	OWF_30_F1	OWF_31_F1	OWF_32_F1	OWF_33_F1	OWF_34_F1	OWF_36_F1	OWF_37_F1	OWF_39_F1	OWF_40_F1	OWF_41_F1	OWF_42_F1	OWF_43_F1	OWF_44_F1	OWF_45_F1	OWF_46_F1	OWF_47_F1	OWF_48_F1	OWF_49_F1	OWF_51_F1	OWF_52_F1
Epifaunal S	pecies																									
110829	Bryozoa	Schizomavella	Canu & Bassler, 1917							Р										Р						
111147	Bryozoa	Bicellariella ciliata	(Linnaeus, 1758)			l												Р								1 1
111196	Bryozoa	Callopora dumerilii	(Audouin, 1826)			l																				l
111250	Bryozoa	Scrupocellaria scruposa	(Linnaeus, 1758)			l							Р				Р									l
111304	Bryozoa	Chorizopora brongniartii	(Audouin, 1826)			l								Р		Р										Р
111314	Bryozoa	Cribrilina punctata	(Hassall, 1841)			l				Р				Р												1 1
111351	Bryozoa	Conopeum reticulum	(Linnaeus, 1767)			ı														Р						Р
111355	Bryozoa	Electra pilosa	(Linnaeus, 1767)			ı		Р	Р							Р		Р								1 1
111361	Bryozoa	Eucratea Ioricata	(Linnaeus, 1758)			ı								Р				Р								1 1
408266	Bryozoa	Fenestrulina delicia	Winston, Hayward & Craig, 2000			ı														Р						Р
111367	Bryozoa	Flustra foliacea	(Linnaeus, 1758)			ı	Р		Р				Р					Р								1 1
111397	Bryozoa	Celleporella hyalina	(Linnaeus, 1767)			l																				
111398	Bryozoa	Haplota clavata	(Hincks, 1857)			l																				1 1
111411	Bryozoa	Membranipora membranacea	(Linnaeus, 1767)			l								Р												1 1
111421	Bryozoa	Microporella ciliata	(Pallas, 1766)			l														Р						1 1
111484	Bryozoa	Escharella immersa	(Fleming, 1828)			l				Р						Р				Р					Р	Р
111539	Bryozoa	Scruparia ambigua	(d'Orbigny, 1841)			l												Р								1 1
111597	Bryozoa	Alcyonidium diaphanum	(Hudson, 1778)			Р				Р		Р		Р		Р		Р		Р				Р		Р
111604	Bryozoa	Alcyonidium parasiticum	(Fleming, 1828)			Р		Р	Р	Р		Р						Р	Р			Р		Р		Р
111607	Bryozoa	Arachnidium fibrosum	Hincks, 1880			l								Р												1 1
111669	Bryozoa	Vesicularia spinosa	(Linnaeus, 1758)			Р								Р												1 1
111032	Bryozoa	Crisia	Lamouroux, 1812			l												Р								1 1
125333	Cnidaria	Alcyonium digitatum	Linnaeus, 1758			Р												Р								
1599	Cnidaria	Corynidae	Johnston, 1836			l																				1
117093	Cnidaria	Eudendrium	Ehrenberg, 1834			l				Р																
1606	Cnidaria	Campanulariidae	Johnston, 1836			l												Р		Р						Р
117368	Cnidaria	Clytia hemisphaerica	(Linnaeus, 1767)			l												Р						Р		
117034	Cnidaria	Obelia	Péron & Lesueur, 1810			Р																				
117399	Cnidaria	Rhizocaulus verticillatus	(Linnaeus, 1758)			ı																		Р		
117402	Cnidaria	Calycella syringa	(Linnaeus, 1767)			ı																		Р		1 1
117103	Cnidaria	Halecium	Oken, 1815			l																		Р		
1613	Cnidaria	Plumulariidae	McCrady, 1859			l																				
	Cnidaria	Hydrallmania falcata	(Linnaeus, 1758)			l		Р		Р			Р					Р			Р					
	Cnidaria	Sertularia	Linnaeus, 1758			l		Р					Р	Р		Р		Р		Р				Р		Р
	Entoprocta	Pedicellina	Sars, 1835			l												Р				Р				
132833	Porifera	Haliclona (Haliclona) oculata	(Linnaeus, 1759)			l																				
558	Porifera	Porifera	Grant, 1836									Р													Г	М

2210 Outer	Dousing Offshor	e Wind Farm - Macrofauna Epifaunal M	atrix																							
2220 0010.	Dousing Orisino.	C William Wallondania Epinaania III		1.	1.				1.		1.		ı,		.:·	F.	1.1	E.	E!	<u></u>		.:	E!	.;	.:	<u></u>
Aphia ID	Phylum	Таха	Authority	OWF_26_F1	OWF_27_F1	OWF_29_F1	OWF_30_F1	OWF_31_F1	OWF_32_F1	OWF_33_F1	OWF_34_F1	OWF_36_F1	OWF_37_F1	OWF_39_F1	OWF_40_F1	OWF_41_F1	OWF_42_F1	OWF_43_F1	OWF_44_F1	OWF_45_F1	OWF_46_F1	OWF_47_F1	OWF_48_F1	OWF_49_F1	OWF_51_F1	OWF_52_F1
				OWI	OWI	OWI	OWI	OWI	OWI	NO N	OWI	0 N	OW!	0 N	OWI	OWI	OWI	OWI	OWI	OWI	OWI	OWI	OWI	OWI	OWI	Š
Damaged S	pecies																									
939	Annelida	Polynoidae	Kinberg, 1856						4									1								П
985	Annelida	Sabellidae	Latreille, 1825			1																				i I
988	Annelida	Serpulidae	Rafinesque, 1815															1			1					i I
101376	Arthropoda	Corophiidae	Leach, 1814															2						1		i I
101400	Arthropoda	Oedicerotidae	Lilljeborg, 1865																			1				ıl
106674	Arthropoda	Caridea	Dana, 1852															1								i I
105	Mollusca	Bivalvia	Linnaeus, 1758															1								ıl
101	Mollusca	Gastropoda	Cuvier, 1795						2																	Ш
Juvenile Sp			•																							
	Annelida	Cirratulus	Lamarck, 1818						1																	i I
	Annelida	Glycera	Lamarck, 1818										1			1			1						1	1
	Annelida	Nephtyidae	Grube, 1850			2						2	1	1						1					1	ıl
	Annelida	Nereididae	Blainville, 1818									5			١. ١											i I
	Annelida	Orbiniidae	Hartman, 1942				2								1											ıl
	Annelida	Sigalionidae	Kinberg, 1856																							i I
	Annelida	Terebellidae	Johnston, 1846									1														ıl
	Arthropoda	Cancer pagurus	Linnaeus, 1758							١. ا								1								i I
	Arthropoda	Galathea	J. C. Fabricius, 1793							1																i I
	Arthropoda	Inachus	Weber, 1795																							i I
	Arthropoda	Ebalia	Leach, 1817															2								i I
	Arthropoda Arthropoda	Paguridae Liocarcinus	Latreille, 1802 Stimpson, 1871													1										i I
			1 ' '													2										i I
	Arthropoda Arthropoda	Upogebia	Leach, 1814 Latreille, 1802													1	1	1								i I
		Decapoda							4							1	1	1								ıl
	Arthropoda Arthropoda	Pycnogonida Cirripedia	Latreille, 1810 Burmeister, 1834					49	9	4						8		28		1					4	i I
	Chordata	Actinopterygii	burnielster, 1654	1				49	9	4						۰		20		1					4	ıl
	Chordata	Ascidiacea	Blainville, 1824	1														1								ı
			L. Agassiz, 1840															1								i I
	Echinodermata	Spatangoida Ophiothrix	Müller & Troschel, 1840							1		5						1								
	Echinodermata	Ophiuroidea	Gray, 1840							*		1						-								
	Mollusca	Ensis	Schumacher, 1817									4									1				2	
	Mollusca	Abra	Lamarck, 1818			1								2				3							1	1
	Mollusca	Astartidae	d'Orbigny, 1844 (1840)			1																				·
	Mollusca	Myidae	Lamarck, 1809			7		2		6				4		1		6								1
	Mollusca	Mytilidae	Rafinesque, 1815			1			1			1		1				3			2					1
	Mollusca	Anomiidae	Rafinesque, 1815					1		1								2								
	Mollusca	Mactridae	Lamarck, 1809													1					1					
	Mollusca	Dosinia	Scopoli, 1777																			1			1	
	Mollusca	Veneridae	Rafinesque, 1815															1								
	Mollusca	Thracioidea	Stoliczka, 1870 (1839)				1										2		1							2
	Mollusca	Naticidae	Guilding, 1834										1			1						1				1
	Mollusca	Tritia	Risso, 1826															6								
2		Animalia eggs							1														1			
		-00-	L	-		_	-	-		_	\vdash	_	ш	_	\vdash		\vdash	$\overline{}$	\vdash	$\overline{}$		$\overline{}$	\vdash			-

2210 Outer	Dousing Offshor	e Wind Farm - Macrofauna Epifaunal Ma	atrix																									
Aphia ID	Phylum	Таха	Authority	OWF_53_F1	OWF_54_F1	OWF_55_F1	OWF_56_F1	OWF_57_F1	OWF_58_F1	OWF_60_F1	OWF_63_F1	OWF_64_F1	OWF_65_F1	OWF_66_F1	OWF_67_F1	OWF_68_F1	OWF_69_F1	OWF_70_F1	OWF_71_F1	OWF_72_F1	OWF_73_F1	OWF_74_F1	OWF_75_F1	OWF_76_F1	OWF_77_F1	OWF_78_F1	OWF_79_F1	OWF_80_F1
Epifaunal S	pecies																											
110829	Bryozoa	Schizomavella	Canu & Bassler, 1917																									
111147	Bryozoa	Bicellariella ciliata	(Linnaeus, 1758)																									
111196	Bryozoa	Callopora dumerilii	(Audouin, 1826)																					Р				
111250	Bryozoa	Scrupocellaria scruposa	(Linnaeus, 1758)					Р														Р						
111304	Bryozoa	Chorizopora brongniartii	(Audouin, 1826)																									
111314	Bryozoa	Cribrilina punctata	(Hassall, 1841)																									
111351	Bryozoa	Conopeum reticulum	(Linnaeus, 1767)																									
111355	Bryozoa	Electra pilosa	(Linnaeus, 1767)					P																Р		Р		
111361	Bryozoa	Eucratea loricata	(Linnaeus, 1758)										Р											Р				
408266	Bryozoa	Fenestrulina delicia	Winston, Hayward & Craig, 2000																									
111367	Bryozoa	Flustra foliacea	(Linnaeus, 1758)										Р											Р	Р			
111397	Bryozoa	Celleporella hyalina	(Linnaeus, 1767)												Р													
111398	Bryozoa	Haplota clavata	(Hincks, 1857)																					Р				
111411	Bryozoa	Membranipora membranacea	(Linnaeus, 1767)																									
111421	Bryozoa	Microporella ciliata	(Pallas, 1766)																									
111484	Bryozoa	Escharella immersa	(Fleming, 1828)																									
111539	Bryozoa	Scruparia ambigua	(d'Orbigny, 1841)																									
111597	Bryozoa	Alcyonidium diaphanum	(Hudson, 1778)					Р														Р		Р	Р			
111604	Bryozoa	Alcyonidium parasiticum	(Fleming, 1828)		Р			Р					Р							Р		Р		Р			Р	
111607	Bryozoa	Arachnidium fibrosum	Hincks, 1880										Р		Р					Р							Р	
111669	Bryozoa	Vesicularia spinosa	(Linnaeus, 1758)										Р		Р	Р				Р				Р			Р	
111032	Bryozoa	Crisia	Lamouroux, 1812																									
125333	Cnidaria	Alcyonium digitatum	Linnaeus, 1758					Р																				
1599	Cnidaria	Corynidae	Johnston, 1836																									
117093	Cnidaria	Eudendrium	Ehrenberg, 1834																									
1606	Cnidaria	Campanulariidae	Johnston, 1836																									
117368	Cnidaria	Clytia hemisphaerica	(Linnaeus, 1767)																									
117034	Cnidaria	Obelia	Péron & Lesueur, 1810																									
117399	Cnidaria	Rhizocaulus verticillatus	(Linnaeus, 1758)																									
117402	Cnidaria	Calycella syringa	(Linnaeus, 1767)																									
117103	Cnidaria	Halecium	Oken, 1815																									
1613	Cnidaria	Plumulariidae	McCrady, 1859															I										
117890	Cnidaria	Hydrallmania falcata	(Linnaeus, 1758)																									
117234	Cnidaria	Sertularia	Linnaeus, 1758					Р					Р									Р		Р	Р	Р	Р	
111796	Entoprocta	Pedicellina	Sars, 1835																									
132833	Porifera	Haliclona (Haliclona) oculata	(Linnaeus, 1759)																									
558	Porifera	Porifera	Grant, 1836															寸										\Box

2210 Outer	Dousing Offshor	e Wind Farm - Macrofauna Epifaunal Ma	atrix																									
ILIO Gutel	_ Justing Offsilor			-		-	-	-		-		- I	_	-		_	_ [JI	_ [_ [_		_ [_	_			
Aphia ID	Phylum	Таха	Authority	OWF_53_F1	OWF_54_F1	OWF_55_F1	OWF_56_F1	OWF_57_F1	OWF_58_F1	OWF_60_F1	OWF_63_F1	OWF_64_F1	OWF_65_F1	OWF_66_F1	OWF_67_F1	OWF_68_F1	OWF_69_F1	OWF_70_F1	OWF_71_F1	OWF_72_F1	OWF_73_F1	OWF_74_F1	OWF_75_F1	OWF_76_F1	OWF_77_F1	OWF_78_F1	OWF_79_F1	OWF_80_F1
Damas d C				Ľ	Ľ	Ŭ	Ľ	Ľ	Ľ	Ŭ	Ľ	Ľ	Ľ	Ľ	Ľ	Ŭ	٦	<u> </u>	<u> </u>	<u> </u>		ŭ	٦	<u> </u>		<u> </u>	ت	Ŭ
Damaged S	Annelida	Polynoidae	Kinberg, 1856														_	_	_	_			_	6	_			
	Annelida	Sabellidae	Latreille, 1825																					٥				
	Annelida	Serpulidae	Rafinesque, 1815																					17				
	Arthropoda	Corophiidae	Leach, 1814																					-				
	Arthropoda	Oedicerotidae	Lilljeborg, 1865																									
	Arthropoda	Caridea	Dana, 1852																									
I .	Mollusca	Bivalvia	Linnaeus, 1758																									
I .	Mollusca	Gastropoda	Cuvier, 1795																									
Juvenile Sp		Саза ороса	cavici, 1755									_		_	ш	_	_	_	_		_				_		_	
	Annelida	Cirratulus	Lamarck, 1818									$\overline{}$	П	П			$\overline{}$	\neg	$\overline{}$	П				$\overline{}$		\Box	\neg	\neg
	Annelida	Glycera	Lamarck, 1818	2			1		7																2		1	
I .	Annelida	Nephtyidae	Grube, 1850	1		1		1						1														3
	Annelida	Nereididae	Blainville, 1818	_		_		_						-														
	Annelida	Orbiniidae	Hartman, 1942																									
I .	Annelida	Sigalionidae	Kinberg, 1856																					1				
I .	Annelida	Terebellidae	Johnston, 1846																					1				
I .	Arthropoda	Cancer pagurus	Linnaeus, 1758																					5				
	Arthropoda	Galathea	J. C. Fabricius, 1793																						1			
	Arthropoda	Inachus	Weber, 1795																									
	Arthropoda	Ebalia	Leach, 1817																									
	Arthropoda	Paguridae	Latreille, 1802																									
	Arthropoda	Liocarcinus	Stimpson, 1871																									
107079	Arthropoda	Upogebia	Leach, 1814																									
1130	Arthropoda	Decapoda	Latreille, 1802					1																				
1302	Arthropoda	Pycnogonida	Latreille, 1810																									
1082	Arthropoda	Cirripedia	Burmeister, 1834																					1				
10194	Chordata	Actinopterygii																										
1839	Chordata	Ascidiacea	Blainville, 1824																					2				
123106	Echinodermata	Spatangoida	L. Agassiz, 1840													1												
123626	Echinodermata	Ophiothrix	Müller & Troschel, 1840																									
123084	Echinodermata	Ophiuroidea	Gray, 1840												2									1				
138333	Mollusca	Ensis	Schumacher, 1817																				1					
138474	Mollusca	Abra	Lamarck, 1818																					2				
228	Mollusca	Astartidae	d'Orbigny, 1844 (1840)						1																			
247	Mollusca	Myidae	Lamarck, 1809					1																1			1	
211	Mollusca	Mytilidae	Rafinesque, 1815					1										- [1					
214	Mollusca	Anomiidae	Rafinesque, 1815																									
230	Mollusca	Mactridae	Lamarck, 1809			1												- 1		I								
138636	Mollusca	Dosinia	Scopoli, 1777									1						1		I								
243	Mollusca	Veneridae	Rafinesque, 1815					1												I								
382318	Mollusca	Thracioidea	Stoliczka, 1870 (1839)									2						- [1			1					
145	Mollusca	Naticidae	Guilding, 1834						1			1								I						1		
246140	Mollusca	Tritia	Risso, 1826															- 1		I								
2		Animalia eggs			ı		l		ı		ı			l	l									1				

2210 Outer	Dousing Offshore W	/ind Farm - Macrofauna Infaunal Matrix																								
Aphia ID	Phylum	Таха	Authority	OWF_01_F1	OWF_03_F1	OWF_04_F1	OWF_05_F1	OWF_06_F1	OWF_07_F1	OWF_08_F1	OWF_09_F1	OWF_10_F1	OWF_11_F1	OWF_12_F1	OWF_13_F1	OWF_14_F1	OWF_15_F1	OWF_17_F1	OWF_18_F1	OWF_19_F1	OWF_20_F1	OWF_21_F1	OWF_22_F1	OWF_23_F1	OWF_24_F1	OWF_25_F1
Infaunal Spe	ecies		•	-	_	_				_			_								_			_		
175026	Annelida	Golfingia (Golfingia) elongata	(Keferstein, 1862)			Ι				П																${f \Box}$
136060	Annelida	Nephasoma (Nephasoma) minutum	(Keferstein, 1862)			l				l	ı															
137582	Annelida	Tubificoides pseudogaster	(Dahl, 1960)			l				l	ı															
137349	Annelida	Grania	Southern, 1913			l				l	1															1
129781	Annelida	Ampharete lindstroemi	Malmgren, 1867 sensu Hessle, 1917			1				l	1														1	1
129156	Annelida Annelida	Amphicteis Anobothrus gracilis	Grube, 1850			l				l	1															1
129789	Annelida	Capitella	(Malmgren, 1866) Blainville, 1828			3				l	1															1
129892	Annelida	Mediomastus fragilis	Rasmussen, 1973			7				l	ı															1
129220	Annelida	Notomastus	M. Sars, 1851			l ′				l	ı												2			1
129911	Annelida	Pseudonotomastus southerni	Warren & Parker, 1994			l		1	1	l	ı									1			1			1
129943	Annelida	Caulleriella alata	(Southern, 1914)			2		-	1	l	ı									-				1		1
152217	Annelida	Chaetozone christiei	Chambers, 2000			l		5		l	ı	1			2				4							1
129955	Annelida	Chaetozone setosa	Malmgren, 1867			l				l	ı															1
336485	Annelida	Chaetozone zetlandica	McIntosh, 1911			1				l	ı															1
129964	Annelida	Cirriformia tentaculata	(Montagu, 1808)	I	l	1		l	l	ı													1			1
152269	Annelida	Tharyx killariensis	(Southern, 1914)			l				2	ı															1
130041		Protodorvillea kefersteini	(McIntosh, 1869)			2	2	4	5	l	ı														2	1
130044	Annelida	Schistomeringos neglecta	(Fauvel, 1923)			l		4		l	ı					1										1
130116	Annelida	Glycera alba	(O.F. Müller, 1776)			l	l _		١.	l	ı									l . l						1
130123	Annelida	Glycera lapidum	Quatrefages, 1866			l	3		3	l	ı				1	4				4		2				1
130126	Annelida	Glycera oxycephala	Ehlers, 1887			l				l	ı					1				1				1		1
130136	Annelida Annelida	Glycinde nordmanni Goniada maculata	(Malmgren, 1866) Örsted, 1843			l	1			l	ı															1 '
130140		Goniadella gracilis	(Verrill, 1873)			l				l	ı					1										1
130145	Annelida	Podarkeopsis capensis	(Day, 1963)			l				l	ı					1										1
152249		Psamathe fusca	Johnston, 1836			2				l	ı															1
	Annelida	Lumbrineris cingulata	Ehlers, 1897			1 ~				l	ı															1
		Magelona alleni	Wilson, 1958			l				l	ı															1
130268	Annelida	Magelona filiformis	Wilson, 1959			l				l	ı															1
130269	Annelida	Magelona johnstoni	Fiege, Licher & Mackie, 2000			l			1	l	ı		1				2				1					1
146991	Annelida	Leiochone	Grube, 1868			1		1		l	3	1														1
130322	Annelida	Praxillella affinis	(M. Sars in G.O. Sars, 1872)			1				l	ı															1
129313	Annelida	Microphthalmus	Mecznikow, 1865			l				l	ı															1
130355	Annelida	Nephtys caeca	(Fabricius, 1780)			1			1	l	ı									1						1
130357	Annelida	Nephtys cirrosa	Ehlers, 1868	2		l				5	1	1		1			2		3		3		1			2
130364	Annelida	Nephtys longosetosa	Örsted, 1842			l				l	ı		1								3		1			1
130375	Annelida	Eunereis longissima	(Johnston, 1840)			5		١.		l	ı															1
492034	Annelida	Rullierinereis ancornunezi	Núñez & Brito, 2006	7		Ι.	4	2 9		l	ا ، ا		١	40		1		ا ۔ ا	ا ۔ ا			7		40		
130491 130537	Annelida Annelida	Ophelia borealis Scoloplos armiger	Quatrefages, 1866 (Müller, 1776)	_ ′	2	1 2	4	9		l	8	8	1	10 4	1	3	2 2	6	6 1	10	3	l ′	3 6	40 1	9	42 1
146951	Annelida	Galathowenia fragilis	(Nilsen & Holthe, 1985)			1 4				l	"		,	*	1				1				٥	1		1 *
146950	Annelida	Galathowenia jragilis Galathowenia oculata	(Zachs, 1923)			3				l	ı															1
129427	Annelida	Owenia	Delle Chiaje, 1844			ľ				l	ı															1
152367	Annelida	Lagis koreni	Malmgren, 1866	I	l	1	1	l	l	ı									ı	ı			l		2	1
130616	Annelida	Eteone longa	(Fabricius, 1780)	I	l	3	1 -	l	l	ı	1								ı	ı			l		1	1
130631	Annelida	Eulalia mustela	Pleijel, 1987	I	l	1	2	1	l	ı									ı	ı			l			1
130632	Annelida	Eulalia ornata	Saint-Joseph, 1888	I	I	I	1	I	ı	ı									ı	ı			I			1
130639	Annelida	Eulalia viridis	(Linnaeus, 1767)	I	I	1	1	I	ı	ı									ı	ı			I			1
129446	Annelida	Eumida	Malmgren, 1865	I	l	1		l	l	ı													l			1
130641	Annelida	Eumida bahusiensis	Bergstrom, 1914	I	l	1		l	l	ı													l			1
130644	Annelida	Eumida sanguinea	(Örsted, 1843)	I	l	5		l	l	ı									ı	ı			l			1
130649		Hesionura elongata	(Southern, 1914)	I	l	1		l	l	ı													l			1
152250	Annelida	Hypereteone foliosa	(Quatrefages, 1865)	I	I	I	1	I	ı	ı			ı						ı	ı	ı		I			1
147026	Annelida	Mysta picta	(Quatrefages, 1866)	I	I	I		l	l	ı		l . !							ı	ı			l			1
334506	Annelida	Phyllodoce groenlandica	Örsted, 1842	I	I	I		l	l	ı		1							ı	ı			l			1
334508 130673	Annelida Annelida	Phyllodoce lineata Phyllodoce longipes	(Claparède, 1870) Kinberg, 1866	I	I	1	1	I	ı	ı									ı	ı	ı		I			1
		Phyllodoce maculata	(Linnaeus, 1767)	I	l	8		l	l	ı									ı	ı			l			1
		Phyllodoce maculata Phyllodoce rosea	(McIntosh, 1877)	I	l	l °		l	l	ı	I , ∣								ı	ı			l			1
224214	Armenua	i nynouoce roseu	(INICITIOSII, 10//)									-		-		-	-	-	-					$\overline{}$		

210 Outer	Dousing Offshore W	/ind Farm - Macrofauna Infaunal Matrix																								
Aphia ID	Phylum	Таха	Authority	OWF_01_F1	OWF_03_F1	OWF_04_F1	OWF_05_F1	OWF_06_F1	OWF_07_F1	OWF_08_F1	OWF_09_F1	OWF_10_F1	OWF_11_F1	OWF_12_F1	OWF_13_F1	OWF_14_F1	OWF_15_F1	OWF_17_F1	OWF_18_F1	OWF_19_F1	OWF_20_F1	OWF_21_F1	OWF_22_F1	OWF_23_F1	OWF_24_F1	OWF_25_F1
nfaunal Spe	ecies		•																							
130683	Annelida	Pseudomystides limbata	(Saint-Joseph, 1888)																							
130711	Annelida	Poecilochaetus serpens	Allen, 1904																							l
129472	Annelida	Polygordius	Schneider, 1868																						1	l
130754	Annelida	Harmothoe antilopes	McIntosh, 1876			1																				l
130770	Annelida	Harmothoe impar	(Johnston, 1839)																							l
130801	Annelida	Lepidonotus squamatus	(Linnaeus, 1758)																							l
152276	Annelida	Malmgrenia arenicolae	(Saint-Joseph, 1888)																							l
863197	Annelida	Malmgrenia darbouxi	(Pettibone, 1993)																							l
236678	Annelida	Pettibonesia furcosetosa	(Loshamn, 1981)																							l
	Annelida	Sabellaria spinulosa	(Leuckart, 1849)			39			1																1	l
130889	Annelida	Chone fauveli	McIntosh, 1916																							l
	Annelida	Parasabella	Bush, 1905																							l
	Annelida	Parasabella cambrensis	(Knight-Jones & Walker, 1985)			1																				l
	Annelida	Parasabella langerhansi	(Knight-Jones, 1983)																							l
	Annelida	Sabella pavonina	Savigny, 1822																							l
130979	Annelida	Scalibregma celticum	Mackie, 1991																							l
	Annelida	Scalibregma inflatum	Rathke, 1843																							l
	Annelida	Hydroides norvegica	Gunnerus, 1768																							l
	Annelida	Spirobranchus lamarcki	(Quatrefages, 1866)																							l
	Annelida	Spirobranchus triqueter	(Linnaeus, 1758)			7																				l
	Annelida	Pholoe baltica	Örsted, 1843			3																			2	l
	Annelida	Pholoe inornata	Johnston, 1839																							l
	Annelida	Pisione remota	(Southern, 1914)							2					2					9				1		l
	Annelida	Sthenelais boa	(Johnston, 1833)			2																				l
	Annelida	Sthenelais limicola	(Ehlers, 1864)																							l
	Annelida	Aonides oxycephala	(Sars, 1862)																							l
	Annelida	Aonides paucibranchiata	Southern, 1914					2	2											4				2		l
	Annelida	Atherospio guillei	(Laubier & Ramos, 1974)																							l
	Annelida	Dipolydora caulleryi	(Mesnil, 1897)																							l
	Annelida	Dipolydora flava	(Claparède, 1870)																							l
	Annelida	Dipolydora saintjosephi	(Eliason, 1920)																							l
	Annelida	Laonice bahusiensis	Söderström, 1920				1																			l
	Annelida	Prionospio	Malmgren, 1867																							l
	Annelida	Scolelepis	Blainville, 1828																		١. ا					l
	Annelida	Scolelepis bonnieri	(Mesnil, 1896)								1										1					l
	Annelida	Spio	Fabricius, 1785		1																					l
	Annelida	Spio armata	(Thulin, 1957)			2								1												l
	Annelida Annelida	Spio goniocephala	Thulin, 1957						2		1			1		1				3						l
		Spio symphyta	Meißner, Bick & Bastrop, 2011						2			١				1				3				1		l
	Annelida Annelida	Spiophanes bombyx Eusyllis blomstrandi	(Claparède, 1870) Malmgren, 1867	1		1	I	I			3	1											1			ı
	Annelida Annelida	Exogone naidina	Örsted, 1845			1		l															l	2		l
		Exogone naiaina Myrianida				1		l															l			l
	Annelida Annelida	Myrianida Parexoqone hebes	Milne Edwards, 1845 (Webster & Benedict, 1884)	1		1	I	I							1								l			ı
	Annelida	Proceraea	Ehlers, 1864			1		l							1								l			l
	Annelida	Sphaerosyllis bulbosa	Southern, 1914				1	l								,							l			l
	Annelida Annelida	Sphaerosyllis bulbosa Sphaerosyllis taylori	Perkins, 1981	1			ı .	I								1							l			ı
	Annelida	Streptodonta pterochaeta	(Southern, 1914)					1															l			l
	Annelida	Streptosyllis campoyi	Brito, Núñez & San Martín, 2000					1															l			l
	Annelida Annelida	Syllides	Örsted, 1845	1			I	I															l			ı
	Annelida	Syllis	Lamarck, 1818			3		l															l			l
	Annelida	Syllis garciai	(Campoy, 1982)			,		1															l			l
	Annelida	Syllis gracilis	Grube, 1840					1 *															l			l
	Annelida	Syllis mercedesae	Lucas, San Martín & Parapar, 2012					l														1	l			l
	Annelida	Lanice conchilega	(Pallas, 1766)			1		l														1	l			l
	Annelida	Lysilla nivea	Langerhans, 1884			1		l															l			l
	Annelida	Nicolea zostericola	Örsted, 1844					l															l			l
121200	Armenua			1		l		1				1	ıl	1		1		ı	1	1		1	l			ı
	∆nnelida .	Polycirrus																								
129710	Annelida Annelida	Polycirrus Thelepus cincinnatus	Grube, 1850 (Fabricius, 1780)			2			2							1										l

2210 Outer	Dousing Offshore V	Vind Farm - Macrofauna Infaunal Matrix																								
Aphia ID	Phylum	Таха	Authority	OWF_01_F1	OWF_03_F1	OWF_04_F1	OWF_05_F1	OWF_06_F1	OWF_07_F1	OWF_08_F1	OWF_09_F1	OWF_10_F1	OWF_11_F1	OWF_12_F1	OWF_13_F1	OWF_14_F1	OWF_15_F1	OWF_17_F1	OWF_18_F1	OWF_19_F1	OWF_20_F1	OWF_21_F1	OWF_22_F1	OWF_23_F1	OWF_24_F1	OWF_25_F1
Infaunal Spe	ecies																									
101896	Arthropoda	Ampelisca diadema	(Costa, 1853)																							
101933	Arthropoda	Ampelisca typica	(Spence Bate, 1856)																							1
102012	Arthropoda	Aora gracilis	(Spence Bate, 1857)																							l
101368	Arthropoda	Aoridae	Stebbing, 1899																							l
102139	Arthropoda	Nototropis falcatus	(Metzger, 1871)			1														1						l
488966	Arthropoda	Nototropis swammerdamei	(H. Milne Edwards, 1830)																							l
101742	Arthropoda	Bathyporeia	Lindström, 1855	Ι.							3	1	,	1				4.0			25		_			Ι.
	Arthropoda	Bathyporeia elegans Bathyporeia guilliamsoniana	Watkin, 1938	1				2		1	12 1	5	2	9	1		8	13			25 2		5 2	1	1	1
103060	Arthropoda Arthropoda		(Spence Bate, 1857)	1						1	I							4					L 2			
101839	Arthropoda	Bathyporeia pelagica Caprella linearis	(Spence Bate, 1857) (Linnaeus, 1767)	1														4								
101857	Arthropoda	Pariambus typicus	(Krøyer, 1845)																							
237004	Arthropoda	Crassicorophium bonellii	(H. Milne Edwards, 1830)																							
397383	Arthropoda	Crassicorophium crassicorne	(Bruzelius, 1859)																							
102036	Arthropoda	Leptocheirus hirsutimanus	(Spence Bate, 1862)																							
		Tritaeta gibbosa	(Spence Bate, 1862)																							
102345	Arthropoda	Iphimedia minuta	G.O. Sars, 1883			1																				
101567	Arthropoda	Ericthonius	H. Milne Edwards, 1830																							
102408	Arthropoda	Ericthonius punctatus	(Spence Bate, 1857)																							
102439	Arthropoda	Microjassa cumbrensis	(Stebbing & Robertson, 1891)																							
102460	Arthropoda	Leucothoe incisa	Robertson, 1892																							
102466	Arthropoda	Leucothoe procera	Spence Bate, 1857																							
102788	Arthropoda	Abludomelita obtusata	(Montagu, 1813)																	1					1	
102364	Arthropoda	Gammaropsis maculata	(Johnston, 1828)																							1
102383	Arthropoda	Photis longicaudata	(Spence Bate & Westwood, 1862)																							l
102387	Arthropoda	Photis reinhardi	Krøyer, 1842																							l
102989	Arthropoda	Phoxocephalus holbolli	(Krøyer, 1842)																						1	
103008	Arthropoda	Parapleustes bicuspis	(Krøyer, 1838)																							
103132	Arthropoda	Metopa pusilla	Sars, 1892																							
103166	Arthropoda	Stenothoe marina	(Spence Bate, 1857)			_																				
	Arthropoda	Unciola crenatipalma	(Spence Bate, 1862)			2																				
101658	Arthropoda	Tmetonyx	Stebbing, 1906																							
101789 103226	Arthropoda	Urothoe Urothoe brevicornis	Dana, 1852															1 4			2					
103228	Arthropoda Arthropoda		Spence Bate, 1862 Spence Bate, 1857			23						3					1	4							1	1
103228	Arthropoda	Urothoe elegans Urothoe poseidonis	Reibish, 1905			23						3					9	3							1	
110488	Arthropoda	Diastylis rugosa	Sars, 1865														9	3								
107729	Arthropoda	Callianassa subterranea	(Montagu, 1808)																							
	Arthropoda	Galathea intermedia	Lilljeborg, 1851	1		4					I									ı			l			1
107333	Arthropoda	Inachus phalangium	(J. C. Fabricius, 1775)	1		1					I												l			l
107301	Arthropoda	Ebalia tuberosa	(Pennant, 1777)	1							I									ı			l			1
107188	Arthropoda	Pisidia longicornis	(Linnaeus, 1767)	1		43					I												l			l
107742	Arthropoda	Upogebia stellata	(Montagu, 1808)	1							I									ı			l			ı
148637	Arthropoda	Eurydice spinigera	Hansen, 1890	1							I												l			ı
118995	Arthropoda	Gnathia oxyuraea	(Lilljeborg, 1855)	1							I									ı			l			1
459311	Arthropoda	Nebalia reboredae	Moreira & Urgorri, 2009	1		2					I												l			ı
120020	Arthropoda	Gastrosaccus spinifer	(Goës, 1864)	1							I				1					ı			l			ı
136458	Arthropoda	Tanaopsis graciloides	(Lilljeborg, 1864)	1		1					I												l			ı
134599	Arthropoda	Achelia echinata	Hodge, 1864	1		3					I	1								ı			l			ı
134723	Arthropoda	Anoplodactylus petiolatus	(Krøyer, 1844)	1							I		ı							ı			I			ĺ
106213	Arthropoda	Balanus balanus	(Linnaeus, 1758)	1							I									ı			l			ı
106215	Arthropoda	Balanus crenatus	Bruguière, 1789	1		14					I									ı			l			ı
106257	Arthropoda	Verruca stroemia	(O.F. Müller, 1776)	₩	\vdash	1	\vdash	\vdash	\vdash	\vdash	Щ		\vdash	<u> </u>	<u> </u>	\vdash	ш	ш	\vdash	\vdash	\vdash	\vdash	<u> </u>	\vdash		⊢
126751	Chordata	Ammodytes marinus	Raitt, 1934	1							I									ı			l			ı
126754	Chordata	Gymnammodytes semisquamatus	(Jourdain, 1879)	1							I		ı							ı			I			ĺ
150630	Chordata	Echiichthys vipera	(Cuvier, 1829)	1							I									ı			l			ı
104906	Chordata	Branchiostoma lanceolatum	(Pallas, 1774)											\perp						$\overline{}$		$\overline{}$				

		/ind Farm - Macrofauna Infaunal Matrix	1	Т.																						
Aphia ID	Phylum	Таха	Authority	OWF_01_F1	OWF_03_F1	OWF_04_F1	OWF_05_F1	OWF_06_F1	OWF_07_F1	OWF_08_F1	OWF_09_F1	OWF_10_F1	OWF_11_F1	OWF_12_F1	OWF_13_F1	OWF_14_F1	OWF_15_F1	OWF_17_F1	OWF_18_F1	OWF_19_F1	OWF_20_F1	OWF_21_F1	OWF_22_F1	OWF_23_F1	OWF_24_F1	OWF 25 F1
nfaunal Spe	ecies		•																							
283798	Cnidaria	Cerianthus lloydii	Gosse, 1859																							Г
	Cnidaria	Edwardsiidae	Andres, 1881			1																		1 1		1
	Cnidaria	Actiniaria	Hertwig, 1882			3																	1			L
123776	Echinodermata	Asterias rubens	Linnaeus, 1758																							
	Echinodermata	Echinocyamus pusillus	(O.F. Müller, 1776)				1													2				1 1		1
	Echinodermata	Echinocardium cordatum	(Pennant, 1777)														2	1						1 1		1
	Echinodermata Echinodermata	Leptosynapta bergensis Amphipholis squamata	(Östergren, 1905) (Delle Chiaje, 1828)			12																		1 1		1
	Echinodermata	Ophiothrix fragilis	(Abildgaard in O.F. Müller, 1789)			1																		1 1		ı
	Echinodermata	Ophiura albida	Forbes, 1839			· ·																		1 1		ı
112299	Foraminifera	Astrorhiza	Sandahl, 1858	+	-	_				\vdash		-	-					-		\vdash	\vdash	\vdash		Н	\vdash	⊢
1818	Hemichordata	Hemichordata	Bateson, 1885	+	_	_	1			\vdash		-	-					-		\vdash	\vdash	-		Н	\vdash	⊢
140103	Mollusca	Hiatella arctica	(Linnaeus, 1767)	+	_	2	Ė	-		-		-	-				-	-	-	\vdash	-	-		Н	-	⊢
160539	Mollusca	Ensis magnus	Schumacher, 1817			l																		1 1		ĺ
	Mollusca	Abra alba	(W. Wood, 1802)			7																		1 1		ĺ
	Mollusca	Abra prismatica	(Montagu, 1808)			l .																		1 1		ı
	Mollusca	Arcopagia crassa	(Pennant, 1777)																					1 1		1
879714	Mollusca	Asbjornsenia pygmaea	(Lovén, 1846)												1					1				1 1		1
	Mollusca	Fabulina fabula	(Gmelin, 1791)										1				1							1 1		ı
	Mollusca	Goodallia triangularis	(Montagu, 1803)				121	3	1						173				3	219			1	97		l
	Mollusca	Kurtiella bidentata	(Montagu, 1803)			1						1												1 1		ı
	Mollusca	Lepton squamosum	(Montagu, 1803)																					1 1		ı
	Mollusca	Tellimya ferruginosa	(Montagu, 1808)														1							1 1		L
140283 140431	Mollusca Mollusca	Lucinoma borealis Mya truncata	(Linnaeus, 1767) Linnaeus, 1758			1																		1 1		ı
140431	Mollusca	Spisula elliptica	(T. Brown, 1827)			1		2												,				1 1		ı
	Mollusca	Spisula emptica Spisula solida	(Linnaeus, 1758)						1											1		1		1 1		ı
	Mollusca	Dosinia exoleta	(Linnaeus, 1758)						-													1		1 1		ı
	Mollusca	Dosinia lupinus	(Linnaeus, 1758)																					1 1		ı
745846	Mollusca	Polititapes rhomboides	(Pennant, 1777)																					1 1		ı
141929	Mollusca	Timoclea ovata	(Pennant, 1777)																					1	1	ı
181364	Mollusca	Venerupis corrugata	(Gmelin, 1791)			1																		1 1		ı
	Mollusca	Thracia villosiuscula	(MacGillivray, 1827)																					1 1		ı
	Mollusca	Retusa obtusa	(Montagu, 1803)					1															1	1 1		ı
	Mollusca	Caecum glabrum	(Montagu, 1803)																	1				1 1		ı
	Mollusca	Crepidula fornicata	(Linnaeus, 1758)			5																		1 1		ı
	Mollusca	Hyala vitrea	(Montagu, 1803)																	١. ١				1 1		Ι.
	Mollusca Mollusca	Euspira nitida Rissoa parva	(Donovan, 1803) (da Costa, 1778)																	1				1 1		3
	Mollusca	Buccinum undatum	Linnaeus, 1758																					1 !		ı
	Mollusca	Tritia incrassata	(Strøm, 1768)			7																		1 1		1
	Mollusca	Cyrillia linearis	(Montagu, 1803)			l .																		1 1		1
	Mollusca	Duvaucelia plebeia	(G. Johnston, 1828)			l																		1 1	'	1
1762	Mollusca	Nudibranchia	Cuvier, 1817																					1 1		ı
	Mollusca	Steromphala tumida	(Montagu, 1803)																					1 1		ı
1039839	Mollusca	Steromphala cineraria	(Linnaeus, 1758)			2																		1 1		ı
140199	Mollusca	Leptochiton asellus	(Gmelin, 1791)			1																				
799	Nematoda	Nematoda				14					1		1									1			3	
152391	Nemertea	Nemertea				7			2		1											1			3	
128545	Phoronida	Phoronis	Wright, 1856																							
793	Platyhelminthes	Platyhelminthes	Minot, 1876			1																		Ш		
			S	5	2	63	11	15	12	4	14	11	7	6	10	9	10	7	5	16	8	6	12	12	15	Т
			N	12	3	279	138	39	22	10	41	24	10	26	185	14	30	32	17	260	40	13	25	149	30	
			D	1.61	0.91	11.01	2.03	3.82	3.56	1.30	3.50	3.15	2.61	1.53	1.72	3.03	2.65	1.73	1.41	2.70	1.90	1.95	3.42	2.20	4.12	
			'ر	0.77	0.92	0.81	0.27	0.90	0.94	0.88	0.84	0.84	0.94	0.78	0.16	0.91	0.85	0.84	0.92	0.29	0.65	0.79	0.90	0.41	0.88	0.
			H'(log2)	1.78	0.92	4.85	0.92	3.52	3.35	1.76	3.18	2.90	2.65	2.02	0.55	2.90	2.82	2.36	2.15	1.15	1.96		3.21		3.44	0.
			1-Lambda'	0.67	0.67	0.94	0.23		0.93	0.73		0.85		0.73		0.90		0.78	0.80				0.90		0.90	
			ITI	22.2	33.3	70.9	92.0	38.9	54.0	43.3	58.5	54.2	50.0	48.7	96.9	43.6	78.9	76.0	41.2	91.3	79.2	25.6	49.3	70.2	31.0	5

2210 Outer	Dousing Offshore W	/ind Farm - Macrofauna Infaunal Matrix																								
Aphia ID	Phylum	Таха	Authority	OWF_26_F1	OWF_27_F1	OWF_29_F1	OWF_30_F1	OWF_31_F1	OWF_32_F1	OWF_33_F1	OWF_34_F1	OWF_36_F1	OWF_37_F1	OWF_39_F1	OWF_40_F1	OWF_41_F1	OWF_42_F1	OWF_43_F1	OWF_44_F1	OWF_45_F1	OWF_46_F1	OWF_47_F1	OWF_48_F1	OWF_49_F1	OWF_51_F1	OWF_52_F1
Infaunal Spo	ecies	•	•																							
175026	Annelida	Golfingia (Golfingia) elongata	(Keferstein, 1862)			2														3						
	Annelida	Nephasoma (Nephasoma) minutum	(Keferstein, 1862)			1				1											3					1
	Annelida	Tubificoides pseudogaster	(Dahl, 1960)			1																				1
137349	Annelida	Grania	Southern, 1913		1	10				1				2				1		1		1	1			1
129781		Ampharete lindstroemi Amphicteis	Malmgren, 1867 sensu Hessle, 1917 Grube, 1850			10 1				1				2				1		1						1
	Annelida	Anobothrus gracilis	(Malmgren, 1866)			1																				1
	Annelida	Capitella	Blainville, 1828			-	1																			1
	Annelida	Mediomastus fragilis	Rasmussen, 1973					2				2		7		3		1			1					1
129220	Annelida	Notomastus	M. Sars, 1851			8		4										1		1	4		1	1	4	9
129911		Pseudonotomastus southerni	Warren & Parker, 1994		1		1															1	1			1
	Annelida	Caulleriella alata	(Southern, 1914)			2		1				1				1										1
	Annelida	Chaetozone christiei	Chambers, 2000																							i I
	Annelida	Chaetozone setosa	Malmgren, 1867						١,							1										1
129964	Annelida Annelida	Chaetozone zetlandica Cirriformia tentaculata	McIntosh, 1911 (Montagu, 1808)						2							1										i 1
	Annelida	Tharyx killariensis	(Southern, 1914)									1		1			1									i I
		Protodorvillea kefersteini	(McIntosh, 1869)						2			1		1		2	1					1				1
	Annelida	Schistomeringos neglecta	(Fauvel, 1923)						_			_				_					1	_				3
	Annelida	Glycera alba	(O.F. Müller, 1776)																							1 1
130123	Annelida	Glycera lapidum	Quatrefages, 1866				2	2					1						5					1	1	i I
130126	Annelida	Glycera oxycephala	Ehlers, 1887																		1					1
	Annelida	Glycinde nordmanni	(Malmgren, 1866)																							i I
	Annelida	Goniada maculata	Örsted, 1843	1																						i I
	Annelida	Goniadella gracilis	(Verrill, 1873)																							i I
130195		Podarkeopsis capensis	(Day, 1963)	1																						i I
	Annelida Annelida	Psamathe fusca	Johnston, 1836 Ehlers, 1897			2		1		1				2												i I
	Annelida Annelida	Lumbrineris cingulata Magelona alleni	Wilson, 1958			1		1		1				2												1
	Annelida	Magelona filiformis	Wilson, 1959			1																				1
	Annelida	Magelona johnstoni	Fiege, Licher & Mackie, 2000																							i I
146991		Leiochone	Grube, 1868	3					1					1		1										i I
130322		Praxillella affinis	(M. Sars in G.O. Sars, 1872)											1												1
129313	Annelida	Microphthalmus	Mecznikow, 1865																							1
	Annelida	Nephtys caeca	(Fabricius, 1780)					1		1				1		1	2				2					1
	Annelida	Nephtys cirrosa	Ehlers, 1868				1										1						2			1
130364		Nephtys longosetosa	Örsted, 1842	1								1				1				2						i I
130375		Eunereis longissima	(Johnston, 1840)										1					1								١. ١
492034	Annelida Annelida	Rullierinereis ancornunezi Ophelia borealis	Núñez & Brito, 2006 Quatrefages, 1866	9			16	1	7		7	2 14	3	1	9	1	11	1	2		5	10	5	4	2	1 3
	Annelida	Scoloplos armiger	(Müller, 1776)	3	2	18	10	1	1	7	′	4	,	2	, °	1	1	1			,	10	,	1		2
146951	Annelida	Galathowenia fragilis	(Nilsen & Holthe, 1985)		_	10			1	1		7		3			1	*						*		
146950		Galathowenia oculata	(Zachs, 1923)			13				1				1												i I
129427		Owenia	Delle Chiaje, 1844			2								1												i I
152367	Annelida	Lagis koreni	Malmgren, 1866											1												i I
130616	Annelida	Eteone longa	(Fabricius, 1780)			2						1				1		1						1		i I
	Annelida	Eulalia mustela	Pleijel, 1987						1			6				1					1					1
130632		Eulalia ornata	Saint-Joseph, 1888																							i I
	Annelida	Eulalia viridis	(Linnaeus, 1767)					l	l	١.			l . l		ı											
	Annelida	Eumida	Malmgren, 1865					l	l	1			1		ı											
	Annelida Annelida	Eumida bahusiensis	Bergstrom, 1914					l	l						ı											
	Annelida Annelida	Eumida sanguinea Hesionura elongata	(Örsted, 1843) (Southern, 1914)		1			l	l						ı											
	Annelida	Hypereteone foliosa	(Quatrefages, 1865)		1			l	l						ı											
	Annelida	Mysta picta	(Quatrefages, 1866)					l	l						ı					1						
	Annelida	Phyllodoce groenlandica	Örsted, 1842	l				I	ı				l													ı
	Annelida	Phyllodoce lineata	(Claparède, 1870)					l	l						ı											
130673	Annelida	Phyllodoce longipes	Kinberg, 1866					l	l						ı											
	Annelida	Phyllodoce maculata	(Linnaeus, 1767)					2	l	13					ı			3								
334514	Annelida	Phyllodoce rosea	(McIntosh, 1877)	1					Щ					5	$ldsymbol{ldsymbol{ldsymbol{eta}}}$		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	oxdot	\Box							ш

2210 Outer	Dousing Offshore W	/ind Farm - Macrofauna Infaunal Matrix																								
Aphia ID	Phylum	Таха	Authority	OWF_26_F1	OWF_27_F1	OWF_29_F1	OWF_30_F1	OWF_31_F1	OWF_32_F1	OWF_33_F1	OWF_34_F1	OWF_36_F1	OWF_37_F1	OWF_39_F1	OWF_40_F1	OWF_41_F1	OWF_42_F1	OWF_43_F1	OWF_44_F1	OWF_45_F1	OWF_46_F1	OWF_47_F1	OWF_48_F1	OWF_49_F1	OWF_51_F1	OWF_52_F1
Infaunal Spe	ecies																									
130683	Annelida	Pseudomystides limbata	(Saint-Joseph, 1888)					1																		Т
130711	Annelida	Poecilochaetus serpens	Allen, 1904			1		ı	l				1	8			l			1						1
129472	Annelida	Polygordius	Schneider, 1868		1			ı	1				5				l			1						1
130754	Annelida	Harmothoe antilopes	McIntosh, 1876					ı	l								l			1						1
130770	Annelida	Harmothoe impar	(Johnston, 1839)					ı	l								l	1		1						1
130801	Annelida	Lepidonotus squamatus	(Linnaeus, 1758)					ı	l								l			1						1
152276	Annelida	Malmgrenia arenicolae	(Saint-Joseph, 1888)					ı	l			1					l			1						1
863197	Annelida	Malmgrenia darbouxi	(Pettibone, 1993)					ı	l								l	1		1						1
236678	Annelida	Pettibonesia furcosetosa	(Loshamn, 1981)			2		ı	l								l			1						1
130867	Annelida	Sabellaria spinulosa	(Leuckart, 1849)			3		ı	l	22				3			l	24	2	13	2					1
130889	Annelida	Chone fauveli	McIntosh, 1916			1		ı	l								l			1						1
325958	Annelida	Parasabella	Bush, 1905					ı	l								l			1					1	1
530920	Annelida	Parasabella cambrensis	(Knight-Jones & Walker, 1985)					ı	l								l			1						1
530926	Annelida	Parasabella langerhansi	(Knight-Jones, 1983)	l		ı	ı	ı	l	l					ı	l	l			1	1	1	l		l	1
130967	Annelida	Sabella pavonina	Savigny, 1822	l		ı	ı	ı	l	l					ı	l	l			1	1	1	l		l	1
130979	Annelida	Scalibregma celticum	Mackie, 1991	ı				ı	I							I	I	1		1	l I		l		I	1
130980	Annelida	Scalibregma inflatum	Rathke, 1843	ı	ı	3	ı	ı	I					2	ı	I	I			1	l I		l		I	1
131009	Annelida	Hydroides norvegica	Gunnerus, 1768					ı	l								l			1						1
560033	Annelida	Spirobranchus lamarcki	(Quatrefages, 1866)					ı	l								l			1	2				1	1
555935	Annelida	Spirobranchus triqueter	(Linnaeus, 1758)			4		ı	l							2	l	1		8				1		1
130599	Annelida	Pholoe baltica	Örsted, 1843			6		ı	l			1		2		6	l	2		3				1		1
130601	Annelida	Pholoe inornata	Johnston, 1839					2	l	1							l	3		1						1
130707	Annelida	Pisione remota	(Southern, 1914)	1	5		3	ı	l				11				l		1	1		1				1
131074	Annelida	Sthenelais boa	(Johnston, 1833)					ı	l								l	1		1						1
131077	Annelida	Sthenelais limicola	(Ehlers, 1864)					ı	l								l			1						1
131106	Annelida	Aonides oxycephala	(Sars, 1862)			1	١. ا	Ι.	Ι.			_		1		١.	l			1					١.	Ι.
131107	Annelida	Aonides paucibranchiata	Southern, 1914		1		2	2	3			8				1	l		2	1					1	1
478336	Annelida	Atherospio guillei	(Laubier & Ramos, 1974)					ı	l								l			1	l . l					1
131116	Annelida	Dipolydora caulleryi	(Mesnil, 1897)					ı	l	1							l			1	1					1
	Annelida	Dipolydora flava	(Claparède, 1870)					ı	l	1							l			1. 1						1
131123	Annelida	Dipolydora saintjosephi	(Eliason, 1920)			١		ı	l								l			1						1
131127 129620	Annelida Annelida	Laonice bahusiensis Prionospio	Söderström, 1920			1		1	l								l			1						1
			Malmgren, 1867	١.				⁺	l								l			1						1
129623 131171	Annelida Annelida	Scolelepis	Blainville, 1828 (Mesnil, 1896)	1				ı	l								1			1						1
129625	Annelida Annelida	Scolelepis bonnieri Spio	(Mesnii, 1896) Fabricius, 1785					ı	l								1			1						1
131180	Annelida	Spio armata	(Thulin, 1957)					ı	l								l			1					4	1
131180	Annelida	Spio armata Spio goniocephala	Thulin, 1957					ı	l						1		1			1			2		4	1 *
596189	Annelida	Spio symphyta	Meißner, Bick & Bastrop, 2011					ı	l						1		ı .			1			′			1
131187	Annelida			1				ı	1					8			l			1	1	1				1
131187		Spiophanes bombyx Eusyllis blomstrandi	(Claparède, 1870) Malmgren, 1867	l	ı	1	ı	ı	18	1	11	1	1	°	ı	1	I	12		1			l	3	I	1
327985	Annelida	Exogone naidina	Örsted, 1845	ı				ı	10	l	**	2	1			1	I			1	l I		1		I	1
129659	Annelida	Myrianida	Milne Edwards, 1845	l		1	ı	ı	l	l					ı	l	l			1	1	1	l	2	l	1
757970	Annelida Annelida	Parexogone hebes	(Webster & Benedict, 1884)	ı			1	3	I			7		2		I	I			1	l I		l		I	1
129671	Annelida	Proceraea	Ehlers, 1864	l		ı	^	ľ	l	l		ı ′			ı	l	l			1	1	1	l	1	l	1
131379	Annelida	Sphaerosyllis bulbosa	Southern, 1914	l		ı	ı	ı	l	l					ı	l	l			1	1	1	l	*	l	1
131375	Annelida	Sphaerosyllis taylori	Perkins, 1981	l		1		ı	l	l						1	l			1	1	1	l		l	1
238207	Annelida	Streptodonta pterochaeta	(Southern, 1914)	ı		^		ı	I							1 *	I			1	l I		l		I	1
238248	Annelida	Streptosyllis campoyi	Brito, Núñez & San Martín, 2000	l	2	ı	ı	ı	l	l					ı	l	l			1	1	1	l		l	1
129679	Annelida	Syllides	Örsted, 1845	l		ı	ı	1	l	l					ı	l	l			1	1	1	l		l	1
129680	Annelida	Syllis	Lamarck, 1818	l		ı	ı	l *	l	l					ı	l	l			1	1	1	l		l	1
131431	Annelida	Syllis garciai	(Campoy, 1982)	l		ı	ı	ı	l	l					ı	l	l			1	1	1	l	1	l	1
		Syllis gracilis	Grube, 1840	l				ı	l	l						l	l			1	1 -	1	l		l	1
712175	Annelida	Syllis mercedesae	Lucas, San Martín & Parapar, 2012	l		ı	ı	ı	l	l					ı	l	l			1	1	1	l		l	1
131495	Annelida	Lanice conchilega	(Pallas, 1766)	l				ı	l	l						l	l			2	1	1	l		l	1
131501	Annelida	Lysilla nivea	Langerhans, 1884	ı				1	I							I	I			1 - 1	l I		l		I	1
131508	Annelida	Nicolea zostericola	Örsted, 1844	l		ı	ı	l	l	l				1	ı	l	l	3		1	1	1	l		l	1
129710	Annelida	Polycirrus	Grube, 1850	l	1	2	1	1	l	l	1		2	3	ı	4	l	2		1	1	1	l		l	2
			•					ı -		1			- 1	- 1						. '	1					
		Thelepus cincinnatus	(Fabricius, 1780)						l								ı	1		1			ı			1

210 Outer	Dousing Offshore V	Vind Farm - Macrofauna Infaunal Matrix																								
Aphia ID	Phylum	Таха	Authority	OWF_26_F1	OWF_27_F1	OWF_29_F1	OWF_30_F1	OWF_31_F1	OWF_32_F1	OWF_33_F1	OWF_34_F1	OWF_36_F1	OWF_37_F1	OWF_39_F1	OWF_40_F1	OWF_41_F1	OWF_42_F1	OWF_43_F1	OWF_44_F1	OWF_45_F1	OWF_46_F1	OWF_47_F1	OWF_48_F1	OWF_49_F1	OWF_51_F1	OWF_52_F1
nfaunal Spe	cies																									
101896	Arthropoda	Ampelisca diadema	(Costa, 1853)			1		П										1		1						Т
101933	Arthropoda	Ampelisca typica	(Spence Bate, 1856)					ı		2				1							1				l	
102012	Arthropoda	Aora gracilis	(Spence Bate, 1857)					ı																	l	
101368	Arthropoda	Aoridae	Stebbing, 1899					ı										1							l	
102139 488966	Arthropoda Arthropoda	Nototropis falcatus Nototropis swammerdamei	(Metzger, 1871) (H. Milne Edwards, 1830)					ı	3															1	l	
	Arthropoda	Bathyporeia	Lindström, 1855					ı	٦															1	l	
	Arthropoda	Bathyporeia elegans	Watkin, 1938	1	1			ı				2			2	1		1				5			l	
	Arthropoda	Bathyporeia guilliamsoniana	(Spence Bate, 1857)	1 -	1			ı				~			~	- 1		1				1			1	
103066	Arthropoda	Bathyporeia pelagica	(Spence Bate, 1857)					ı																	l	
101839	Arthropoda	Caprella linearis	(Linnaeus, 1767)					ı																	l	
101857	Arthropoda	Pariambus typicus	(Krøyer, 1845)					ı	4	1															l	
237004	Arthropoda	Crassicorophium bonellii	(H. Milne Edwards, 1830)					ı										2							l	
397383	Arthropoda	Crassicorophium crassicorne	(Bruzelius, 1859)			1	ı	l				l						1					ı		I	1
102036	Arthropoda	Leptocheirus hirsutimanus	(Spence Bate, 1862)					l				1	l			1						1		4	l	1
102141	Arthropoda	Tritaeta gibbosa	(Spence Bate, 1862)					ı	2			17	I					2							l	1
102345 101567	Arthropoda	Iphimedia minuta Ericthonius	G.O. Sars, 1883					ı										1							l	
101567	Arthropoda Arthropoda	Ericthonius Ericthonius punctatus	H. Milne Edwards, 1830 (Spence Bate, 1857)					ı										1							l	
102408	Arthropoda Arthropoda	Microjassa cumbrensis	(Stebbing & Robertson, 1891)					ı	1																l	
102459	Arthropoda	Leucothoe incisa	Robertson, 1892					ı	1					1							1				l	
102466	Arthropoda	Leucothoe procera	Spence Bate, 1857					ı						*				1							l	1
102788	Arthropoda	Abludomelita obtusata	(Montagu, 1813)					ı	3	9	3	1				3		5			1				l	
	Arthropoda	Gammaropsis maculata	(Johnston, 1828)					ı	1	1															l	
102383	Arthropoda	Photis longicaudata	(Spence Bate & Westwood, 1862)					ı						1						3					l	
102387	Arthropoda	Photis reinhardi	Krøyer, 1842					ı	2							2									l	
102989	Arthropoda	Phoxocephalus holbolli	(Krøyer, 1842)					ı																	l	
103008	Arthropoda	Parapleustes bicuspis	(Krøyer, 1838)					ı	1																l	
103132	Arthropoda	Metopa pusilla	Sars, 1892					ı	2																l	
103166	Arthropoda	Stenothoe marina	(Spence Bate, 1857)			2		ı	2									1							l	
	Arthropoda	Unciola crenatipalma	(Spence Bate, 1862)					ı																	l	
	Arthropoda	Tmetonyx	Stebbing, 1906					ı		_										1					l	1
101789 103226	Arthropoda	Urothoe Urothoe brevicornis	Dana, 1852					ı		5															l	
	Arthropoda Arthropoda	Urothoe elegans	Spence Bate, 1862 Spence Bate, 1857			47		ı		18				15		1		31		10		1			l	
103228	Arthropoda	Urothoe poseidonis	Reibish, 1905			47		ı		18				15		1		31		10		1			l	
110488	Arthropoda	Diastylis rugosa	Sars, 1865					ı											1						l	
107729	Arthropoda	Callianassa subterranea	(Montagu, 1808)					ı											1						l	
	Arthropoda	Galathea intermedia	Lilljeborg, 1851					ı										1							l	
107333	Arthropoda	Inachus phalangium	(J. C. Fabricius, 1775)					ı																	l	
107301	Arthropoda	Ebalia tuberosa	(Pennant, 1777)					ı										1							l	
107188	Arthropoda	Pisidia longicornis	(Linnaeus, 1767)					ı		2		1													l	1
107742	Arthropoda	Upogebia stellata	(Montagu, 1808)					ı																	l	
148637	Arthropoda	Eurydice spinigera	Hansen, 1890					ı															1		l	
118995	Arthropoda	Gnathia oxyuraea	(Lilljeborg, 1855)					ı																	l	
	Arthropoda	Nebalia reboredae	Moreira & Urgorri, 2009					ı		7															l	
120020	Arthropoda	Gastrosaccus spinifer	(Goës, 1864)			ا ا	ı	l				l						1			١. ١		ı		I	1
136458	Arthropoda	Tanaopsis graciloides	(Lilljeborg, 1864)			2	ı	l				l				,		1			1		ı		I	1
134599 134723	Arthropoda Arthropoda	Achelia echinata Anoplodactylus petiolatus	Hodge, 1864 (Krøyer, 1844)				ı	l		2		l		2		1		3					ı		I	1
106213	Arthropoda	Balanus balanus	(Linnaeus, 1758)	ı			ı	ı				- 1		-									ı	1	l	1
106215	Arthropoda	Balanus crenatus	Bruguière, 1789				ı	25		10		l											ı	*	I	1
106257	Arthropoda	Verruca stroemia	(O.F. Müller, 1776)	ı			ı	ا ا		10		- 1		1									ı		l	1
126751	Chordata	Ammodytes marinus	Raitt, 1934	-	\vdash	Н		\vdash	\vdash		\vdash	\dashv	\vdash		\vdash	\vdash	3	\vdash	\vdash	-	\vdash	-			-	\vdash
		Gymnammodytes semisquamatus	(Jourdain, 1879)	ı				l														1	ı		I	1
126754	Lnordata																									
126754 150630	Chordata Chordata	Echiichthys vipera	(Cuvier, 1829)					ı				- 1	l												ı	

2210 Outer I	Dousing Offshore W	/ind Farm - Macrofauna Infaunal Matrix																								
Aphia ID	Phylum	Таха	Authority	OWF_26_F1	OWF_27_F1	OWF_29_F1	OWF_30_F1	OWF_31_F1	OWF_32_F1	OWF_33_F1	OWF_34_F1	OWF_36_F1	OWF_37_F1	OWF_39_F1	OWF_40_F1	OWF_41_F1	OWF_42_F1	OWF_43_F1	OWF_44_F1	OWF_45_F1	OWF_46_F1	OWF_47_F1	OWF_48_F1	OWF_49_F1	OWF_51_F1	OWF_52_F1
nfaunal Spe	cies																									
283798	Cnidaria	Cerianthus lloydii	Gosse, 1859			1								1												Г
	Cnidaria	Edwardsiidae	Andres, 1881							1			ll	1		1		1								ı
	Cnidaria	Actiniaria	Hertwig, 1882			2				1								5								\vdash
123776	Echinodermata	Asterias rubens	Linnaeus, 1758										ll													1
	Echinodermata	Echinocyamus pusillus	(O.F. Müller, 1776)			1	1						ll	1											1	1
	Echinodermata	Echinocardium cordatum	(Pennant, 1777)										ll					1								ı
	Echinodermata Echinodermata	Leptosynapta bergensis Amphipholis squamata	(Östergren, 1905) (Delle Chiaje, 1828)			5				3			ll					4			1					ı
	Echinodermata	Ophiothrix fragilis	(Abildgaard in O.F. Müller, 1789)			1				٦			ll					*			1					ı
124913	Echinodermata	Ophiura albida	Forbes, 1839										ll													ı
112299	Foraminifera	Astrorhiza	Sandahl, 1858	\vdash		1		\vdash					Н										_	\vdash		\vdash
1818	Hemichordata	Hemichordata	Bateson, 1885	\vdash	-	_		\vdash	\vdash				Н										-	-		\vdash
140103	Mollusca	Hiatella arctica	(Linnaeus, 1767)	-	\vdash	1		\vdash	\vdash	-			Н				-	4					\vdash	-		\vdash
160539	Mollusca	Ensis magnus	Schumacher, 1817			1												,								1
	Mollusca	Abra alba	(W. Wood, 1802)			13				8								5								1
	Mollusca	Abra prismatica	(Montagu, 1808)																							1
	Mollusca	Arcopagia crassa	(Pennant, 1777)									1										1				1
	Mollusca	Asbjornsenia pygmaea	(Lovén, 1846)																			1				1
	Mollusca	Fabulina fabula	(Gmelin, 1791)										ll													1
	Mollusca	Goodallia triangularis	(Montagu, 1803)				12				2		12						16			74	12			ı
	Mollusca	Kurtiella bidentata	(Montagu, 1803)			4			1				ll	3		1		4								1
140218		Lepton squamosum	(Montagu, 1803)										ll			1										ı
	Mollusca	Tellimya ferruginosa	(Montagu, 1808)										ll													1
	Mollusca Mollusca	Lucinoma borealis Mya truncata	(Linnaeus, 1767) Linnaeus, 1758							2			ll							1	1					1
	Mollusca	Spisula elliptica	(T. Brown, 1827)					1	1				ll								-					ı
	Mollusca	Spisula solida	(Linnaeus, 1758)					1	*				ll													1
	Mollusca	Dosinia exoleta	(Linnaeus, 1758)									1	ll													1
	Mollusca	Dosinia lupinus	(Linnaeus, 1758)										ll								1					ı
745846	Mollusca	Polititapes rhomboides	(Pennant, 1777)					1					ll							1						1
141929	Mollusca	Timoclea ovata	(Pennant, 1777)	1								1	ll	3		1		2				2				ı
	Mollusca	Venerupis corrugata	(Gmelin, 1791)			1							ll			1										ı
	Mollusca	Thracia villosiuscula	(MacGillivray, 1827)										ll													1
	Mollusca	Retusa obtusa	(Montagu, 1803)										ll													ı
	Mollusca	Caecum glabrum	(Montagu, 1803)										ll													ı
	Mollusca	Crepidula fornicata	(Linnaeus, 1758)										ll													ı
	Mollusca Mollusca	Hyala vitrea Euspira nitida	(Montagu, 1803)	1									ll													ı
	Mollusca	Rissoa parva	(Donovan, 1803) (da Costa, 1778)	1									ll			1										1
	Mollusca	Buccinum undatum	Linnaeus. 1758					1																		1
	Mollusca	Tritia incrassata	(Strøm, 1768)					^																		1
	Mollusca	Cyrillia linearis	(Montagu, 1803)																							1
	Mollusca	Duvaucelia plebeia	(G. Johnston, 1828)															1								1
1762	Mollusca	Nudibranchia	Cuvier, 1817						4	1			1			1				1						1
	Mollusca	Steromphala tumida	(Montagu, 1803)																	1						1
1039839		Steromphala cineraria	(Linnaeus, 1758)																							1
	Mollusca	Leptochiton asellus	(Gmelin, 1791)	\Box		1							Ш							1						_
799	Nematoda	Nematoda		ш	4	2		18	6	1	1	7	9	2		3				1		2	$ldsymbol{eta}$		9	2
152391	Nemertea	Nemertea		ш		4		$ldsymbol{ldsymbol{eta}}$	11	1	2	1	5			2	2	2	1				$ldsymbol{ldsymbol{eta}}$		5	\vdash
128545	Phoronida	Phoronis	Wright, 1856	ш		4		1					ш	2		5		1		11						\vdash
793	Platyhelminthes	Platyhelminthes	Minot, 1876	ш																						\vdash
			S	13	11	46	11	22	26	30	0	26	14	36	4	33	٥	48	Ω	25	21	16	٥	14	11	10
			N N	25	20	185	41	73	82	126	29	86	54	93	13	55	23	147	30	71	33	104	26	23	30	3:
			D	3.73	3.34	8.62	2.69	4.89	5.67	6.00	2.08	5.61	3.26	7.72	1.17	7.99	2.55	9.42	2.06	5.63	5.72	3.23	2.46	4.15	2.94	4.3
				0.84	0.91	0.80		0.73	0.86	0.82	0.83		0.83	0.89	0.68	0.94	0.79	0.81	0.73	0.83	0.94	0.45	0.77	0.93	0.86	0.8
			H'(log2)	3.12	3.14	4.40		3.26	4.03	4.04	2.50		3.17	4.61	1.35	4.74	2.49	4.50	2.19	3.87	4.12	1.81	2.45	3.53	2.97	3.5
			1-Lambda'	0.86	0.91	0.91	0.77	0.82	0.92	0.92	0.80	0.91	0.87	0.95	0.53	0.97	0.76	0.92	0.69	0.91	0.96	0.49	0.76	0.94	0.86	0.90
				33.3							49.4		46.3							83.8						

2210 Outer	Dousing Offshore W	/ind Farm - Macrofauna Infaunal Matrix																										
Aphia ID	Phylum	Таха	Authority	OWF_53_F1	OWF_54_F1	OWF_55_F1	OWF_56_F1	OWF_57_F1	OWF_58_F1	OWF_60_F1	OWF_63_F1	OWF_64_F1	OWF_65_F1	OWF_66_F1	OWF_67_F1	OWF_68_F1	OWF_69_F1	OWF_70_F1	OWF_71_F1	OWF_72_F1	OWF_73_F1	OWF_74_F1	OWF_75_F1	OWF_76_F1	OWF_77_F1	OWF_78_F1	OWF_79_F1	OWF_80_F1
Infaunal Spe		In 15 . 16 15	(W. f 4052)			_				_													_	_				
175026	Annelida Annelida	Golfingia (Golfingia) elongata Nephasoma (Nephasoma) minutum	(Keferstein, 1862) (Keferstein, 1862)																									
137582	Annelida	Tubificoides pseudogaster	(Dahl, 1960)																									
137349	Annelida	Grania pseudogaste.	Southern, 1913						1																1			
129781	Annelida	Ampharete lindstroemi	Malmgren, 1867 sensu Hessle, 1917																			1		1	1			
129156	Annelida	Amphicteis	Grube, 1850																									
129789	Annelida	Anobothrus gracilis	(Malmgren, 1866)																									
	Annelida	Capitella	Blainville, 1828																									
129892	Annelida	Mediomastus fragilis	Rasmussen, 1973					1												1			2	12	2			
129220	Annelida	Notomastus	M. Sars, 1851		١.																			4				
129911	Annelida	Pseudonotomastus southerni	Warren & Parker, 1994		1																			_				
129943 152217		Caulleriella alata Chaetozone christiei	(Southern, 1914) Chambers, 2000						1			1												5	1		2	
129955	Annelida	Chaetozone setosa	Malmgren, 1867		l	l		ı	1	l		1												l l	1			
336485	Annelida	Chaetozone setosa Chaetozone zetlandica	McIntosh, 1911		l	l		ı		l												1		l l	*			
129964	Annelida	Cirriformia tentaculata	(Montagu, 1808)		l	l		ı		l												1		l l				
152269	Annelida	Tharyx killariensis	(Southern, 1914)																									
	Annelida	Protodorvillea kefersteini	(McIntosh, 1869)		l	l		ı		l												1	1	l l				
130044	Annelida	Schistomeringos neglecta	(Fauvel, 1923)																									
130116	Annelida	Glycera alba	(O.F. Müller, 1776)																	1								
		Glycera lapidum	Quatrefages, 1866					1	2																2			
	Annelida	Glycera oxycephala	Ehlers, 1887																							1		
	Annelida	Glycinde nordmanni	(Malmgren, 1866)																			1	1				1	
130140 130145	Annelida Annelida	Goniada maculata	Örsted, 1843																									
130145	Annelida	Goniadella gracilis Podarkeopsis capensis	(Verrill, 1873) (Day, 1963)																	1								
		Psamathe fusca	Johnston, 1836																	1								
	Annelida	Lumbrineris cingulata	Ehlers, 1897																				1	1				
130266		Magelona alleni	Wilson, 1958																									
130268	Annelida	Magelona filiformis	Wilson, 1959													1												
130269		Magelona johnstoni	Fiege, Licher & Mackie, 2000										1					1	1									
146991	Annelida	Leiochone	Grube, 1868																									
		Praxillella affinis	(M. Sars in G.O. Sars, 1872)																									
129313	Annelida	Microphthalmus	Mecznikow, 1865															1					l . l	l . l				
130355 130357	Annelida Annelida	Nephtys caeca	(Fabricius, 1780)	1	1	1	3			_ ا		2	١,	4	1	7	4	1 3	4	1	1		1	1		1		
130357	Annelida	Nephtys cirrosa Nephtys longosetosa	Ehlers, 1868 Örsted, 1842	1	1	1	٠ ا		1	6 2			3 1	4	1	_ ′	4	3	1		1					1		2
130364		Eunereis longissima	(Johnston, 1840)							²			1						1			1		1				- 2
492034	Annelida	Rullierinereis ancornunezi	Núñez & Brito, 2006																					1				
130491	Annelida	Ophelia borealis	Quatrefages, 1866	12	15	3	2		30	2	2	8	7	1	11	9	8	14	21	10	3	19	11	2	3	3	12	3
130537	Annelida	Scoloplos armiger	(Müller, 1776)	2	l	l		ı	2	l			4		6	6	8	14	6	10	2	4	1	10	1		5	2
146951	Annelida	Galathowenia fragilis	(Nilsen & Holthe, 1985)		I	l				l																		l
	Annelida	Galathowenia oculata	(Zachs, 1923)		l	l		ı		l														1	1			
129427		Owenia	Delle Chiaje, 1844		l	ı				ı													 	 				l
152367	Annelida	Lagis koreni	Malmgren, 1866		l	Ι.		1		l														l l				
130616	Annelida	Eteone longa	(Fabricius, 1780)		l	1		ı	١, ١	l		١.												l l				
130631 130632	Annelida Annelida	Eulalia mustela Eulalia ornata	Pleijel, 1987 Saint-Joseph, 1888		I	l			1	l		1												3				
	Annelida	Eulalia ornata Eulalia viridis	(Linnaeus, 1767)		l	l		1		l														, °				
129446	Annelida	Eumida	Malmgren, 1865		l	l		^		l														10				
130641	Annelida	Eumida bahusiensis	Bergstrom, 1914		I	l				l														2				l
130644	Annelida	Eumida sanguinea	(Örsted, 1843)		l	l		ı		l														l l				
	Annelida	Hesionura elongata	(Southern, 1914)		l	ı				ı													 	 				l
	Annelida	Hypereteone foliosa	(Quatrefages, 1865)		l	l		ı		l						1								l l		1		
147026	Annelida	Mysta picta	(Quatrefages, 1866)		l	ı				ı													 	 				l
334506	Annelida	Phyllodoce groenlandica	Örsted, 1842		l	l		ı		l											1	1 . !		l l				
334508		Phyllodoce lineata	(Claparède, 1870)		l	l		ı		l										1		1		l l				
130673	Annelida	Phyllodoce longipes	Kinberg, 1866		l	l		ı		l														19	1		1	
	Annelida Annelida	Phyllodoce maculata Phyllodoce rosea	(Linnaeus, 1767) (McIntosh, 1877)	1	l	l		ı		l														19	1		1	
334514	Annelloa	гнуновосе тоѕев	(IVICITIOSII, 1877)	1	Ь—		-		_	Ь_	ш	_	_	ш	-	\vdash		ш	-	\vdash		ш	-	\Box		-		_

	bousing onshore ve	/ind Farm - Macrofauna Infaunal Matrix	1																						. 1	. 1		
Aphia ID	Phylum	Таха	Authority	OWF_53_F1	OWF_54_F1	OWF_55_F1	OWF_56_F1	OWF_57_F1	OWF_58_F1	OWF_60_F1	OWF_63_F1	OWF_64_F1	OWF_65_F1	OWF_66_F1	OWF_67_F1	OWF_68_F1	OWF_69_F1	OWF_70_F1	OWF_71_F1	OWF_72_F1	OWF_73_F1	OWF_74_F1	OWF_75_F1	OWF_76_F1	OWF_77_F1	OWF_78_F1	OWF_79_F1	OWF_80_F1
nfaunal Spe	cies																											
130683	Annelida	Pseudomystides limbata	(Saint-Joseph, 1888)																									
	Annelida	Poecilochaetus serpens	Allen, 1904			١.										1												i
	Annelida	Polygordius	Schneider, 1868			1													1									i
	Annelida Annelida	Harmothoe antilopes Harmothoe impar	McIntosh, 1876 (Johnston, 1839)					1																				i
	Annelida	Lepidonotus squamatus	(Linnaeus, 1758)																					1				i
	Annelida	Malmgrenia arenicolae	(Saint-Joseph, 1888)																									i
	Annelida	Malmarenia darbouxi	(Pettibone, 1993)					1																6				i
	Annelida	Pettibonesia furcosetosa	(Loshamn, 1981)																									i
130867	Annelida	Sabellaria spinulosa	(Leuckart, 1849)					4									1					1		317	2		42	i
130889	Annelida	Chone fauveli	McIntosh, 1916																									i
325958	Annelida	Parasabella	Bush, 1905																									i
	Annelida	Parasabella cambrensis	(Knight-Jones & Walker, 1985)																									i
	Annelida	Parasabella langerhansi	(Knight-Jones, 1983)																									i
	Annelida	Sabella pavonina	Savigny, 1822							l														1				i
	Annelida	Scalibregma celticum	Mackie, 1991							l														١, ١				i
	Annelida Annelida	Scalibregma inflatum	Rathke, 1843							l										1				1				i
	Annelida	Hydroides norvegica Spirobranchus lamarcki	Gunnerus, 1768 (Quatrefages, 1866)																					21				i
	Annelida	Spirobranchus triqueter	(Linnaeus, 1758)					1																21				i
	Annelida	Pholoe baltica	Örsted, 1843					5												1				5				i
	Annelida	Pholoe inornata	Johnston, 1839										1							1			1	12			1	i
	Annelida	Pisione remota	(Southern, 1914)			2			3					1														i
131074	Annelida	Sthenelais boa	(Johnston, 1833)					2																7			1	i
131077	Annelida	Sthenelais limicola	(Ehlers, 1864)											1														i
131106	Annelida	Aonides oxycephala	(Sars, 1862)																									i
	Annelida	Aonides paucibranchiata	Southern, 1914			1			2																3			i
	Annelida	Atherospio guillei	(Laubier & Ramos, 1974)																					2				i
	Annelida	Dipolydora caulleryi	(Mesnil, 1897)																									i
	Annelida	Dipolydora flava	(Claparède, 1870)																					2			1	i
	Annelida	Dipolydora saintjosephi	(Eliason, 1920)																									i
	Annelida Annelida	Laonice bahusiensis Prionospio	Söderström, 1920 Malmgren, 1867																			1						i
	Annelida	Scolelepis	Blainville, 1828																				1					i
	Annelida	Scolelepis bonnieri	(Mesnil, 1896)				1			1	1	1											*					1
	Annelida	Spio	Fabricius, 1785				^			1	1	-																ı Î
	Annelida	Spio armata	(Thulin, 1957)						1									1										i
131184	Annelida	Spio goniocephala	Thulin, 1957								1																	i
596189	Annelida	Spio symphyta	Meißner, Bick & Bastrop, 2011																									i
	Annelida	Spiophanes bombyx	(Claparède, 1870)							1		1	1		1			1		2							1	i
	Annelida	Eusyllis blomstrandi	Malmgren, 1867					1		l															1			i
	Annelida	Exogone naidina	Örsted, 1845							l																		i
	Annelida	Myrianida	Milne Edwards, 1845							l																	2	i
	Annelida	Parexogone hebes	(Webster & Benedict, 1884)							l										1								i
	Annelida	Proceraea	Ehlers, 1864							l																		i
	Annelida Annelida	Sphaerosyllis bulbosa Sphaerosyllis taylori	Southern, 1914 Perkins, 1981							l				l											 			i
	Annelida	Streptodonta pterochaeta	(Southern, 1914)							l																		i
	Annelida	Streptosyllis campoyi	Brito, Núñez & San Martín, 2000							l																		i
	Annelida	Syllides	Örsted, 1845							l															I	l		i
	Annelida	Syllis	Lamarck, 1818							l				l										1	 			i
	Annelida	Syllis garciai	(Campoy, 1982)				l l			I															I			i
	Annelida	Syllis gracilis	Grube, 1840							l								1										i
712175	Annelida	Syllis mercedesae	Lucas, San Martín & Parapar, 2012							l															I	l		i
131495	Annelida	Lanice conchilega	(Pallas, 1766)							l														2				i
	Annelida	Lysilla nivea	Langerhans, 1884							l																		i
	Annelida	Nicolea zostericola	Örsted, 1844							l																		i
	Annelida	Polycirrus	Grube, 1850	12				1		l				l				1		1				19	 		4	i
	Annelida	Thelepus cincinnatus	(Fabricius, 1780)					1		l														1				i
120512	Annelida	Travisia forbesii	Johnston, 1840				ı		1	ı	1			i	1 1		1	2							· I			

2210 Outer	Dousing Offshore V	Wind Farm - Macrofauna Infaunal Matrix																										
Aphia ID	Phylum	Taxa	Authority	OWF_53_F1	OWF_54_F1	OWF_55_F1	OWF_56_F1	OWF_57_F1	OWF_58_F1	OWF_60_F1	OWF_63_F1	OWF_64_F1	OWF_65_F1	OWF_66_F1	OWF_67_F1	OWF_68_F1	OWF_69_F1	OWF_70_F1	OWF_71_F1	OWF_72_F1	OWF_73_F1	OWF_74_F1	OWF_75_F1	OWF_76_F1	OWF_77_F1	OWF_78_F1	OWF_79_F1	OWF_80_F1
Infaunal Spe	cies																											
101896	Arthropoda	Ampelisca diadema	(Costa, 1853)						П														\Box	2				Т
	Arthropoda	Ampelisca typica	(Spence Bate, 1856)				ll		ı														. !				l	
	Arthropoda	Aora gracilis	(Spence Bate, 1857)				ll		ı														. !	1			l	
	Arthropoda	Aoridae	Stebbing, 1899	١.	١.		ll		ı														. !	1			l	
	Arthropoda Arthropoda	Nototropis falcatus Nototropis swammerdamei	(Metzger, 1871) (H. Milne Edwards, 1830)	1	1		ll		ı														. !				l	
	Arthropoda	Bathyporeia	Lindström, 1855				ll		ı			1					1						. !	1			l	
	Arthropoda	Bathyporeia elegans	Watkin, 1938	4	2		ll	1	ı	1	1	4	1	2	1	2	18	6	52		27		. !	5			1	89
	Arthropoda	Bathyporeia guilliamsoniana	(Spence Bate, 1857)		1 ~		ll	1	1	1	1	2	3	_	1	~	10	Ů	٥.				. !	Ĭ			1	2
	Arthropoda	Bathyporeia pelagica	(Spence Bate, 1857)				ll		ı														. !				l	
	Arthropoda	Caprella linearis	(Linnaeus, 1767)				ll		ı														. !	1			l	
	Arthropoda	Pariambus typicus	(Krøyer, 1845)				ll		ı														. !	1			l	
	Arthropoda	Crassicorophium bonellii	(H. Milne Edwards, 1830)		l				l	l													. !	l l			l	1
	Arthropoda	Crassicorophium crassicorne	(Bruzelius, 1859)		l				l	l													. !	l l			l	1
	Arthropoda	Leptocheirus hirsutimanus	(Spence Bate, 1862)		I				l	l													, ,				l	1
	Arthropoda	Tritaeta gibbosa	(Spence Bate, 1862)		I			ا , ا	l	l													, ,	ا , ا			l	1
	Arthropoda Arthropoda	Iphimedia minuta Ericthonius	G.O. Sars, 1883 H. Milne Edwards, 1830		l			1	l	l													. !	1			l	1
	Arthropoda Arthropoda	Erictnonius Ericthonius punctatus	(Spence Bate, 1857)				ll	1	ı														. !				l	
	Arthropoda Arthropoda	Microjassa cumbrensis	(Stebbing & Robertson, 1891)				ll	1	ı														. !				l	
	Arthropoda	Leucothoe incisa	Robertson, 1892				ll		ı														. !				l	
	Arthropoda	Leucothoe procera	Spence Bate, 1857				ll		ı														. !				l	
	Arthropoda	Abludomelita obtusata	(Montagu, 1813)				ll	4	ı														. !				l	
	Arthropoda	Gammaropsis maculata	(Johnston, 1828)				ll	1	ı														. !				l	
102383	Arthropoda	Photis longicaudata	(Spence Bate & Westwood, 1862)				ll		ı														. !				l	
102387	Arthropoda	Photis reinhardi	Krøyer, 1842				ll	1	ı														. !				l	
	Arthropoda	Phoxocephalus holbolli	(Krøyer, 1842)				ll		ı														. !				l	
	Arthropoda	Parapleustes bicuspis	(Krøyer, 1838)				ll		ı														. !				l	
	Arthropoda	Metopa pusilla	Sars, 1892				ll		ı														. !				l	
	Arthropoda	Stenothoe marina	(Spence Bate, 1857)				ll		ı														. !	1			l	
	Arthropoda	Unciola crenatipalma	(Spence Bate, 1862)				ll		ı														. !				l	
	Arthropoda	Tmetonyx	Stebbing, 1906				ll		ı														. !				l	
	Arthropoda	Urothoe Urothoe brevicornis	Dana, 1852				ll		ı	1	1	1	1			1			,		1		. !				l	
	Arthropoda Arthropoda	Urothoe elegans	Spence Bate, 1862 Spence Bate, 1857				ll		ı	1	1	1	1			1			2	1	1		2	,			l	1
	Arthropoda	Urothoe poseidonis	Reibish, 1905				ll		ı						1				5	1				4			l	1
	Arthropoda	Diastylis rugosa	Sars, 1865				ll		ı						1								. !				l	
	Arthropoda	Callianassa subterranea	(Montagu, 1808)				ll		ı														. !				1	
	Arthropoda	Galathea intermedia	Lilljeborg, 1851		l				l	l													. !	l l			1	1
	Arthropoda	Inachus phalangium	(J. C. Fabricius, 1775)	1	l		ı I		ı	l													, !	 			l	1
107301	Arthropoda	Ebalia tuberosa	(Pennant, 1777)		l				l	l													. !	l l			l	1
	Arthropoda	Pisidia longicornis	(Linnaeus, 1767)		l			2	l	l										1		1	. !	53	2		l	1
	Arthropoda	Upogebia stellata	(Montagu, 1808)		l				l	l													. !	1			l	1
	Arthropoda	Eurydice spinigera	Hansen, 1890		l				l	l													. !	l l			l	1
	Arthropoda	Gnathia oxyuraea	(Lilljeborg, 1855)		l				l	l													. !	1			l	1
	Arthropoda	Nebalia reboredae	Moreira & Urgorri, 2009		l				l	l													. !	l l		1	l	1
	Arthropoda	Gastrosaccus spinifer	(Goës, 1864)		l				l	l													. !	1			1	1
	Arthropoda Arthropoda	Tanaopsis graciloides Achelia echinata	(Lilljeborg, 1864) Hodge, 1864		l				l	l													. !	1			l	1
	Arthropoda Arthropoda	Acneila ecninata Anoplodactylus petiolatus	(Krøyer, 1844)	1	I		ı I	1	ı	I										1			. !	2		l l	l	1
	Arthropoda	Balanus balanus	(Linnaeus, 1758)		l			*	l	l										*			, 1				l	1
	Arthropoda	Balanus crenatus	Bruguière, 1789		l				l	l													. !	l l			l	1
	Arthropoda	Verruca stroemia	(O.F. Müller, 1776)		l				l	l													, 1	l			l	1
	Chordata	Ammodytes marinus	Raitt, 1934	\vdash	-	\vdash	Н	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash	\vdash	\vdash	\vdash	-	\vdash		-	-	\neg	\vdash	-		\vdash	\vdash
	Chordata	Gymnammodytes semisquamatus	(Jourdain, 1879)		l	1			l	l													. !	l l			l	1
	Chordata	Echiichthys vipera	(Cuvier, 1829)	1	I	l	ıl		ı	I	1				1 1	1	1 1							.	1	ı	l	1

2210 Outer	Dousing Offshore W	ind Farm - Macrofauna Infaunal Matrix																										
Aphia ID	Phylum	Таха	Authority	OWF_53_F1	OWF_54_F1	OWF_55_F1	OWF_56_F1	OWF_57_F1	OWF_58_F1	OWF_60_F1	OWF_63_F1	OWF_64_F1	OWF_65_F1	OWF_66_F1	OWF_67_F1	OWF_68_F1	OWF_69_F1	OWF_70_F1	OWF_71_F1	OWF_72_F1	OWF_73_F1	OWF_74_F1	OWF_75_F1	OWF_76_F1	OWF_77_F1	OWF_78_F1	OWF_79_F1	OWF_80_F1
Infaunal Spe	ecies																											
	Cnidaria	Cerianthus lloydii	Gosse, 1859					1																				\Box
	Cnidaria	Edwardsiidae	Andres, 1881					1							ll											1		ı l
	Cnidaria	Actiniaria	Hertwig, 1882				ш	5							ш		-	_						50	\vdash	ш	3	ш
123776 124273	Echinodermata	Asterias rubens	Linnaeus, 1758 (O.F. Müller, 1776)									1			ll									3		il		ı l
124273	Echinodermata Echinodermata	Echinocyamus pusillus Echinocardium cordatum	(Pennant, 1777)									1			ll											il		ı l
	Echinodermata	Leptosynapta bergensis	(Östergren, 1905)												ll											il		ı l
125064	Echinodermata	Amphipholis squamata	(Delle Chiaje, 1828)												ll						1			11	1	il	2	ı l
	Echinodermata	Ophiothrix fragilis	(Abildgaard in O.F. Müller, 1789)												ll											il		ı l
	Echinodermata	Ophiura albida	Forbes, 1839												1	1										ш		
112299	Foraminifera	Astrorhiza	Sandahl, 1858				Щ								Щ		Щ								$ldsymbol{ldsymbol{ldsymbol{eta}}}$	ш		\Box
1818	Hemichordata	Hemichordata	Bateson, 1885				\Box								ш		\Box								lacksquare	ш		\Box
140103	Mollusca	Hiatella arctica	(Linnaeus, 1767)					1							l l								١, ١			i I		ı
160539 141433	Mollusca Mollusca	Ensis magnus Abra alba	Schumacher, 1817 (W. Wood, 1802)												l l								1	اا		i I	1	ı
	Mollusca	Abra prismatica	(Montagu, 1808)									2			l l			1					1	, ,		i I	1	1
	Mollusca	Arcopagia crassa	(Pennant, 1777)				 					-					 	- I								(I		· 1
	Mollusca	Asbjornsenia pygmaea	(Lovén, 1846)		1							3						I								1 1		ı
	Mollusca	Fabulina fabula	(Gmelin, 1791)							1								I								1 1		ı
	Mollusca	Goodallia triangularis	(Montagu, 1803)			1	I		2			29			l l			ı							ı	(I		
	Mollusca	Kurtiella bidentata	(Montagu, 1803)												ll									61		i I	2	i l
	Mollusca	Lepton squamosum	(Montagu, 1803)												ll											i I		i l
	Mollusca	Tellimya ferruginosa	(Montagu, 1808)												ll											il		ı l
	Mollusca	Lucinoma borealis	(Linnaeus, 1767)												ll											i I		i l
	Mollusca Mollusca	Mya truncata Spisula elliptica	Linnaeus, 1758												ll											i I		i l
	Mollusca	Spisula elliptica Spisula solida	(T. Brown, 1827) (Linnaeus, 1758)												ll											il		ı l
	Mollusca	Dosinia exoleta	(Linnaeus, 1758)												ll											il		ı l
	Mollusca	Dosinia lupinus	(Linnaeus, 1758)												ll					1						il		ı l
	Mollusca	Polititapes rhomboides	(Pennant, 1777)												ll					_						il		ı l
141929	Mollusca	Timoclea ovata	(Pennant, 1777)					2							ll		1									il		ı l
181364	Mollusca	Venerupis corrugata	(Gmelin, 1791)												ll											il		ı l
141651	Mollusca	Thracia villosiuscula	(MacGillivray, 1827)												ll					1						i I		i l
	Mollusca	Retusa obtusa	(Montagu, 1803)												ll											i I		i l
	Mollusca	Caecum glabrum	(Montagu, 1803)												ll											i I		i l
	Mollusca	Crepidula fornicata	(Linnaeus, 1758)												ll											i I		i l
140129 151894	Mollusca Mollusca	Hyala vitrea Euspira nitida	(Montagu, 1803) (Donovan, 1803)									1		1	ll					1						i I	1	ı l
	Mollusca	Rissoa parva	(da Costa, 1778)					6				1		1	ll									1		i I	1	ı l
	Mollusca	Buccinum undatum	Linnaeus, 1758				I	ĭ										ı						^	1	(I		
	Mollusca	Tritia incrassata	(Strøm, 1768)															I								1 1		ı
1389226		Cyrillia linearis	(Montagu, 1803)															I						2		1 1		ı
	Mollusca	Duvaucelia plebeia	(G. Johnston, 1828)															I								1 1		ı
1762	Mollusca	Nudibranchia	Cuvier, 1817												ıl										ı	(I		. 1
	Mollusca	Steromphala tumida	(Montagu, 1803)															I								1 1		ı
	Mollusca	Steromphala cineraria	(Linnaeus, 1758)					1										I								1 1		ı
	Mollusca	Leptochiton asellus	(Gmelin, 1791)	\vdash	\vdash	ш	${oxed{\square}}$	Ļ			ш		ш	ш	${oldsymbol{\sqcup}}$	\Box	${oxed}$	_			\Box	H	ш	\vdash	Ь.	ш	<u> </u>	\boldsymbol{H}
799	Nematoda	Nematoda	-	\vdash	H	\vdash	\vdash	5		<u> </u>	\vdash		\vdash	\vdash	$\vdash \vdash$		\vdash			1	-	1	\vdash	١ــا	4	igwdapsilon	1	\mathbf{H}
152391	Nemertea	Nemertea	W.: L. 4055	\vdash	1	\vdash	$\vdash \vdash$	6	1	—	\vdash	1	Н	\vdash	$\vdash \vdash$	\vdash	$\vdash \vdash$	2		1	\vdash	4	1	2	2	$oldsymbol{oldsymbol{\sqcup}}$	5	\boldsymbol{H}
	Phoronida	Phoronis	Wright, 1856			Н	\vdash				Н		Н	Н	Н	\vdash	\vdash	-	_	\vdash	\vdash	Н	Н	1	\vdash	$oldsymbol{oldsymbol{eta}}$		Н
/93	Platyhelminthes	Platyhelminthes	Minot, 1876	<u> </u>																				1	I	ш		\dashv
			S	7	7	8	3	31	13	8	6	16	10	6	8	9	7	14	9	21	7	13	13	56	18	6	23	8
			N D	33	22	11	6	62	48	15 2.58	2.53	59	23 2.87	10	23	29	41	49	93	40	36	37	25	683	30	8	92 4.87	101
			D J'	1.72 0.76	1.94	2.92 0.95	1.12 0.92	7.27	3.10 0.61	0.87	2.57	3.68 0.69	0.88	2.17	2.23 0.73	2.38 0.82	1.62 0.77	3.34	1.76 0.62	5.42 0.82	1.67	3.32 0.70	3.73 0.80	8.43	5.00	2.40	0.69	1.52
ı			•	2.13	0.61 1.70	2.85	1.46	0.92 4.54	2.25	2.61	0.98 2.52	2.77	2.91	0.90 2.32	2.19	2.59	2.16	0.77 2.94	1.96	3.61	0.50 1.42	2.60	2.96	0.58 3.35	0.96 3.99	0.93 2.41	3.12	0.28
ı			H'(log2) 1-Lambda'	0.74	0.54	0.93	0.73	0.96	0.61	0.84	0.95	0.74	0.87	0.84	0.72	0.82	0.74	0.83	0.63	0.88	0.44	0.73	0.81	0.76	0.96	0.89	0.77	0.85
l			ITI	41.4	17.5	33.3	27.8	57.0	20.1	48.9	61.1	75.1		43.3		33.3	61.0	38.1	68.8	39.3	83.3	20.7	28.0	79.1	45.6	20.8		93.1
			• • • • • • • • • • • • • • • • • • • •					,								,	,	,		,,,,,	,							

March Marc			re Wind Farm - Beam Trawl biomass Mat	rix (Wet Weight (20g - 1g/500m))								
Second S			Taxa	Authority	OWF_T1	OWF_T2_A	OWF_T3	OWF_T4	OWF_T5	OWF_T6_A	OWF_T7	OWF_T9
Section Sect			Menhtus coeco	(Enbricing 1780)		1	21	212				5
Section Sect								213				3
State										4		
Sect Sect									1			1
March Marc												
Section Company Comp									n/a	n/a		n/a
Section March March Section							n/a				n/a	
Second Proceeding Process Pr												
Simple S						n/a	n/a	n/a	n/a			
Section Company Comp		Arthropoda				.,,=	.,,=		.,,-			.9-
STOCK Company									1602	280		898
Second Company Compa	107552				105	231	111	20		75	89	153
Section Sect										2		
STATE Principation Principatio								4				
STATE Property Company Compa				Lilljeborg, 1851	3				1			
Signature Sign							1					
Section Sect									3			
Second Properties Propert									10	-		
STATE Company State Comp	107302	Arthropoda	Ebalia tumefacta	(Montagu, 1808)			1					1
STATE Management Marke									4	36	111	202
Section Company Comp	107323		Hyas coarctatus	Leach, 1815 [in Leach, 1815-1875]								
Section Company Comp							159					
Section of Processing Control of Processin												
Section Sect					3						18	
Secondary Seco					15				128	107	15	
Section Process					13	62	"	40	3012	1440	12	
Section Sect					9		l			_	1	
Second Content					1268	693	1908	22942	17510	8896	2996	5873
	111604		Alcyonidium parasiticum	(Fleming, 1828)		0	1			8	15	
STATE Confidence Monthly Property State Stat		Bryozoa		(Linnaeus, 1758)	505	119			943	989	243	
STATE Contract C							17	4				
Section Memory Memory Section Sectio					9		l		103		7	
STATE Contact Contac					1	122	1111	88	4.	46		1/9
Second Permissiphing plane May 180 3 1 3 12 30 11 11 11 12 13 13 13 13					1	127	l		44		1	
Section Sect					3	1	3	12	10	11		14
Section Sect						-	1	-				
1975 Outdoor Amongher name See 1984 1985 198	127190	Chordata	Agonus cataphractus	(Linnaeus, 1758)			270		88		11	63
STATE Control Contro	126751		Ammodytes marinus	Raitt, 1934	102	47	l	14	5			
Supplies Supplies		Chordata			1	1	l					
1922-2016 Controll Monocophisto exergent Controll 1922-2016 1922-2												
2006-000 2006-00000 2006-0000 2006-00000 2006-00000 2006-00000 2006-00000 2006-00000 2006-00000 2006-00000 2006-00000000 2006-					31		318	105	20			
Section Process Proc			Toursulus hubolis		1		l					
Second Control Contr					1	22	l					
Joseph					529		l		~		465	
June					1	'	21					
Display Disp					1							
Ordered			Pleuronectes platessa	Linnaeus, 1758								
1971-15 Orderlas Depositable Internet Proposition 190 165 180 190 191								322			74	
Display Disp					18				88	18	22	
January Janu					1	19				70	22	53
Joseph							138		21047		74	22525
Simple Processing Process								4	21047	10774	/4	22323
123772 Chinodemal Allerian referred Chinosephan							59		5	46		82
123273 Chinodemula Chino												
12419 Chivoletemus Chivate C			Asterias rubens			246		563	6603	2249	63	4946
125313 Chinodermals Chinoderma							1					
12850 Echnodermals Calenne, 1880												
139313 Circhondermals Circhonderma									,		1	
123440 Chinocenteral Legislyoped pergensis (Obergen, 1905) 1							1 1				•	•
124402 Chimodermals Chepsopage bergemis (Obsergem; 1965)												
138963 Molluca Corpulate Formication Elemence, 1788] 1 5 5 1 1 1 1 1 1 1							1					
Montage Mont			Crepidula fornicata	(Linnaeus, 1758)			1					
151896 Molluca Eugine Infilial Clonoma, 1803 Clonoma, 1803 Simple gradual Clonoma, 1803 Simple gradual Simp					1		l		5			
Mollica Simon pathule Pennant, 1777					1		l					
Molluca Does pseudorigus Rapp, 1327					1		l	4	_	_		
140033 Molluca					1		l		5			5
1373658 Molluca Moll					1		l					
Mollicar Tritonin hombergi												
Molluca Moll					1		l			1		
190539 Molluca Friis minor Chem., 1843 24	1762	Mollusca	Nudibranchia	Cuvier, 1817	1		1		25			29
Mollucia Entire miner Chem. 1843 24 1 12 1 12 1 14 14					1		l		5	4		14
140873 Molluca Mollu					1		Ι.	378				
144134 Molluca					1			42				
141436 Molluca					1		1	12				
14577 Molluca Accepage cessus Pennant, 1777 222 4 1 1 1 1 1 1 1 1 1					1		1 1					5
13823 Molluca Aster montagui (Dilayer, 1817)							٠ .	282				
Modification Modi					1		l					
140480 Molluca Mylluc dulls Immeur, 1758 24					1		l		1			
Molluca Spalus Solifor Claments, 1758 1 1 1 1 1 1 1 1 1	140480			Linnaeus, 1758	1		l		5			
Mother					1		l					24
Mailusa Mail				(Cirriocos, 2750)	1		35				1	
183364 Mollaca Venerupis corruptab (Gmelin, 1791)			Clausinella fasciata	(da Costa, 1778)			1					
Maillacka Millacka				(Gmain 1701)	1		l	12				,
Multical Multical Seption attention Multical	+01304	Mollusca	Venus casina	Linnaeus, 1758	1		l	28	3	1		4
Pagi-primitrities Pagi	141934				9	19	17		5	4	18	24
132833 Morters Antichora (Incidence), 1759 45 93 95 95 95 95 95 95 9		Platyhelminthes	Platyhelminthes	Minot, 1876				12				
Bytrocoa and Bytrocoa assemblages 381 37 145 204 255 249 89 1304	141454 793			(Linnaeus, 1759)			45					
	141454 793 132833			Grant, 1836								
2 Almaria Al	141454 793 132833	Porifera			381	37	145	2043	255	249	89	1304
205077 Arthropodis Arthropodis Leach, 1814 [in Leach, 1813-1815] 3 4 12 1 5	141454 793 132833 558	Porifera										
More More	141454 793 132833 558	Porifera Species	Hydrozoa and Bryozoa assemblages							n/a	n/a	n/a
106738 Artropoda Pagindee Latellel, 1802 64	141454 793 132833 558 - Juvenile S	Porifera Species	Hydrozoa and Bryozoa assemblages Animalia	leach 1814 (in leach 1912-1915)	2	A		n/a 12	n/a	n/a		
105925 Arthropoda Elecarinus Simpson, 1971 17 5 133333 Molluca Enis Schumacher, 1917 17 72 1211 Molluca Myrilide Rafnesque, 1815 5 1390 Chordata Accidiaces Blanville, 1924 4	141454 793 132833 558 - Juvenile S 2 205077	Porifera Species Arthropoda	Hydrozoa and Bryozoa assemblages Animalia Macropodia	Leach, 1814 [in Leach, 1813-1815] Leach, 1814 [in Leach, 1813-1815]		4		12				5
211 Molluca Myllide Birlenceu, 1815 5 1829 Chordina Accidicae Blavnille, 1824 4 4	141454 793 132833 558 - Juvenile S 2 205077 106903	Porifera Species Arthropoda Arthropoda	Hydrozoa and Bryozoa assemblages Animalia Macropodia Hyos	Leach, 1814 [in Leach, 1813-1815]		4		12 4				5
1839 Chordata Ascidiacea Blainville, 1824 4	141454 793 132833 558 - Juvenile S 2 205077 106903 106738 106925	Porifera Species Arthropoda Arthropoda Arthropoda Arthropoda Arthropoda	Hydrozoa and Bryozoa assemblages Animalia Macropodia Hyas Paguridae Licorcinus	Leach, 1814 [in Leach, 1813-1815] Latreille, 1802 Stimpson, 1871		4		12 4 64				5 7
1849 Chrorata Acordecea Blainville, 1824 4	141454 793 132833 558 - Juvenile S 2 205077 106903 106738 106925 138333	Porifera Species Arthropoda Arthropoda Arthropoda Arthropoda Mollusca	Hydrozoa and Bryozoa assemblages Animalia Macropodia Hyos Paguridae Liocorcinus Ersis	Leach, 1814 (in Leach, 1813-1815) Latreille, 1802 Stimpson, 1871 Schumacher, 1817		4		12 4 64	8			5 7
101394 Citoriona Peciniopicitygii I I I I I I I I I I I I I I I I I I	141454 793 132833 558 - Juvenile S 2 205077 106903 106738 106925 138333 211	Porifera Species Arthropoda Arthropoda Arthropoda Arthropoda Mollusca Mollusca	Hydrozoa and Bryozoa assemblages Animalia Macropodia Hyus Paguridae Licocorcinus Ensis Mysilidae	Leach, 1814 [in Leach, 1813-1815] Latreille, 1802 Stimpson, 1871 Schumacher, 1817 Rafinesque, 1815		4		12 4 64	8			5 7
	141454 793 132833 558 - Juvenile S 2 205077 106903 106738 106925 138333 211 1839	Porifera Species Arthropoda Arthropoda Arthropoda Arthropoda Mollusca Mollusca Chordata	Hydrozoa and Bryozoa assemblages Animalia Macropodia Hyas Paguridae Liocorcinus Ersis Mytilidae Ascidiacea	Leach, 1814 [in Leach, 1813-1815] Latreille, 1802 Stimpson, 1871 Schumacher, 1817 Rafinesque, 1815		4		12 4 64	8			5 7 5

2210 Outer D	ousing Offshore Wir	nd Farm - Epibenthic Trawl Matrix	BSL Project 2210 - OWF Area								
AphiaID	Phylum	Таха	Authority	OWF_T1	OWF_T2_A	OWF_T3	OWF_T4	OWF_T5	OWF_T6_A	OWF_T7	OWF_T9
Infaunal Spe	cies										
100665	Cnidaria	Edwardsiidae	Andres, 1881				1				
1360	Cnidaria	Actiniaria	Hertwig, 1882			5		2	10		32
793	Platyhelminthes	Platyhelminthes	Minot, 1876				1				
130355	Annelida	Nephtys caeca	(Fabricius, 1780)			13	83				1
130491	Annelida	Ophelia borealis	Quatrefages, 1866			2					l
130749	Annelida	Gattyana cirrhosa	(Pallas, 1766)						1		l
130760	Annelida	Harmothoe clavigera	(M. Sars, 1863)					2			1
130801	Annelida	Lepidonotus squamatus	(Linnaeus, 1758)					1			l
130867	Annelida	Sabellaria spinulosa	(Leuckart, 1849)					Hundreds	Tens		Tens
988	Annelida	Serpulidae	Rafinesque, 1815			7				Tens	
239867	Arthropoda	Pycnogonum litorale	(Strøm, 1762)								2
106213	Arthropoda	Balanus balanus	(Linnaeus, 1758)								Tens
106215	Arthropoda	Balanus crenatus	Bruguière, 1789		4	Hundreds	Tens	Tens			Tens
119046	Arthropoda	Idotea linearis	(Linnaeus, 1767)				2				l
107276	Arthropoda	Cancer pagurus	Linnaeus, 1758					8	3		9
107552	Arthropoda	Crangon crangon	(Linnaeus, 1758)	138	202	85	39	87	97	70	116
107559	Arthropoda	Philocheras fasciatus	(Risso, 1816)						1		l
107562	Arthropoda	Philocheras trispinosus	(Hailstone in Hailstone & Westwood, 1835)				8				l
107150	Arthropoda	Galathea intermedia	Lilljeborg, 1851	3				1			44
107327	Arthropoda	Inachus dorsettensis	(Pennant, 1777)			1					1
107333	Arthropoda	Inachus phalangium	(JC Fabricius, 1775)					1	1		1
	Arthropoda	Macropodia linaresi	Forest & Zariquiey Álvarez, 1964						5		2
	Arthropoda	Macropodia rostrata	(Linnaeus, 1761)					5			9
	Arthropoda	Ebalia tumefacta	(Montagu, 1808)			3					1
	Arthropoda	Hyas araneus	(Linnaeus, 1758)					2	1	2	5
	Arthropoda	Hyas coarctatus	Leach, 1815 [in Leach, 1815-1875]								1
	Arthropoda	Pagurus bernhardus	(Linnaeus, 1758)			25	14	1			1
	Arthropoda	Pandalina brevirostris	(Rathke, 1843)					32	25		43
	Arthropoda	Pandalus montagui	Leach, 1814 [in Leach, 1813-1815]	2		9		140	109	3	181
	Arthropoda	Liocarcinus depurator	(Linnaeus, 1758)		3	31	5	8	6		10
	Arthropoda	Liocarcinus holsatus	(JC Fabricius, 1798)	1	6	14	7			3	7
107398	Arthropoda	Necora puber	(Linnaeus, 1767)					17	30		7
107188	Arthropoda	Pisidia longicornis	(Linnaeus, 1767)	4				4		2	38

2210 Outer D	ousing Offshore Win	d Farm - Epibenthic Trawl Matrix	BSL Project 2210 - OWF Area								
AphiaID	Phylum	Таха	Authority	OWF_T1	OWF_T2_A	OWF_T3	OWF_T4	OWF_T5	OWF_T6_A	OWF_T7	OWF_T9
140167	Mollusca	Lacuna crassior	(Montagu, 1803)					1			
140529	Mollusca	Euspira fusca	(Blainville, 1825)				1		l I		
151894	Mollusca	Euspira nitida	(Donovan, 1803)				4		l I		
140669	Mollusca	Simnia patula	(Pennant, 1777)					2	1		6
181228	Mollusca	Doris pseudoargus	Rapp, 1827						2		
140033	Mollusca	Goniodoris nodosa	(Montagu, 1808)						1		
1473658	Mollusca	Duvaucelia plebeia	(G. Johnston, 1828)						2		
416648	Mollusca	Tritonia hombergii	Cuvier, 1803						1		
1762	Mollusca	Nudibranchia	Cuvier, 1817			1		28	l I		17
140103	Mollusca	Hiatella arctica	(Linnaeus, 1767)					8	4		11
160539	Mollusca	Ensis magnus	Schumacher, 1817				18		l I		
140734	Mollusca	Ensis minor	(Chenu, 1843)			1			l I		
140873	Mollusca	Gari tellinella	(Lamarck, 1818)			2	12		l I		
141433	Mollusca	Abra alba	(W. Wood, 1802)						l I		2
141436	Mollusca	Abra prismatica	(Montagu, 1808)			2			l I		
141577	Mollusca	Arcopagia crassa	(Pennant, 1777)				16		l I		
138823	Mollusca	Astarte montagui	(Dillwyn, 1817)				1		l I		
140467	Mollusca	Modiolus modiolus	(Linnaeus, 1758)					1	l I		
140480	Mollusca	Mytilus edulis	Linnaeus, 1758					1	l I		
140687	Mollusca	Aequipecten opercularis	(Linnaeus, 1758)						l I		1
140301	Mollusca	Spisula solida	(Linnaeus, 1758)			57	222		l I	1	
141909	Mollusca	Clausinella fasciata	(da Costa, 1778)			1	9		l I		
141912	Mollusca	Dosinia lupinus	(Linnaeus, 1758)				2		l I		
181364	Mollusca	Venerupis corrugata	(Gmelin, 1791)					4	1		1
141934	Mollusca	Venus casina	Linnaeus, 1758				1		l I		
123776	Echinodermata	Asterias rubens	Linnaeus, 1758		7	19	22	190	114	3	365
124273	Echinodermata	Echinocyamus pusillus	(O.F. Müller, 1776)			3			l I		
124319	Echinodermata	Psammechinus miliaris	(P.L.S. Müller, 1771)						l I		1
125131	Echinodermata	Ophiothrix fragilis	(Abildgaard in O.F. Müller, 1789)					2	1		10
124850	Echinodermata	Ophiocten affinis	(Lütken, 1858)						l I	1	1
124913	Echinodermata	Ophiura albida	Forbes, 1839			1			l I		
123449	Echinodermata	Leptosynapta	Verrill, 1867			2			l I		
124462	Echinodermata	Leptosynapta bergensis	(Östergren, 1905)			1			l I		
104906	Chordata	Branchiostoma lanceolatum	(Pallas, 1774)			4	3				
103718	Chordata	Ascidiella aspersa	(Müller, 1776)	5				13	6	1	27
	Chordata	Ammodytes marinus	Raitt, 1934	49	34		3	1			
	Chordata	Ammodytes tobianus	Linnaeus, 1758		1						
	Chordata	Gymnammodytes semisquamatus	(Jourdain, 1879)			2	5				
	Chordata	Hyperoplus lanceolatus	(Le Sauvage, 1824)	1		13	2				
	Chordata	Echiichthys vipera	(Cuvier, 1829)	414	305					109	

2210 Outer D	Oousing Offshore Win	d Farm - Epibenthic Trawl Matrix	BSL Project 2210 - OWF Area								
AphiaID	Phylum	Таха	Authority	OWF_T1	OWF_T2_A	OWF_T3	OWF_T4	OWF_T5	OWF_T6_A	OWF_T7	OWF_T9
Epifaunal Sp	ecies										
125333	Cnidaria	Alcyonium digitatum	Linnaeus, 1758					Р	Р	Р	Р
132833	Porifera	Haliclona (Haliclona) oculata	(Linnaeus, 1759)			Р			Р		
558	Porifera	Porifera	Grant, 1836				Р	Р	Р		Р
111597	Bryozoa	Alcyonidium diaphanum	(Hudson, 1778)	Р	Р	Р	Р	Р	Р	Р	Р
111604	Bryozoa	Alcyonidium parasiticum	(Fleming, 1828)			Р	Р	Р	Р	Р	Р
111367	Bryozoa	Flustra foliacea	(Linnaeus, 1758)	P	Р	Р	Р	Р	Р	Р	Р
-		Hydrozoa and Bryozoa assemblages		Р	Р	Р	Р	Р	Р	Р	Р
Demersal Sp	ecies										
141454	Mollusca	Sepiola atlantica	d'Orbigny, 1842	7	7	8	4	4	4	8	6
126792	Chordata	Callionymus lyra	Linnaeus, 1758			7	10		2		14
126438	Chordata	Merlangius merlangus	(Linnaeus, 1758)		1			1			
125537	Chordata	Gobiidae	Cuvier, 1816							1	
126930	Chordata	Pomatoschistus pictus	(Malm, 1865)	2	4	2	7	2	5		4
	Chordata	Molva molva	(Linnaeus, 1758)					1	1		
127190	Chordata	Agonus cataphractus	(Linnaeus, 1758)	1		36	2	6	1	1	4
	Chordata	Myoxocephalus scorpius	(Linnaeus, 1758)					2	1		1
127204	Chordata	Taurulus bubalis	(Euphrasen, 1786)					22	15		11
	Chordata	Pholis gunnellus	(Linnaeus, 1758)		1			4	7		1
	Chordata	Eutrigla gurnardus	(Linnaeus, 1758)			1					
	Chordata	Arnoglossus laterna	(Walbaum, 1792)							4	
	Chordata	Pleuronectes platessa	Linnaeus, 1758	10	4	1	4		9	4	9
127139	Chordata	Limanda limanda	(Linnaeus, 1758)	20	59	19	14	30	10	7	29
	Chordata	Microstomus kitt	(Walbaum, 1792)	1	3	1		1	1		1
	Chordata	Buglossidium luteum	(Risso, 1810)		4	7				2	5
	Chordata	Solea solea	(Linnaeus, 1758)			6			1		
Non-Native S	•										
	Mollusca	Crepidula fornicata	(Linnaeus, 1758)			3		1			
Other Specie											
	Ctenophora	Pleurobrachia pileus	(O. F. Müller, 1776)		2					4	
Juvenile Spe	cies										
2		Animalia					Р	Р	Р	Р	Р
	Arthropoda	Macropodia	Leach, 1814 [in Leach, 1813-1815]	5	1		3			1	3
	Arthropoda	Hyas	Leach, 1814 [in Leach, 1813-1815]	2			2	5	1		2
	Arthropoda	Paguridae	Latreille, 1802				3				
	Arthropoda	Liocarcinus	Stimpson, 1871			27					4
	Mollusca	Ensis	Schumacher, 1817			6	99				
	Mollusca	Mytilidae	Rafinesque, 1815					2			
	Chordata	Ascidiacea	Blainville, 1824				1				
10194	Chordata	Actinopterygii									Р

APPENDIX J – FISH MEASUREMENT DATA

	Stat	ion Name		OWF_T1				
			Geodetics: WG	S84 UTM31N 3	3°E			
Fix Name		Processed?	Y		Time (UTC; hh:mm)	Fix#	Easting (m)	Northing (m)
Distance		Ref sp. Kept?	Υ	Shoot	15:36	1	368 472.2	5 933 352.6
Vessel Speed		Photographed?	Υ	Lock	15:43	3	368 460.1	5 933 585.0
Trawl Length (m)	812.59	Sieve Mesh Size	5mm	Haul	16:10	4	368 150.2	5 934 336.2
Log method	Distance	Sample Volume	40L					
		Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	9.8 – 10.4
Notes								
Storage Equipment Weights								
			Fish Ler	ngth Data				
	Taxon		Kept (Y/N)	Length (cm)	Count			
	Echiichthys vi	oera	N	10	9			
	Echiichthys vi	oera	N	12	4			
	Echiichthys vi	pera	N	14	2			
	Echiichthys vi	pera	N	9	3			
	Echiichthys vi	pera	N	7	40			
	Echiichthys vi		N	8	12			
	Echiichthys vi		N	13	2			
	Echiichthys vi		N	15	1			
	Echiichthys vi		N	11	4			
	Echiichthys vi		N	6	35			
	Echiichthys vi		N	4	297			
	Echiichthys vi		N	3	2			
	Echiichthys vi		N N	5	3			
	Agonus cataphi Pomatoschistus			9	1			
	Pomatoschistus	•	N N	3	1			
	Typeroplus lance		N	24	1			
	Ammodytes ma		Υ	11	4			
	Ammodytes mo		Y	12	7			
	Ammodytes mo		Y	6	2			
	Ammodytes ma		Υ	9	10			
	Ammodytes mo		Υ	10	10			
	Ammodytes ma	arinus	Υ	8	6			
	Ammodytes marinus		Υ	7	2			
	Ammodytes marinus		Υ	13	1			
	Ammodytes marinus		Υ	16	1			
	Ammodytes marinus		Υ	15	1			
	Ammodytes marinus		Y	10	3			
	Ammodytes marinus			7	2			
l l	Pleuronectes pla	atessa	N	12	1			

UK4855H-824-RR-01

Status Status																		
Fix Name Processed? Y Shoot 15:36 1 368 472.2 5933 352.6		Stat	tion Name		OWF_T1													
Notes				Geodetics: WG	S84 UTM31N 3	3°E												
Vessel Speed Photographed? Y Lock 15:43 3 368 460.1 5 933 585.0 Trawl Length (m) 812.59 Sieve Mesh Size 5mm Haul 16:10 4 368 150.2 5 934 336.2 Log method Distance 3mple Volume 40L 4mple Volume 2m Beam Trawl Water Depth (m) 9.8 – 10.4 Fish Length Data Fish Length Data Taxon Kept (Y/N) Length (cm) Count (cm) Count (cm) Length (cm) Count (cm) Length (cm) Le	Fix Name		Processed?	Υ			Fix #		Northing (m)									
Speed Photographed? Y Lock 15:43 3 368 460.1 5 933 585.0 Trawl Length (m) 812.59 Sieve Mesh Size 5mm Haul 16:10 4 368 150.2 5 934 336.2 Log method Distance Sample Volume 40L	Distance		Ref sp. Kept?	Υ	Shoot	15:36	1	368 472.2	5 933 352.6									
Length (m)		Photographed?			Lock	15:43	3	368 460.1	5 933 585.0									
Notes		Trawl 812 59 Sieve Mech Size			Haul	16:10	4	368 150.2	5 934 336.2									
Notes	Log method	Distance	Sample Volume	40L														
Storage Equipment Weights Fish Length Data Taxon Kept (Y/N) Pleuronectes platessa N 8 4 Pleuronectes platessa N 9 1 Pleuronectes platessa N 7 3 Pleuronectes platessa N 11 1 Microstomus kitt N 14 1 Limanda limanda Y 17 2 Limanda limanda Y 15 2 Limanda limanda Y 18 2 Limanda limanda Y 19 1 Limanda limanda Y 19 1 Limanda limanda Y 19 1 Limanda limanda Y 17 10 Limanda limanda Y 18 2 Limanda limanda Y 19 1 Limanda limanda Y 10 Limanda limanda Y 11 Limanda limanda Y 15 2 Limanda limanda Y 16 Limanda limanda Y 16 Limanda limanda Y 15 Limanda limanda Y 16 Limanda limanda Y 16 Limanda limanda Y 16 Limanda limanda Y 17 16 Limanda limanda Y 18 Limanda limanda Y 19 1 Limanda limanda Y 10 Limanda limanda Y 11 Limanda limanda Y 15 2 Limanda limanda Y 16 Limanda limanda Y 17 10 Limanda limanda Y 18 19 10 Limanda limanda Y 10 Limanda limanda Y 11 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2		Log frequency				2m Beam	Trawl		9.8 – 10.4									
Equipment Weights Taxon Kept (Y/N) Pleuronectes platessa N Pleuronectes platessa N Pleuronectes platessa N Pleuronectes platessa N Pleuronectes platessa N Taxon N Pleuronectes platessa N Taxon Taxon N Taxon Taxon N Taxon Taxon N Taxon Taxon N Taxon Taxon N Taxon Taxon Taxon N Taxon Taxon Taxon N Taxon	Notes																	
Taxon Kept (Y/N) Pleuronectes platessa N 8 4 Pleuronectes platessa N 9 1 Pleuronectes platessa N 7 3 Pleuronectes platessa N 11 1 Microstomus kitt N 14 Limanda limanda Y 17 Limanda limanda Y 15 Limanda limanda Y 18 Limanda limanda Y 19 Limanda limanda Y 17 Limanda limanda Y 19 Limanda limanda Y 17 Limanda limanda Y 19 Limanda limanda Y 17 Limanda limanda Y 19 Limanda limanda Y 19 Limanda limanda Y 19 Limanda limanda Y 19 Limanda limanda Y 19 Limanda limanda Y 19 Limanda limanda Y 19 Limanda limanda Y 19 Limanda limanda Y 19 Limanda limanda Y 19 Limanda limanda Y 10 Limanda limanda Y 10 Limanda limanda Y 10 Limanda limanda Y 10 Limanda limanda Y 11 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 17 1	Equipment																	
Pleuronectes platessa N 8 4 Pleuronectes platessa N 9 1 Pleuronectes platessa N 7 3 Pleuronectes platessa N 7 3 Pleuronectes platessa N 11 1 Microstomus kitt N 14 1 Limanda limanda Y 17 2 Limanda limanda Y 15 2 Limanda limanda Y 18 2 Limanda limanda Y 19 1 Limanda limanda Y 19 1 Limanda limanda Y 19 1 Limanda limanda Y 19 1 Limanda limanda Y 19 1 Limanda limanda Y 19 1 Limanda limanda Y 19 1 Limanda limanda Y 17 1 Limanda limanda Y 17 1 Limanda limanda Y 17 1 Limanda limanda Y 15 2 Limanda limanda Y 17 1 Limanda limanda Y 17 1 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 17 1	-			Fish Ler	ngth Data													
Pleuronectes platessaN91Pleuronectes platessaN73Pleuronectes platessaN111Microstomus kittN141Limanda limandaY172Limanda limandaY141Limanda limandaY152Limanda limandaY182Limanda limandaY191Limanda limandaY171Limanda limandaY202Limanda limandaY161Limanda limandaY152Limanda limandaY211Limanda limandaY81Limanda limandaY81Limanda limandaY72		Taxon		Kept (Y/N)		Count												
Pleuronectes platessa N 7 3 Pleuronectes platessa N 11 1 1 Microstomus kitt N 14 1 Limanda limanda Y 17 2 Limanda limanda Y 15 2 Limanda limanda Y 18 2 Limanda limanda Y 19 1 1 Limanda limanda Y 17 1 1 Limanda limanda Y 17 1 1 Limanda limanda Y 17 1 1 Limanda limanda Y 17 1 1 Limanda limanda Y 17 1 1 Limanda limanda Y 15 2 Limanda limanda Y 17 1 1 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 17 1 1 Limanda limanda Y 17 1 1 Limanda limanda Y 17 1 1 Limanda limanda Y 17 1 1 Limanda limanda Y 17 1 1 Limanda limanda Y 17 1 1 Limanda limanda Y 17 1 1		Pleuronectes pl	atessa	N	8	4												
Pleuronectes platessa N 11 1 Microstomus kitt N 14 1 Limanda limanda Y 17 2 Limanda limanda Y 15 2 Limanda limanda Y 18 2 Limanda limanda Y 19 1 Limanda limanda Y 19 1 Limanda limanda Y 17 1 Limanda limanda Y 17 1 Limanda limanda Y 17 1 Limanda limanda Y 17 1 Limanda limanda Y 17 1 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 21 1 Limanda limanda Y 8 1 Limanda limanda Y 8 1 Limanda limanda Y 7 7 2		Pleuronectes pl	atessa	N	9	1												
Microstomus kitt N 14 1 Limanda limanda Y 17 2 Limanda limanda Y 14 1 Limanda limanda Y 15 2 Limanda limanda Y 18 2 Limanda limanda Y 19 1 Limanda limanda Y 17 1 Limanda limanda Y 17 1 Limanda limanda Y 10 20 2 Limanda limanda Y 16 1 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 21 1 Limanda limanda Y 8 1 Limanda limanda Y 7 7 2				N	7	3												
Limanda limanda Y 17 2 Limanda limanda Y 14 1 Limanda limanda Y 15 2 Limanda limanda Y 18 2 Limanda limanda Y 19 11 Limanda limanda Y 17 1 Limanda limanda Y 17 1 Limanda limanda Y 20 2 Limanda limanda Y 16 1 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 8 1 Limanda limanda Y 7 7 2		Pleuronectes pl	atessa	N	11	1												
Limanda limanda Y 14 1 Limanda limanda Y 15 2 Limanda limanda Y 18 2 Limanda limanda Y 19 1 Limanda limanda Y 17 1 Limanda limanda Y 20 2 Limanda limanda Y 16 1 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 21 1 Limanda limanda Y 21 1 Limanda limanda Y 3 3 1 Limanda limanda Y 7 7 2				N	14	1												
Limanda limanda Y 15 2 Limanda limanda Y 18 2 Limanda limanda Y 19 1 Limanda limanda Y 17 1 Limanda limanda Y 20 2 Limanda limanda Y 16 1 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 21 1 Limanda limanda Y 7 21 1 Limanda limanda Y 7 2 2																		
Limanda limanda Y 18 2 Limanda limanda Y 19 1 Limanda limanda Y 17 1 Limanda limanda Y 20 2 Limanda limanda Y 16 1 Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 21 1 Limanda limanda Y 21 1 Limanda limanda Y 7 20 2																		
Limanda limanda Y 19 1 Limanda limanda Y 17 1 Limanda limanda Y 20 2 Limanda limanda Y 16 1 Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 8 1 Limanda limanda Y 7 7 2				-														
Limanda limanda Y 17 1 Limanda limanda Y 20 2 Limanda limanda Y 16 1 Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 21 21 Limanda limanda Y 7 7 2					-													
Limanda limanda Y 20 2 Limanda limanda Y 16 1 Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 8 1 Limanda limanda Y 7 2 1 Limanda limanda Y 7 2 1					_													
Limanda limanda Y 16 1 Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 8 1 Limanda limanda Y 7 2																		
Limanda limanda Y 15 2 Limanda limanda Y 21 1 Limanda limanda Y 8 1 Limanda limanda Y 7 2																		
Limanda limanda Y 21 1 Limanda limanda Y 8 1 Limanda limanda Y 7 2																		
Limanda limanda Y 8 1 Limanda limanda Y 7 2																		
Limanda limanda Y 7 2																		

N

10

9

Echiichthys vipera

	Stat	ion Name				OWF_T2	. A	
			Geodetics: WG	S84 UTM31N 3	3°E	_	_	
Fix Name		Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m
Distance		Ref sp. Kept?	Υ	Shoot	17:21	1	376 724.5	5 940 437.8
Vessel Speed		Photographed?	Υ	Lock	17:27	3	376 725.2	5 940 395.8
Trawl Length (m)	671.45	Sieve Mesh Size	5mm	Haul	17:49	4	376 705.9	5 939 724.6
Log method	Distance	Sample Volume	5.5L					
		Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	13.8 - 15.8
Notes								
Storage Equipment Weights								
			Fish Ler	ngth Data				
	Taxon		Kept (Y/N)	Length (cm)	Count			
	Ammodytes mo	arinus	Υ	10	6			
	Ammodytes mo	arinus	Y	9	11			
	Ammodytes mo	arinus	Υ	7	4			
	Ammodytes mo	arinus	Υ	8	6			
	Ammodytes mo		Υ	11	6			
	Ammodytes marinus			12	2			
	Buglossidium luteum			9	1			
	Buglossidium luteum			7	2			
	Buglossidium lu		N	4	1			
	Echiichthys vi	pera	N	17	1			

UK4855H-824-RR-01

	Stat	tion Name		OWF_T2_A								
	3(a)	uon Name	Geodetics: WG	S84 LITM31N 3	R°F	OW1_12	A					
Fix Name		Processed?	Y	30+ 01W31W	Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)				
Distance		Ref sp. Kept?	Υ	Shoot	17:21	1	376 724.5	5 940 437.8				
Vessel Speed		Photographed?	Υ	Lock	17:27	3	376 725.2	5 940 395.8				
Trawl Length (m)	671.45	Sieve Mesh Size	5mm	Haul	17:49	4	376 705.9	5 939 724.6				
Log method	Log method Distance Sample Volume											
	Log frequency			Sampling Device	2m Beam	Trawl	Water Depth (m)	13.8 - 15.8				
Notes												
Storage Equipment Weights												
			Fish Lei	ngth Data								
	Taxon		Kept (Y/N)	Length (cm)	Count							
	Limanda lima	ında	Υ	8	2							
	Limanda lima	ında	N	11	2							
	Limanda lima	ında	N	7	4							
	Limanda lima	ında	N	8	4							
	Limanda lima	ında	N	9	1							
	Limanda lima	ında	N	14	1							
	Limanda lima	ında	N	12	1							
	Merlangius mer	langus	Υ	28	1							
	Microstomus	kitt	N	7	2							
	Microstomus		N	23	1							
	Pholis gune		N	8	1							
	Pleuronectes pl		N	17	1							
	Pleuronectes platessa		N N	15	1							
	Pleuronectes platessa			12	1							
	Pleuronectes platessa		N N	11	1							
	Pomatoschistus pictus			3	1							
	Pomatoschistus	pictus	N	3	1							

Pomatoschistus pictus

UK4855H-824-RR-01

	Stat	tion Name		OWF_T3				
	- Cta		Geodetics: WG		3°E			
Fix Name		Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)
Distance		Ref sp. Kept?	Υ	Shoot	07:14	1	377 899.0	5 934 181.8
Vessel Speed		Photographed?	Υ	Lock	07:18	3	377 917.3	5 934 078.0
Trawl Length (m)	723.33	Sieve Mesh Size	5mm	Haul	07:38	4	378 073.7	5 933 371.8
Log method	Distance	Sample Volume	320L					
		Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	38-40
Notes								
Storage Equipment Weights								
			Fish Lei	ngth Data				
	Taxon		Kept (Y/N)	Length (cm)	Count			
,	Agonus cataph	ractus	N	5	1			
	Agonus cataph	ractus	N	10	1			
,	Agonus cataph	ractus	N	11	2			
,	Agonus cataph	ractus	N	12	2			
	Agonus cataph	ractus	N	6	6			
	Agonus cataph	ractus	N	8	6			
,	Agonus cataph	ractus	N	7	6			
	Agonus cataph		Υ	9	12			
	anchiostoma la		Y	5	1			
Bro	anchiostoma la		N	6	3			
	Callionymus		N	22	1			
	Callionymus		N	14	2			
	Callionymus		N	13	3			
	Callionymus		N	6	1			
Cumn	Eutrigla gurno ammodytes sen		Y	11 19	1			
	ammodytes sen		Y	18	1			
	lyperoplus lanc		Y	24	3			
	lyperoplus lanc		Y	22	5			
	lyperoplus lanc		Υ	28	2			
	lyperoplus lanc		Y	19	2			
	yperoplus lanc		Y	26	1			
	Limanda lima		N	18	3			
	Limanda lima		Υ	15	1			
	Limanda limanda			14	1			
	Limanda limanda			22	1			
	Limanda limanda			13	1			
	Limanda limanda		Υ	17	1			
	Limanda limanda		Y	14	1			
	Limanda limanda			15	1			
	Limanda lima	anda	Υ	18	1			

12

1

Limanda limanda

Limanda limanda

	Stat	ion Name		OWF_T3				
			Geodetics: WG	S84 UTM31N		ı		1
Fix Name		Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)
Distance		Ref sp. Kept?	Y	Shoot	07:14	1	377 899.0	5 934 181.8
Vessel Speed		Photographed?	Υ	Lock	07:18	3	377 917.3	5 934 078.0
Trawl Length (m) 723.33 Sieve Mesh Size			5mm	Haul	07:38	4	378 073.7	5 933 371.8
Log method Distance Sample Volume			320L					
		Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	38-40
Notes								
Storage Equipment Weights			Fish Lei	ngth Data				
			11311 EC1	Length				
	Taxon		Kept (Y/N)	(cm)	Count			
	Limanda lima	nda	Υ	15	1			
	Limanda lima	nda	Υ	16	1			
	Limanda lima		Υ	22	1			
	Limanda lima	nda	Υ	15	1			
	Limanda lima		Υ	18	1			
	Microstomus		N	15	1			
	Pleuronectes pl		N	21	1			
	Pomatoschistus	•	Υ	3	1			
ı	Pomatoschistus		Υ	4	1			
	Solea soled		N N	22	1			
	Solea solea			14	1			
	Solea solea			11	2			
	Solea solea			19	1			
	Solea soled		N	7	1			
	Solea solea	מ	N	9	1			

	Sta	tion Name		OWF_T4							
			Geodetics: WG	S84 UTM31N	3°E						
Station Name	OWF_T4	Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)			
Fix Name		Ref sp. Kept?	Υ	Shoot	12:42	1	384 558.1	5 935 982.1			
Distance		Photographed?	Υ	Lock	12:46	3	384 544.8	5 936 017.4			
Vessel Speed		Sieve Mesh Size	5mm	Haul	13:09	4	384 349.2	5 936 607.4			
Trawl Length (m)	621.57	Sample Volume	100L								
Log method	Distance	Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	16.9-17.5			
Notes											
Storage Equipment Weights											

	Fish Ler	ngth Data		
Taxon	Kept (Y/N)	Length (cm)	Count	
Ammodytes marinus	N	5	2	
Ammodytes marinus	N	7	1	
Agonus cataphractus	N	16	1	
Agonus cataphractus	N	10	1	
Callionymus lyra	N	8	1	
Callionymus lyra	N	21	1	
Callionymus lyra	N	10	1	
Callionymus lyra	N	9	3	
Callionymus lyra	N	13	1	
Callionymus lyra	N	11	2	
Callionymus lyra	N	6	1	
Hyperopluis lanceolatus	N	27	1	
Hyperopluis lanceolatus	N	24	1	
Gymnammodytes semisquamatus	Υ	15	2	
Gymnammodytes semisquamatus	Υ	14	3	
Pomatoschistus pictus	N	4	6	
Pomatoschistus pictus	N	5	1	
Limanda limanda	Υ	16	2	
Limanda limanda	Υ	6	1	
Limanda limanda	Υ	21	1	
Limanda limanda	Υ	18	3	
Pleuronectes platessa	Υ	14	4	
Limanda limanda	Υ	15	1	
Limanda limanda	Υ	13	3	
Limanda limanda	Υ	8	1	
Limanda limanda	Υ	22	1	
Limanda limanda	Υ	17	1	

UK4855H-824-RR-01

	St	ation Name		OWF_T5							
			Geodetics: W	GS84 UTM31I	N 3°E						
Fix Name		Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)			
Distance		Ref sp. Kept?	Υ	Shoot	07:29	1	387 965.0	5 942 333.5			
Vessel Speed		Photographed?	Υ	Lock	07:33	3	387 954.3	5 942 500.6			
Trawl Length (m)	508.85	Sieve Mesh Size	5mm	Haul	07:47	4	387 930.7	5 943 008.9			
Log method	Distance	Sample Volume	100L								
		Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	18.6-19.2			
Notes											

votes

Storage Equipment Weights

Weights	Fish Le	ength Data		
Taxon	Kept (Y/N)	Length (cm)	Count	
Agonus cataphractus	N	9	1	
Agonus cataphractus	N	12	1	
Agonus cataphractus	N	8	1	
Agonus cataphractus	N	14	1	
Agonus cataphractus	N	11	1	
Agonus cataphractus	N	15	1	
Ammodytes marinus	Υ	14	1	
Limanda limanda	Υ	23	1	
Limanda limanda	Υ	17	5	
Limanda limanda	Υ	14	5	
Limanda limanda	Υ	21	2	
Limanda limanda	Y	18	4	
Limanda limanda	Υ	16	2	
Limanda limanda	Y	15	6	
Limanda limanda	Υ	13	1	
Limanda limanda	Υ	19	2	
Limanda limanda	Y	12	1	
Limanda limanda	Υ	17	1	
Merlangius merlangus	N	18	1	
Microstomus kitt	N	19	1	
Molva molva	Υ	17	1	
Myoxocephalus scorpius	N	14	2	
Pholis gunnellus	N	17	1	
Pholis gunnellus	N	14	1	
Pholis gunnellus	N	16	1	
Pholis gunnellus	N	15	1	
Pomatoschistus pictus	N	4	1	
Pomatoschistus pictus	N	5	1	
Taurulus bubalis	N	10	8	
Taurulus bubalis	N	12	6	
Taurulus bubalis	N	11	3	
Taurulus bubalis	N	16	1	

	Sta	ation Name				ow	F_T5	
			Geodetics: W	GS84 UTM31	N 3°E			
Fix Name		Processed?	Υ		Time (UTC; hh:mm)	Fix#	Easting (m)	Northing (m)
Distance		Ref sp. Kept?	Υ	Shoot	07:29	1	387 965.0	5 942 333.5
Vessel Speed		Photographed?	Υ	Lock	07:33	3	387 954.3	5 942 500.6
Trawl Length (m)	508.85	Sieve Mesh Size	5mm	Haul	07:47	4	387 930.7	5 943 008.9
Log method	Distance	Sample Volume	100L					
		Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	18.6-19.2
Notes								
Storage Equipment Weights								
			Fish Lo	ength Data				
	Taxon		Kept (Y/N)	Length (cm)	Count			
	Taurulus bul	palis	N	13	1			
•	Taurulus bul	palis	N	15	3			

							01(40331	1-024-KK-(
	Statio	n Name				OWF_T6_	A	
			Geodetics:	WGS84 UTM3:			_	
Fix Name		Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)
Distance		Ref sp. Kept?	Υ	Shoot	18:44	1	390 563.2	5 933 272
Vessel Speed		Photographed ?	Υ	Lock	18:46	3	390 589.3	5 933 290
Trawl Length (m)	702.59	Sieve Mesh Size	5mm	Haul	19:10	4	390 800.0	5 932 619
Log method	Distance	Sample Volume	80L					
		Log frequency	1 Second	Sampling Device	2m Beam Ti	rawl	Water Depth (m)	19.4-19.2
Notes	Second traw	l attempt at this st	ation due to a	no sample of 4 scorpionfish ar		of fish tha	an at first locatio	n (T7), lots o
Storage Equipment Weights								
			Fish	n Length Data				
	Taxon		Kept (Y/N)	Length (cm)	Count			
A	Agonus cataphra	ictus	Υ	130	1			
	Callionymus ly	ra	Υ	180	1			
	Callionymus ly		Υ	140	1			
	Limanda liman		Υ	200	1			
	Limanda liman		Υ	190	1			
	Limanda liman		Y Y	185	1			
	Limanda limanda			175	1			
	Limanda liman		Υ	140	1			
	Limanda liman		Υ	150	3			
	Limanda liman		Υ	75	1			
	Limanda liman	da	Υ	70	1			

Agonus cataphractus	Υ	130	1	
Callionymus lyra	Υ	180	1	
Callionymus lyra	Υ	140	1	
Limanda limanda	Υ	200	1	
Limanda limanda	Y	190	1	
Limanda limanda	Υ	185	1	
Limanda limanda	Y	175	1	
Limanda limanda	Y	140	1	
Limanda limanda	Y	150	3	
Limanda limanda	Υ	75	1	
Limanda limanda	Υ	70	1	
Microstomus kitt	Y	110	1	
Molva molva	Υ	120	1	
Myoxocephalus scorpius	Y	60	1	
Pholis gunnellus	Υ	45	3	
Pholis gunnellus	Y	40	1	
Pholis gunnellus	Y	35	1	
Pholis gunnellus	Y	90	1	
Pholis gunnellus	Y	60	1	
Pleuronectes platessa	N	150	3	
Pleuronectes platessa	N	160	2	
Pleuronectes platessa	N	180	2	
Pleuronectes platessa	N	140	2	
Pomatoschistus pictus	Υ	130	1	
Pomatoschistus pictus	Υ	155	1	
Pomatoschistus pictus	Y	150	1	
Pomatoschistus pictus	Y	140	1	
Pomatoschistus pictus	Y	145	1	
Solea solea	N	220	1	
Taurulus bubalis	Υ	70	4	
Taurulus bubalis	Y	80	1	
Taurulus bubalis	Y	95	1	

	Statio	n Name				OWF_T6	_A	
			Geodetics:	WGS84 UTM3	1N 3°E			
Fix Name		Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)
Distance		Ref sp. Kept?	Υ	Shoot	18:44	1	390 563.2	5 933 272.7
Vessel Speed		Photographed ?	Υ	Lock	18:46	3	390 589.3	5 933 290.0
Trawl Length (m)	702.59	Sieve Mesh Size	5mm	Haul	19:10	4	390 800.0	5 932 619.8
Log method	Distance	Sample Volume	80L					
		Log frequency	1 Second	Sampling Device	2m Beam T	rawl	Water Depth (m)	19.4-19.1
Notes	Second traw	l attempt at this st		no sample of 4 scorpionfish ar		of fish th	an at first locatio	n (T7), lots of
Storage Equipment Weights								
			Fish	n Length Data				
	Taxon		Kept (Y/N)	Length (cm)	Count			
	Taurulus buba	lis	Υ	100	1			
	Taurulus buba	lis	Υ	105	1			
	Taurulus buba	lis	Υ	125	5			
	Taurulus buba	lis	Υ	110	1			
	Taurulus buba	lis	Υ	90	1			

	Stat	ion Name				OWF_	Г7	
			Geodetics: WG	S84 UTM31N	3°E			
Fix Name		Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)
Distance		Ref sp. Kept?	Υ	Shoot	11:49	1	397 234.8	5 940 639.5
Vessel Speed		Photographed?	Υ	Lock	11:51	3	397 296.7	5 940 733.0
Trawl Length (m)	677.67	Sieve Mesh Size	5mm	Haul	12:10	4	397 189.9	5 941 402.2
Log method	Distance	Sample Volume	15L					
		Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	22.2
Notes								
Storage Equipment Weights								
			Fish Ler	ngth Data				
	Taxon		Kept (Y/N)	Length (cm)	Count			
	Agonus cataphi	ractus	Υ	10	1			
	Arnoglossus la	terna	Υ	14	1			
	Arnoglossus la	terna	Y	13.5	1			
	Arnoglossus la		Υ	13	1			
	Arnoglossus la		Υ	6.5	1			
	Buglossidium lu		Υ	9.5	1			
	Buglossidium lu		Υ	9	1			
	Echiichthys vij		Y	10	10			
	Echiichthys vi		N	12	11			
	Echiichthys vij		N N	13.5 9	1 12			
	Echiichthys vij		N	13	2			
	Echiichthys vij		N	12.5	6			
	Echiichthys vi		N	11	3			
	Echiichthys vi		N	10.5	1			
	Echiichthys vi		N	2.5	2			
	Echiichthys vij		N	9.5	8			
	Echiichthys vij	pera	N	11.5	1			
	Echiichthys vi		N	8	3			
	Echiichthys vi		N	7	5			
	Echiichthys vi		N	3	11			
	Echiichthys vij		N	4	25			
	Echiichthys vij		N	6.5	1			
	Echiichthys vi		N	3.5	5			
	Echiichthys vij Echiichthys vij		N N	5 4.5	1 1			
	Gobiidae		Y	3	1			
	Limanda lima		Y	7	1			
	Limanda lima		Y	6	1			
	Limanda lima		Υ	4	1			
	Limanda lima		Υ	8	1			
	Platichthys pl		Y	19	1			

	Stat	tion Name		OWF_T7											
			Geodetics: WG	S84 UTM31N	3°E										
Fix Name		Processed?	Υ		Time (UTC; hh:mm)	Fix #	Easting (m)	Northing (m)							
Distance		Ref sp. Kept?	Υ	Shoot	11:49	1	397 234.8	5 940 639.5							
Vessel Speed		Photographed?	Υ	Lock	11:51	3	397 296.7	5 940 733.0							
Trawl Length (m)	677.67	Sieve Mesh Size	5mm	Haul	12:10	4	397 189.9	5 941 402.2							
Log method	Distance	Sample Volume	15L												
		Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	22.2							
Notes															
Storage Equipment Weights			5111												
			Fish Ler	ngth Data		ı									
	Taxon		Kept (Y/N)	Length (cm)	Count										
	Platichthys pl	esus	Υ	7.5	1										
	Platichthys pl	esus	Υ	8	1										
	Pleuronectes pl		Υ	19.5	1										
	Pleuronectes pl		Υ	20	1										
	Pleuronectes pl		Υ	11	1										
	Pleuronectes pl	atessa	Υ	9	1										

UK4855H-824-RR-01

	Ctat	ion Namo		<u> </u>		OWE 1		
	Sldl	ion Name	Geodetics: WG	S84 LITM31N	3°F	OWF_1	9	
		- 12		304 OTIVISTIV	Time (UTC;		Easting	Northing
Fix Name		Processed?	Y		hh:mm)	Fix #	(m)	(m)
Distance		Ref sp. Kept?	Υ	Shoot	07:40	1	401 226.2	5 936 615.8
Vessel Speed		Photographed?	Y	Lock	07:44	3	401 256.1	5 936 524.9
Trawl Length (m)	517.64	Sieve Mesh Size	5mm	Haul	08:00	4	401 451.7	5 936 045.6
Log method	Distance	Sample Volume	140L					
		Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	22.4-22.2
Notes								
Storage								
Equipment Weights								
Weights			Fish Lei	ngth Data				
	Taxon		Kept (Y/N)	Length	Count			
				(cm)				
	Agonus cataphi		N N	11 12	3			
	Agonus cataphi Buglossidium lu		N N	8	1			
	Buglossidium lu		N	14	1			
	Buglossidium lu		N	10	2			
	Buglossidium lu		N	4	1			
	Callionymus l	yra	N	3	1			
	Callionymus l	yra	N	15	1			
	Callionymus l		N	17	1			
	Callionymus I		N	14	5			
	Callionymus I		N	8	1			
	Callionymus I		N	5	4			
	Callionymus I		N	12	1			
	Limanda lima		Y	18	3			
	Limanda lima Limanda lima		Y	17 13	4			
	Limanda lima		Y	19	6 4			
	Limanda lima		Y	15	2			
	Limanda lima		Y	20	3			
	Limanda lima		Y	16	4			
	Limanda lima		Υ	14	3			
	Microstomus	kitt	N	15	1			
Λ.	1yoxoxephalus s	corpius	N	9	1			
	Pholis gunne	llus	N	15	1			
	Pleuronectes pla		N	17	2			
	Pleuronectes pla		N	15	2			
	Pleuronectes pla		N	20	1			
	Pleuronectes pla		N	16	1			
	Pleuronectes pla		N	13	1			
	Pleuronectes pla		N	12	1			
	Pleuronectes pla		Y	9	1			
	Pomatoschistus	pictus	N	3	3			

Pomatoschistus pictus

	Sta	tion Name				OWF_1	Г9	
			Geodetics: WG	S84 UTM31N	3°E			
Fix Name		Processed?	Υ		Time (UTC; hh:mm)	Fix#	Easting (m)	Northing (m)
Distance		Ref sp. Kept?	Υ	Shoot	07:40	1	401 226.2	5 936 615.8
Vessel Speed		Photographed?	Υ	Lock	07:44	3	401 256.1	5 936 524.9
Trawl Length (m)	517.64	Sieve Mesh Size	5mm	Haul	08:00	4	401 451.7	5 936 045.6
Log method	Distance	Sample Volume	140L					
		Log frequency	1 Second	Sampling Device	2m Beam	Trawl	Water Depth (m)	22.4-22.2
Notes								
Storage Equipment Weights								
			Fish Lei	ngth Data				
	Taxon		Kept (Y/N)	Length (cm)	Count			
	Taurulus bub	palis	N	13	2			
	Taurulus bub	palis	N	11	2			
	Taurulus bub	palis	N	8	1			
	Taurulus bub		N	10	4			
	Taurulus bub	palis	N	12	1			
	Taurulus bub	palis	N	16	1			

APPENDIX K - SPEARMAN'S CORRELATIONS

Hamon Grab Spearman's Correlation (PSA and TOC)

Spearman's Correlation Coeff tailed)	icient (Two	Water Depth	Distance to Nearest Well (Km)	Mean (ı	Sorting	Skewness	Kurtosis	% Fines	% Sands	% Grave	Total Organic Ma	Number of Species	Number of Individuals	Margalef Richnes	Pielou's Evennes	Simpsons Diversity	Shannon-Wiener Div
Number of Data Points	80	oth (est \	(mm)	B	ess	sis	es	sp	vel	Matter	es (p	uals	s (p	ss (per	ty (p	ersit
p=0.05, 95% Significant	0.220	(E	Vell								(%N	(per 0.	(per	_ <u>e</u>	0	(per 0	:у (р
p=0.01, 99% Significant	0.287		(Km								(M/M))	0.1m²)	0.1m²)	0.1m²)	.1m²)	0.1m²)	Diversity (per 0.1m²
p=0.001, 99.9% Significant	0.363												n²))	1m²)
Water Depth (m)			0.131	0.155	0.312	-0.236	0.014	0.295	-0.222	0.212	0.371	0.377	0.446	0.259	-0.331	-0.112	0.085
Distance to Nearest Well (Km)				-0.201	-0.146	-0.147	0.094	-0.086	0.214	-0.225	-0.301	-0.098	-0.006	-0.130	-0.172	-0.234	-0.199
Mean (mm)					0.797	0.546	-0.659	0.622	-0.952	0.953	0.667	0.626	0.287	0.622	0.152	0.411	0.551
Sorting						0.137	-0.595	0.767	-0.862	0.847	0.784	0.763	0.424	0.765	0.097	0.475	0.689
Skewness							-0.420	0.157	-0.469	0.478	0.077	0.111	-0.039	0.123	0.196	0.154	0.143
Kurtosis								-0.460	0.615	-0.616	-0.458	-0.382	-0.191	-0.361	-0.094	-0.178	-0.300
% Fines									-0.656	0.627	0.641	0.645	0.332	0.645	0.117	0.418	0.596
% Sands										-0.998	-0.761	-0.727	-0.380	-0.723	-0.155	-0.494	-0.663
% Gravel											0.756	0.717	0.374	0.711	0.156	0.487	0.651
Total Organic Matter (%M/M												0.762	0.528	0.711	-0.017	0.367	0.583
Number of Species (per 0.1m													0.705	0.933	0.009	0.523	0.795
Number of Individuals (per 0.	,													0.446	-0.546	-0.060	0.243
Margalef Richness (per 0.1m ²)														0.274	0.740	0.929
Pielou's Evenness (per 0.1m²)	21															0.792	0.507
Simpsons Diversity (per 0.1m																	0.893
Shannon-Wiener Diversity (pe	er U.1m)		l														

Document No. UK4855H-824-RR-01 Page 276 of 292

Shipek Grab Spearman's Correlation (Contaminants)

Spearman's Correlation Coefficient (Two-tailed) Number of Data Points 30 p=0.05, 95% Significant 0.362 p=0.01, 99% Significant 0.467 p=0.001, 99.9% Significant 0.580	Water Depth (m)	Distance to Nearest Historic well (Km)	Mean (mm)	Sorting	Skewness	Kurtosis	% Fines	% Sands	% Gravel	Total Organic Carbon (%M/M)	Total 16 PAH (μg.Kg ⁻¹)	Total 22 PAH (μg.Kg ⁻¹)	Low moleculaweight PAH (µg.Kg ⁻¹)	High molecular weight PAH (µg.Kg ⁻¹)	Arsenic (mg.kg ⁻¹)	Cadmium (mg.kg ⁻¹)	Chromium (mg.kg ⁻¹)	Copper (mg.kg ⁻¹)	Lead (mg.kg ⁻¹)	Mercury (mg.kg ⁻¹)	Nickel (mg.kg ⁻¹)	Zinc (mg.kg ⁻¹)	Number of Species (per 0.1 m²)	Number of Individuals (per 0.1m ²)	Margalef Richness (per 0.1m²)	Pielou's Evenness (per 0.1m²)	Simpsons Diversity (per 0.1m²)	Shannon-Wiener Diversity (per 0.1m²)
Water Depth (m)		0.111	0.194	0.328	-0.125	-0.193	0.419	-0.221	0.195	0.410	0.122	0.294	0.329	0.107	0.001	-0.260	-0.085		0.167	-0.635		-0.002	0.381	0.468	0.237	-0.282		0.002
Distance to Nearest Historic well (Km)			-0.175	-0.156		0.242	-0.042	0.233	-0.275	-0.241	-0.360	-0.377	-0.240	-0.326	0.148	-0.013	-0.010	-0.084	0.222	0.223	0.001	0.044	-0.358		-0.364	-0.277		-0.402
Mean (mm)				0.814		-0.660		-0.944		0.564	0.515	0.493	0.431	0.465	0.506	0.559	0.617	0.586	0.558	-0.046	0.646	0.650	0.743		0.659	-0.054	0.268	0.486
Sorting					0.238	-0.723		-0.872		0.579	0.441	0.524	0.422	0.429	0.228	0.360	0.595	0.577	0.344	-0.091	0.551	0.454	0.775	0.486	0.736	0.134		0.660
Skewness						-0.386	0.111	-0.521	0.534	0.040	0.360	0.294	0.389	0.273	0.228	0.363	0.273	0.288	0.193	-0.078		0.423	0.236		0.180	-0.092		0.110
Kurtosis	_						-0.476	0.652	-0.650	-0.423		-0.460	-0.583	-0.409	-0.234	-0.313	-0.502	-0.457	-0.313	-0.148	-0.492	-0.409	-0.587		-0.548	-0.019		-0.405
% Fines	<u> </u>							-0.528	0.474	0.426	0.242	0.291	0.140	0.254	0.164	0.048	0.348	0.366	0.311	-0.076	0.368	0.297	0.641	0.346	0.636	0.101	0.341	0.521
% Sands	_								-0.993	-0.666	-0.531	-0.568	-0.520	-0.483	-0.469	-0.560	-0.651	-0.640	-0.530	-0.004	-0.669	-0.660	-0.819		-0.740	-0.054		-0.623
% Gravel	_									0.672	0.563	0.607	0.553	0.507	0.478	0.574	0.635	0.623	0.512	0.023	0.655	0.654	0.812	0.592	0.731	0.073		0.610
Total Organic Carbon (% M/M)	_										0.503	0.605	0.565	0.509	0.450	0.340	0.443	0.447	0.508	-0.011	0.461	0.485	0.788	0.611	0.724	0.120	0.370	0.517
Total 16 PAH (μg.Kg ⁻¹)	<u> </u>											0.942		0.985	0.395	0.489	0.404	0.384	0.478	-0.069	0.475	0.459	0.612	0.588	0.470	0.006		0.275
Total 22 PAH (μg.Kg ⁻¹)	Ь—												0.905	0.899	0.307	0.349	0.369	0.414	0.333	0.076	0.392	0.432	0.683	0.485	0.618	0.235		0.448
Low moleculaweight PAH (μg.kg ⁻¹)	Ь—													0.752	0.359	0.269	0.263	0.256	0.236	0.099	0.333	0.412	0.478	0.457	0.353	0.018		0.230
High molecular weight PAH (μg.kg ⁻¹)	┝														0.360	0.434	0.382	0.356	0.460	-0.107	0.444	0.408	0.572	0.559	0.444	0.009		0.253
Arsenic (mg.kg ⁻¹)	┝															0.748	0.670	0.564	0.752	0.365	0.737	0.855	0.397	0.293	0.409	0.066	$\overline{}$	0.264
Cadmium (mg.kg ⁻¹)	⊢																0.831	0.765	0.734	0.380	0.866	0.886	0.526	0.414	0.498	0.004		0.366
Chromium (mg.kg ⁻¹)	\vdash																	0.925	0.615	0.312	0.973	0.890	0.634	0.397	0.637	0.134	0.398	0.575
Copper (mg.kg ⁻¹)	\vdash				-	_													0.543	0.366	0.889	0.828	0.636	0.292	0.660	0.221		0.668
Lead (mg.kg ⁻¹)	⊢			_	-															0.088	0.684	0.741	0.549	0.562	0.447	-0.265	$\overline{}$	0.162
Mercury (mg.kg ⁻¹)	⊢	_		_	-	_	_				_					\vdash					0.327	0.301	0.038	-0.210	0.280	0.512		0.373
Nickel (mg.kg ⁻¹)	⊢			_		_	_															0.934	0.660	0.455	0.644 0.581	0.086	0.377	0.551
Zinc (mg.kg ⁻¹)	_						_																0.610					
Number of Species (per 0.1m²)	\vdash			_	-	-	_																	0.737	0.924	0.149		0.736
Number of Individuals (per 0.1m²)	\vdash			-	-	_																		\vdash	0.454			0.134
Margalef Richness (per 0.1m²)	\vdash	_		_	-	_	_				_					\vdash								\vdash		0.456		0.892
Pielou's Evenness (per 0.1m²)	\vdash			_	-	-	_																	\vdash				0.681
Simpsons Diversity (per 0.1m²)	\vdash			_	-	-	_																	\vdash			_	0.912
Shannon-Wiener Diversity (per 0.1m²)																												

Document No. UK4855H-824-RR-01 Page 277 of 292

APPENDIX L – CONVERSION OF EUNIS CLASSIFICATIONS

2012 EUNIS Code	2012 EUNIS Name	2019 EUNIS Code	2019 EUNIS Name	Variation
A5.61	Sublittoral polychaete worm reefs on sediment	MB221	Worm reefs in the Atlantic infralittoral zone	Narrower
A5.13	Infralittoral Coarse Sediment	MB3	Infralittoral coarse sediment	Equal
A5.13; A5.1; A5.5; A5	Infralittoral coarse sediment; Sublittoral coarse sediment; Sublittoral macrophyte-dominated sediment; Sublittoral sediment	MB32	Atlantic infralittoral coarse sediment	Wider
A5.13	Infralittoral Coarse Sediment	MB323	Faunal communities in full salinity Atlantic infralittoral coarse sediment	Narrower
A5.131	Sparse fauna on highly mobile sublittoral shingle (cobbles and pebbles)	MB3231	Sparse fauna on highly mobile Atlantic infralittoral shingle (cobbles and pebbles)	Equal
A5.135	Glycera lapidum in impoverished infralittoral mobile gravel and sand	MB3235	Glycera lapidum in impoverished Atlantic infralittoral mobile gravel and sand	Equal
A5.43	Infralittoral Mixed Sediments	MB4	Infralittoral Mixed Sediments	Equal
A5.4; A5.43; A5.41; A5.5; A5	Sublittoral mixed sediment; Infralittoral mixed sediments; Sublittoral mixed sediment in low or reduced salinity; Sublittoral macrophyte-dominated sediment; Sublittoral sediment	MB42	Atlantic infralittoral mixed sediment	Wider
A5.23	Infralittoral Fine Sand	MB5	Infralittoral Sand	Wider
A5.23	Infralittoral Fine Sand	MB52	Atlantic Infralittoral Sand	Overlap
A5.23	Infralittoral Fine Sand	MB523	Faunal Communities of Full Salinity Atlantic Infralittoral Sand	Equal
A5.231	Infralittoral mobile clean sand with sparse fauna	MB5231	Sparse fauna in Atlantic infralittoral mobile clean sand	Equal
A5.233	Nephtys cirrosa and Bathyporeia spp. in infralittoral sand	MB5233	Nephtys cirrosa and Bathyporeia spp. in Atlantic infralittoral sand	Equal
A5.33; A5.34; A5.3; A5.5; A5	Infralittoral sandy mud; Infralittoral fine mud; Sublittoral mud; Sublittoral macrophyte-dominated sediment; Sublittoral sediment	MB62	Atlantic infralittoral mud	Wider
A5.6	Sublittoral biogenic reefs	MC2	Circalittoral biogenic habitat	Wider
A5.61	Sublittoral polychaete worm reefs on sediment	MC221	Worm reefs in the Atlantic circalittoral zone	Narrower
A5.611	Sabellaria spinulosa on stable circalittoral mixed sediment	MC2211	Sabellaria spinulosa on stable Atlantic circalittoral mixed sediment	Equal
A5	Sublittoral Sediments	МСЗ	Circalittoral Coarse Sediment	Overlap
A5.14; A5.1; A5	Circalittoral coarse sediment; Sublittoral coarse sediment; Sublittoral sediment	MC32	Atlantic circalittoral coarse sediment	Wider

Document No. UK4855H-824-RR-01 Page 278 of 292

2012 EUNIS Code	2012 EUNIS Name	2019 EUNIS Code	2019 EUNIS Name	Variation
A5.14	Circalittoral coarse sediment	MC321	Faunal communities of Atlantic circalittoral coarse sediment	Narrower
A5.141	Pomatoceros triqueter with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles	MC3211	Pomatoceros triqueter with barnacles and bryozoan crusts on Atlantic circalittoral unstable cobbles and pebbles	Equal
A5.142	Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in circalittoral coarse sand or gravel	MC3212	Mediomastus fragilis, Lumbrineris spp. and venerid bivalves in Atlantic circalittoral coarse sand or gravel	Equal
A5.143	Protodorvillea kefersteini and other polychaetes in impoverished circalittoral mixed gravelly sand	MC3213	Protodorvillea kefersteini and other polychaetes in impoverished Atlantic circalittoral mixed gravelly sand	Equal
A5.44	Circalittoral Mixed Sediments	MC42	Atlantic Circalittoral Mixed Sediment	Narrower
A5.44	Circalittoral Mixed Sediments	MC421	Faunal communities of Atlantic circalittoral mixed sediment or coarse sediment depending on PSA	Narrower
A5.25	Circalittoral Fine Sand	MC512	Faunal Communities of Atlantic Circalittoral Sand	Overlap with A5.26
A5.25; A5.26; A5.2; A5	Circalittoral fine sand; Circalittoral muddy sand; Sublittoral sand; Sublittoral sediment	MC52	Atlantic circalittoral sand	Wider
A5.25	Circalittoral Fine Sand	MC521	Faunal communities of Atlantic circalittoral sand	Overlap with A5.26
A5.251	Echinocyamus pusillus, Ophelia borealis and Abra prismatica in circalittoral fine sand	MC5211	Echinocyamus pusillus, Ophelia borealis and Abra prismatica in circalittoral fine sand	Equal
A5.252	Abra prismatica, Bathyporeia elegans and polychaetes in circalittoral fine sand	MC5212	Abra prismatica, Bathyporeia elegans and polychaetes in circalittoral fine sand	Equal
	Deep circalittoral coarse sediment; Sublittoral coarse sediment; Sublittoral sediment	MD32	Atlantic offshore circalittoral coarse sediment	Wider
-	Deep circalittoral mixed sediments; Sublittoral sediment; Sublittoral mixed sediment	MD42	Atlantic offshore circalittoral mixed sediment	Wider
-	Deep circalittoral sand; Sublittoral sand; Sublittoral sediment	MD52	Atlantic offshore circalittoral sand	Wider
	Deep circalittoral mud; Sublittoral sediment; Sublittoral mud	MD62	Atlantic offshore circalittoral mud	Wider

Document No. UK4855H-824-RR-01 Page 279 of 292

APPENDIX M - SACFOR ABUNDANCE

Stills Data

Video Data

APPENDIX N – STONY REEF ASSESSMENT

Transect Name	Picture	Picture No.*	Date	Time	Easting (m)	Northing (m)	Composition (% Cover)	% Cover Category	Elevation (Average Boulder And Cobble Height In Mm)	Elevation Category	Reef Structure	Reefiness Value
	OWF_VID_23_00001	Additional1	09/04/2022	09:55:12	379006.29	5943336.22	9	<10%	50	<64mm	1	Not a Reef
	OWF_VID_23_00002	Additional2	09/04/2022	09:55:22	379005.74	5943338.42	6	<10%	10	<64mm	1	Not a Reef
	OWF_VID_23_00003	Additional3	09/04/2022	09:55:33	379005.19	5943339.81	0		0	Flat	0	Not a Reef
OWF_VID_23	OWF_VID_23_00004	Additional4	09/04/2022	09:55:43	379004.78	5943340.71	0		0	Flat	0	Not a Reef
	OWF_VID_23_00005	Additional5	09/04/2022	09:55:57	379003.97	5943342.73	0		0	Flat	0	Not a Reef
	OWF_VID_23_00006	Additional6	09/04/2022	09:56:10	379003.26	5943343.14	0		0	Flat	0	Not a Reef
	OWF_VID_23_00007	Additional7	09/04/2022	09:56:16	379003.05	5943343.14	0		0	Flat	0	Not a Reef
	OWF_VID_31_001	1	12/04/2022	14:26:58	No Nav	No Nav	2	<10%	64	64mm-5m	1	Not a Reef
	OWF_VID_31_002	2	12/04/2022	14:27:49	No Nav	No Nav	3		50	<64mm	1	Not a Reef
	OWF_VID_31_003	3	12/04/2022	14:28:33	No Nav	No Nav	0		0	Flat	0	Not a Reef
	OWF_VID_31_004	4	12/04/2022	14:28:42	No Nav	No Nav	0		0	Flat	0	Not a Reef
	OWF_VID_31_005	5	12/04/2022	14:30:24	No Nav	No Nav	0		0	Flat	0	Not a Reef
	OWF_VID_31_006	6	12/04/2022	14:31:19	382462.84	5928303.88	2		50	<64mm	1	Not a Reef
	OWF_VID_31_007	7	12/04/2022	14:32:22	382462.63	5928304.43	0		0	Flat	0	Not a Reef
	OWF_VID_31_008	8	12/04/2022	14:32:37	382458.34	5928315.23	0		0	Flat	0	Not a Reef
	OWF_VID_31_009	9	12/04/2022	14:34:27	382454.31	5928329.64	0		0	Flat	0	Not a Reef
OWF VID 31	OWF_VID_31_010	10	12/04/2022	14:34:36	382454.05	5928332.27	0		0	Flat	0	Not a Reef
OWF_VID_31	OWF_VID_31_011	11	12/04/2022	14:34:49	382453.18	5928334.77	0		0	Flat	0	Not a Reef
	OWF_VID_31_012	12	12/04/2022	14:34:58	382452.6	5928336.06	0		0	Flat	0	Not a Reef
	OWF_VID_31_013	13	12/04/2022	14:35:05	382451.87	5928337.46	0		0	Flat	0	Not a Reef
	OWF_VID_31_014	14	12/04/2022	14:35:27	382450.05	5928340.20	0		0	Flat	0	Not a Reef
	OWF_VID_31_015	15	12/04/2022	14:35:30	382449.94	5928340.50	0		0	Flat	0	Not a Reef
	OWF_VID_31_016	16	12/04/2022	14:35:38	382449.3	5928341.99	0		0	Flat	0	Not a Reef
	OWF_VID_31_017	17	12/04/2022	14:36:04	382448.70	5928345.20	4	<10%	10	<64mm	1	Not a Reef
	OWF_VID_31_018	18	12/04/2022	14:36:17	382448.51	5928347.15	2	<10%	50	<64mm	1	Not a Reef
	OWF_VID_31_019	19	12/04/2022	14:36:41	382448.31	5928349.53	8	<10%	20	<64mm	1	Not a Reef
	OWF_VID_31_020	20	12/04/2022	14:37:10	382445.89	5928354.52	0		0	Flat	0	Not a Reef
	OWF_VID_32_001	1	11/04/2022	15:45:55	No Nav	No Nav	7	<10%	50	<64mm	1	Not a Reef
OWF_VID_32	OWF_VID_32_002	2	11/04/2022	15:50:20	382677.91	5933648.75	0		0	Flat	0	Not a Reef
	OWF_VID_32_003	3	11/04/2022	15:50:23	382677.85	5933649.28	0		0	Flat	0	Not a Reef

Document No. UK4855H-824-RR-01 Page 281 of 292

Transect Name	Picture	Picture No.*	Date	Time	Easting (m)	Northing (m)	Composition (% Cover)	% Cover Category	Elevation (Average Boulder And Cobble Height In Mm)	Elevation Category	Reef Structure	Reefiness Value
	OWF_VID_32_004	4	11/04/2022	15:51:26	382672.43	5933657.04	9	<10%	50	<64mm	1	Not a Reef
	OWF_VID_32_005	5	11/04/2022	15:52:20	382669.78	5933663.62	0		0	Flat	0	Not a Reef
	OWF_VID_32_006	6	11/04/2022	15:53:08	382668.57	5933672.34	0		0	Flat	0	Not a Reef
	OWF_VID_32_007	7	11/04/2022	15:53:26	382667.83	5933674.14	0		0	Flat	0	Not a Reef
	OWF_VID_32_008	8	11/04/2022	15:53:47	382666.84	5933676.45	0		0	Flat	0	Not a Reef
	OWF_VID_32_00001	Additional1	11/04/2022	15:55:37	382660.96	5933692.17	11	10-40%	200	64mm-5m	2	Low Reef
	OWF_VID_32_009	9	11/04/2022	15:55:50	382659.53	5933694.89	2	<10%	20	<64mm	1	Not a Reef
	OWF_VID_32_010	10	11/04/2022	15:55:58	382658.91	5933696.18	0		0	Flat	0	Not a Reef
	OWF_VID_45_001	1	12/04/2022	08:58:34	No Nav	No Nav	3	<10%	20	<64mm	1	Not a Reef
	OWF_VID_45_002	2	12/04/2022	08:59:05	No Nav	No Nav	0		0	Flat	0	Not a Reef
	OWF_VID_45_003	3	12/04/2022	08:59:35	No Nav	No Nav	3	<10%	20	<64mm	1	Not a Reef
	OWF_VID_45_004	4	12/04/2022	09:00:08	No Nav	No Nav	0		0	Flat	0	Not a Reef
	OWF_VID_45_005	5	12/04/2022	09:02:22	385833.22	5929702.53	0		0	Flat	0	Not a Reef
	OWF_VID_45_006	6	12/04/2022	09:02:53	385835.18	5929698.71	0		0	Flat	0	Not a Reef
	OWF_VID_45_007	7	12/04/2022	09:03:13	385836.28	5929696.67	2	<10%	20	<64mm	1	Not a Reef
	OWF_VID_45_008	8	12/04/2022	09:03:35	385837.24	5929693.78	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_45_009	9	12/04/2022	09:03:46	385837.85	5929692.01	2	<10%	20	<64mm	1	Not a Reef
	OWF_VID_45_010	10	12/04/2022	09:04:03	385838.22	5929689.93	0		0	Flat	0	Not a Reef
OWF_VID_45	OWF_VID_45_011	11	12/04/2022	09:04:41	385839.62	5929684.81	4	<10%	10	<64mm	1	Not a Reef
	OWF_VID_45_012	12	12/04/2022	09:05:14	385839.93	5929679.86	2	<10%	10	<64mm	1	Not a Reef
	OWF_VID_45_013	13	12/04/2022	09:05:44	385841.27	5929675.86	0		0	Flat	0	Not a Reef
	OWF_VID_45_014	14	12/04/2022	09:05:57	385842.03	5929673.68	0		0	Flat	0	Not a Reef
	OWF_VID_45_015	15	12/04/2022	09:06:20	385843.21	5929670.73	0		0	Flat	0	Not a Reef
	OWF_VID_45_016	16	12/04/2022	09:06:44	385844.67	5929667.16	0		0	Flat	0	Not a Reef
	OWF_VID_45_017	17	12/04/2022	09:07:24	385847.02	5929661.56	0		0	Flat	0	Not a Reef
	OWF_VID_45_018	18	12/04/2022	09:07:59	385849.08	5929656.57	0		0	Flat	0	Not a Reef
	OWF_VID_45_019	19	12/04/2022	09:08:10	385849.84	5929654.69	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_45_020	20	12/04/2022	09:08:25	385850.42	5929653.06	0		0	Flat	0	Not a Reef
	OWF_VID_45_021	21	12/04/2022	09:08:36	385850.72	5929651.95	0		0	Flat	0	Not a Reef
	OWF_VID_50_00001	Additional1	08/04/2022	14:49:32	387947.43	5942679.77	5	<10%	50	<64mm	1	Not a Reef
OWF_VID_50	OWF_VID_50_00002	Additional2	08/04/2022	14:49:40	387947.49	5942681.59	18	10-40%	50	<64mm	2	Low Reef
OWF_VID_30	OWF_VID_50_00003	Additional3	08/04/2022	14:49:54	387947.35	5942684.09	0		0	Flat	0	Not a Reef
	OWF_VID_50_00004	Additional4	08/04/2022	14:50:04	387947.27	5942685.86	1	<10%	10	<64mm	1	Not a Reef

Document No. UK4855H-824-RR-01 Page 282 of 292

Transect Name	Picture	Picture No.*	Date	Time	Easting (m)	Northing (m)	Composition (% Cover)	% Cover Category	Elevation (Average Boulder And Cobble Height In Mm)	Elevation Category	Reef Structure	Reefiness Value
	OWF_VID_50_00005	Additional5	08/04/2022	14:50:19	387947.02	5942687.11	0		0	Flat	0	Not a Reef
	OWF_VID_50_00006	Additional6	08/04/2022	14:50:28	387946.80	5942688.41	0		0	Flat	0	Not a Reef
	OWF_VID_50_00007	Additional7	08/04/2022	14:50:57	387946.37	5942690.98	28	10-40%	64	64mm-5m	2	Low Reef
	OWF_VID_50_00008	Additional8	08/04/2022	14:51:10	387946.32	5942692.14	0		0	Flat	0	Not a Reef
	OWF_VID_50_00009	Additional9	08/04/2022	14:51:19	387946.16	5942694.38	0		0	Flat	0	Not a Reef
	OWF_VID_50_00010	Additional10	08/04/2022	14:51:31	387945.87	5942695.19	0		0	Flat	0	Not a Reef
	OWF_VID_50_00011	Additional11	08/04/2022	14:51:41	387945.67	5942695.62	8	<10%	50	<64mm	1	Not a Reef
	OWF_VID_50_00012	Additional12	08/04/2022	14:51:52	387945.51	5942695.70	6	<10%	50	<64mm	1	Not a Reef
	OWF_VID_50_00013	Additional13	08/04/2022	14:52:01	387945.34	5942695.95	11	10-40%	64	64mm-5m	2	Low Reef
	OWF_VID_50_00014	Additional14	08/04/2022	14:52:14	387945.1	5942697.07	0		0	Flat	0	Not a Reef
	OWF_VID_50_00015	Additional15	08/04/2022	14:52:27	387945.59	5942698.89	0		0	Flat	0	Not a Reef
	OWF_VID_50_00016	Additional16	08/04/2022	14:52:39	387945.68	5942700.54	10	10-40%	50	<64mm	2	Low Reef
	OWF_VID_50_00017	Additional17	08/04/2022	14:52:51	387945.17	5942701.26	3	<10%	50	<64mm	1	Not a Reef
	OWF_VID_50_00018	Additional18	08/04/2022	14:53:04	387944.71	5942702.41	0		0	Flat	0	Not a Reef
	OWF_VID_50_00019	Additional19	08/04/2022	14:53:20	387944.2	5942703.29	0		0	Flat	0	Not a Reef
	OWF_VID_50_00020	Additional20	08/04/2022	14:53:39	387943.84	5942705.09	8	<10%	64	64mm-5m	1	Not a Reef
	OWF_VID_50_00021	Additional21	08/04/2022	14:53:54	387944.28	5942705.95	7	<10%	64	64mm-5m	1	Not a Reef
	OWF_VID_50_00022	Additional22	08/04/2022	14:54:04	387944.54	5942706.39	2	<10%	50	<64mm	1	Not a Reef
	OWF_VID_50_00023	Additional23	08/04/2022	14:54:16	387944.76	5942707.32	20	10-40%	50	<64mm	2	Low Reef
	OWF_VID_50_00024	Additional24	08/04/2022	14:54:30	387944.81	5942708.92	12	10-40%	64	64mm-5m	2	Low Reef
	OWF_VID_50_00025	Additional25	08/04/2022	14:54:40	387944.71	5942710.48	4	<10%	40	<64mm	1	Not a Reef
	OWF_VID_50_00026	Additional26	08/04/2022	14:55:07	387944.14	5942713.12	2	<10%	10	<64mm	1	Not a Reef
	OWF_VID_50_00027	Additional27	08/04/2022	14:55:17	387944.34	5942713.46	2	<10%	20	<64mm	1	Not a Reef
	OWF_VID_50_00028	Additional28	08/04/2022	14:55:31	387944.55	5942715.81	3	<10%	20	<64mm	1	Not a Reef
	OWF_VID_50_00029	Additional29	08/04/2022	14:55:40	387944.83	5942716.59	13	10-40%	90	64mm-5m	2	Low Reef
	OWF_VID_50_00030	Additional30	08/04/2022	14:55:57	387945.04	5942718.49	10	10-40%	50	<64mm	2	Low Reef
	OWF_VID_50_00031	Additional31	08/04/2022	14:56:07	387944.87	5942719.00	0		0	Flat	0	Not a Reef
	OWF_VID_50_00032	Additional32	08/04/2022	14:56:19	387944.73	5942719.29	0		0	Flat	0	Not a Reef
	OWF_VID_50_00033	Additional33	08/04/2022	14:56:29	387944.68	5942721.06	0		0	Flat	0	Not a Reef
	OWF_VID_50_00034	Additional34	08/04/2022	14:56:36	387944.68	5942721.63	1	<10%	50	<64mm	1	Not a Reef
	OWF_VID_50_00035	Additional35	08/04/2022	14:56:46	387944.83	5942722.65	4	<10%	30	<64mm	1	Not a Reef
	OWF_VID_50_00036	Additional36	08/04/2022	14:56:55	387944.89	5942723.98	5	<10%	50	<64mm	1	Not a Reef
	OWF_VID_50_00037	Additional37	08/04/2022	14:57:08	387945.07	5942726.00	3	<10%	30	<64mm	1	Not a Reef

Document No. UK4855H-824-RR-01 Page 283 of 292

Transect Name	Picture	Picture No.*	Date	Time	Easting (m)	Northing (m)	Composition (% Cover)	% Cover Category	Elevation (Average Boulder And Cobble Height In Mm)	Elevation Category	Reef Structure	Reefiness Value
	OWF_VID_50_00038	Additional38	08/04/2022	14:57:18	387944.89	5942727.00	0		0	Flat	0	Not a Reef
	OWF_VID_50_00039	Additional39	08/04/2022	14:57:27	387944.75	5942727.77	7	<10%	64	64mm-5m	1	Not a Reef
	OWF_VID_50_00040	Additional40	08/04/2022	14:57:45	387944.37	5942729.19	0		0	Flat	0	Not a Reef
	OWF_VID_50_00041	Additional41	08/04/2022	14:57:55	387944.23	5942729.87	12	10-40%	64	64mm-5m	2	Low Reef
	OWF_VID_50_00042	Additional42	08/04/2022	14:58:05	387944.15	5942730.47	4	<10%	30	<64mm	1	Not a Reef
	OWF_VID_50_00043	Additional43	08/04/2022	14:58:15	387944.03	5942731.75	0		0	Flat	0	Not a Reef
	OWF_VID_50_00044	Additional44	08/04/2022	14:58:24	387943.89	5942732.90	4	<10%	20	<64mm	1	Not a Reef
	OWF_VID_50_00045	Additional45	08/04/2022	14:58:32	387943.8	5942733.69	3	<10%	30	<64mm	1	Not a Reef
	OWF_VID_50_00046	Additional46	08/04/2022	14:58:40	387943.74	5942734.75	4	<10%	40	<64mm	1	Not a Reef
	OWF_VID_50_00047	Additional47	08/04/2022	14:58:51	387943.47	5942735.72	3	<10%	30	<64mm	1	Not a Reef
	OWF_VID_50_00048	Additional48	08/04/2022	14:59:02	387943.20	5942736.93	23	10-40%	64	64mm-5m	2	Low Reef
	OWF_VID_57_001	1	06/04/2022	14:51:20	No Nav	No Nav	4	<10%	50	<64mm	1	Not a Reef
	OWF_VID_57_002	2	06/04/2022	14:55:23	390616.64	5932925.28	2	<10%	10	<64mm	1	Not a Reef
	OWF_VID_57_003	3	06/04/2022	14:55:37	390617.60	5932923.20	14	10-40%	50	<64mm	2	Low Reef
	OWF_VID_57_004	4	06/04/2022	14:55:59	390618.38	5932919.72	8	<10%	40	<64mm	1	Not a Reef
	OWF_VID_57_005	5	06/04/2022	14:56:15	390619.16	5932917.88	17	10-40%	64	64mm-5m	2	Low Reef
	OWF_VID_57_006	6	06/04/2022	14:56:31	390620.20	5932915.08	3	<10%	10	<64mm	1	Not a Reef
	OWF_VID_57_007	7	06/04/2022	14:56:48	390621.48	5932912.99	13	10-40%	50	<64mm	2	Low Reef
	OWF_VID_57_008	8	06/04/2022	14:57:05	390622.67	5932911.00	17	10-40%	64	64mm-5m	2	Low Reef
	OWF_VID_57_009	9	06/04/2022	14:57:27	390623.96	5932907.97	20	10-40%	64	64mm-5m	2	Low Reef
	OWF_VID_57_010	10	06/04/2022	14:57:41	390624.8	5932905.78	2	<10%	20	<64mm	1	Not a Reef
OME 1/10 F7	OWF_VID_57_011	11	06/04/2022	14:58:01	390625.39	5932903.32	11	10-40%	50	<64mm	2	Low Reef
OWF_VID_57	OWF_VID_57_012	12	06/04/2022	14:58:15	390625.89	5932901.68	6	<10%	30	<64mm	1	Not a Reef
	OWF_VID_57_013	13	06/04/2022	14:58:31	390626.78	5932899.79	0		0	Flat	0	Not a Reef
	OWF_VID_57_014	14	06/04/2022	14:58:49	390627.49	5932898.38	22	10-40%	64	64mm-5m	2	Low Reef
	OWF_VID_57_015	15	06/04/2022	14:59:15	390629	5932895.54	14	10-40%	50	<64mm	2	Low Reef
	OWF_VID_57_016	16	06/04/2022	14:59:34	390630.09	5932893.08	7	<10%	50	<64mm	1	Not a Reef
	OWF_VID_57_017	17	06/04/2022	14:59:46	390630.6	5932892.06	3	<10%	20	<64mm	1	Not a Reef
	OWF_VID_57_018	18	06/04/2022	15:00:03	390631.2	5932890.24	8	<10%	30	<64mm	1	Not a Reef
	OWF_VID_57_019	19	06/04/2022	15:00:22	390632.17	5932887.93	5	<10%	30	<64mm	1	Not a Reef
	OWF_VID_57_020	20	06/04/2022	15:00:46	390633.43	5932884.19	7	<10%	30	<64mm	1	Not a Reef
	OWF_VID_57_021	21	06/04/2022	15:01:01	390633.71	5932882.55	2	<10%	20	<64mm	1	Not a Reef
	OWF_VID_57_022	22	06/04/2022	15:01:23	390634.77	5932880.00	6	<10%	20	<64mm	1	Not a Reef

Document No. UK4855H-824-RR-01 Page 284 of 292

Transect Name	Picture	Picture No.*	Date	Time	Easting (m)	Northing (m)	Composition (% Cover)	% Cover Category	Elevation (Average Boulder And Cobble Height In Mm)	Elevation Category	Reef Structure	Reefiness Value
	OWF_VID_57_023	23	06/04/2022	15:01:46	390635.19	5932878.35	12	10-40%	100	64mm-5m	2	Low Reef
	OWF_VID_65_00001	Additional1	06/04/2022	09:28:22	394855.84	5939296.24	5	<10%	65	64mm-5m	1	Not a Reef
	OWF_VID_65_00002	Additional2	06/04/2022	09:28:32	394854.83	5939294.80	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00003	Additional3	06/04/2022	09:28:42	394853.66	5939293.33	2	<10%	20	<64mm	0	Not a Reef
	OWF_VID_65_00004	Additional4	06/04/2022	09:28:52	394852.87	5939291.73	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00005	Additional5	06/04/2022	09:29:02	394852.33	5939290.05	1	<10%	20	<64mm	1	Not a Reef
	OWF_VID_65_00006	Additional6	06/04/2022	09:29:12	394851.82	5939288.08	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00007	Additional7	06/04/2022	09:29:22	394850.61	5939286.81	2	<10%	30	<64mm	1	Not a Reef
	OWF_VID_65_00008	Additional8	06/04/2022	09:29:32	394849.52	5939285.68	8	<10%	50	<64mm	1	Not a Reef
	OWF_VID_65_00009	Additional9	06/04/2022	09:29:42	394848.67	5939284.75	10	10-40%	50	<64mm	2	Low Reef
	OWF_VID_65_00010	Additional10	06/04/2022	09:29:55	394848.73	5939281.87	5	<10%	30	<64mm	1	Not a Reef
	OWF_VID_65_00011	Additional11	06/04/2022	09:30:05	394847.65	5939280.03	8	<10%	40	<64mm	1	Not a Reef
	OWF_VID_65_00012	Additional12	06/04/2022	09:30:15	394846.83	5939278.93	2	<10%	20	<64mm	1	Not a Reef
	OWF_VID_65_00013	Additional13	06/04/2022	09:30:25	394845.72	5939276.97	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00014	Additional14	06/04/2022	09:30:35	394846.01	5939276.06	5	<10%	50	<64mm	1	Not a Reef
	OWF_VID_65_00015	Additional15	06/04/2022	09:30:45	394845.38	5939274.60	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_65_00016	Additional16	06/04/2022	09:30:55	394844.11	5939273.30	6	<10%	64	64mm-5m	1	Not a Reef
OWF_VID_65	OWF_VID_65_00017	Additional17	06/04/2022	09:31:05	394843.34	5939271.50	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00018	Additional18	06/04/2022	09:31:15	394842.61	5939269.88	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00019	Additional19	06/04/2022	09:31:25	394841.79	5939268.28	2	<10%	30	<64mm	1	Not a Reef
	OWF_VID_65_00020	Additional20	06/04/2022	09:31:35	394841.27	5939267.00	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00021	Additional21	06/04/2022	09:31:45	394840.27	5939265.84	0		0	Flat	0	Not a Reef
	OWF_VID_65_00022	Additional22	06/04/2022	09:31:55	394839.53	5939264.87	2	<10%	20	<64mm	1	Not a Reef
	OWF_VID_65_00023	Additional23	06/04/2022	09:32:05	394839.05	5939263.7	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00024	Additional24	06/04/2022	09:32:15	394838.36	5939261.72	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00025	Additional25	06/04/2022	09:32:25	394837.72	5939260.42	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_65_00026	Additional26	06/04/2022	09:32:35	394837.06	5939259.40	4	<10%	20	<64mm	1	Not a Reef
	OWF_VID_65_00027	Additional27	06/04/2022	09:32:45	394836.72	5939257.81	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00028	Additional28	06/04/2022	09:32:55	394835.82	5939256.53	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00029	Additional29	06/04/2022	09:33:05	394835.25	5939254.95	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00030	Additional30	06/04/2022	09:33:15	394834.84	5939253.6	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00031	Additional31	06/04/2022	09:33:25	394834.09	5939252.36	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00032	Additional32	06/04/2022	09:33:38	394833.23	5939250.21	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00033	Additional33	06/04/2022	09:33:48	394832.69	5939249.2	9	<10%	64	64mm-5m	1	Not a Reef

Document No. UK4855H-824-RR-01 Page 285 of 292

Transect Name	Picture	Picture No.*	Date	Time	Easting (m)	Northing (m)	Composition (% Cover)	% Cover Category	Elevation (Average Boulder And Cobble Height In Mm)	Elevation Category	Reef Structure	Reefiness Value
	OWF_VID_65_00034	Additional34	06/04/2022	09:33:58	394831.85	5939247.88	0	0	0	Flat	0	Not a Reef
	OWF_VID_65_00035	Additional35	06/04/2022	09:34:08	394830.71	5939246.83	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_65_00036	Additional36	06/04/2022	09:34:22	394830.68	5939244.21	8	<10%	64	64mm-5m	1	Not a Reef
	OWF_VID_65_00037	Additional37	06/04/2022	09:34:35	394830.34	5939242.93	1	<10%	20	<64mm	1	Not a Reef
	OWF_VID_76_00001	Additional1	04/04/2022	22:17:51	399987.77	5935227.56	3	<10%	30	<64mm	1	Not a Reef
	OWF_VID_76_00002	Additional2	04/04/2022	22:18:02	399987.76	5935228.58	4	<10%	64	64mm-5m	1	Not a Reef
	OWF_VID_76_00003	Additional3	04/04/2022	22:18:12	399988.51	5935230.32	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00004	Additional4	04/04/2022	22:18:22	399989.1	5935232.12	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00005	Additional5	04/04/2022	22:18:32	399989.42	5935233.36	9	<10%	30	<64mm	1	Not a Reef
	OWF_VID_76_00006	Additional6	04/04/2022	22:18:42	399990.04	5935234.92	2	<10%	30	<64mm	1	Not a Reef
	OWF_VID_76_00007	Additional7	04/04/2022	22:18:52	399990.4	5935235.66	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00008	Additional8	04/04/2022	22:19:02	399991.07	5935237.13	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00009	Additional9	04/04/2022	22:19:12	399991.26	5935238.35	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00010	Additional10	04/04/2022	22:19:22	399991.91	5935239.54	2	<10%	40	<64mm	1	Not a Reef
	OWF_VID_76_00011	Additional11	04/04/2022	22:19:32	399992.5	5935240.66	9	<10%	50	<64mm	1	Not a Reef
	OWF_VID_76_00012	Additional12	04/04/2022	22:19:42	399993.15	5935241.68	7	<10%	40	<64mm	1	Not a Reef
	OWF_VID_76_00013	Additional13	04/04/2022	22:19:52	399993.59	5935243.47	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00014	Additional14	04/04/2022	22:20:02	399994.04	5935245.42	0	0	0	Flat	0	Not a Reef
OWF_VID_76	OWF_VID_76_00015	Additional15	04/04/2022	22:20:12	399994.56	5935247.61	2	<10%	40	<64mm	1	Not a Reef
	OWF_VID_76_00016	Additional16	04/04/2022	22:20:22	399995.18	5935249.54	2	<10%	50	<64mm	1	Not a Reef
	OWF_VID_76_00017	Additional17	04/04/2022	22:20:32	399995.38	5935251.34	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00018	Additional18	04/04/2022	22:20:42	399995.53	5935253.05	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00019	Additional19	04/04/2022	22:20:52	399995.79	5935254.52	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00020	Additional20	04/04/2022	22:21:02	399996.09	5935256.32	3	<10%	30	<64mm	1	Not a Reef
	OWF_VID_76_00021	Additional21	04/04/2022	22:21:12	399996.12	5935257.04	3	<10%	64	64mm-5m	1	Not a Reef
	OWF_VID_76_00022	Additional22	04/04/2022	22:21:22	399996.33	5935258.41	8	<10%	64	64mm-5m	1	Not a Reef
	OWF_VID_76_00023	Additional23	04/04/2022	22:21:32	399996.53	5935260.22	2	<10%	20	<64mm	1	Not a Reef
	OWF_VID_76_00024	Additional24	04/04/2022	22:21:42	399996.17	5935262.17	3	<10%	50	<64mm	1	Not a Reef
	OWF_VID_76_00025	Additional25	04/04/2022	22:21:52	399996.31	5935263.90	3	<10%	40	<64mm	1	Not a Reef
	OWF_VID_76_00026	Additional26	04/04/2022	22:22:02	399996.67	5935265.80	2	<10%	40	<64mm	1	Not a Reef
	OWF_VID_76_00027	Additional27	04/04/2022	22:22:12	399997.05	5935267.02	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00028	Additional28	04/04/2022	22:22:22	399997.27	5935267.59	11	10-40%	50	<64mm	2	Low Reef
	OWF_VID_76_00029	Additional29	04/04/2022	22:22:32	399997.85	5935268.58	8	<10%	50	<64mm	1	Not a Reef

Document No. UK4855H-824-RR-01 Page 286 of 292

Transect Name	Picture	Picture No.*	Date	Time	Easting (m)	Northing (m)	Composition (% Cover)	% Cover Category	Elevation (Average Boulder And Cobble Height In Mm)	Elevation Category	Reef Structure	Reefiness Value
	OWF_VID_76_00030	Additional30	04/04/2022	22:22:42	399998.70	5935270.15	10	10-40%	50	<64mm	2	Low Reef
	OWF_VID_76_00031	Additional31	04/04/2022	22:22:52	399999.56	5935271.79	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_76_00032	Additional32	04/04/2022	22:23:02	399999.61	5935273.24	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00033	Additional33	04/04/2022	22:23:12	400000.18	5935274.86	5	<10%	50	<64mm	1	Not a Reef
	OWF_VID_76_00034	Additional34	04/04/2022	22:23:22	400000.55	5935276.57	8	<10%	50	<64mm	1	Not a Reef
	OWF_VID_76_00035	Additional35	04/04/2022	22:23:32	400000.58	5935278.12	7	<10%	40	<64mm	1	Not a Reef
	OWF_VID_76_00036	Additional36	04/04/2022	22:23:42	400000.74	5935279.59	2	<10%	20	<64mm	1	Not a Reef
	OWF_VID_76_00037	Additional37	04/04/2022	22:23:52	400001.07	5935280.62	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_76_00038	Additional38	04/04/2022	22:24:02	400001.60	5935281.85	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_76_00039	Additional39	04/04/2022	22:24:12	400002.02	5935283.22	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00040	Additional40	04/04/2022	22:24:22	400002.72	5935284.85	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00041	Additional41	04/04/2022	22:24:32	400002.90	5935286.50	1	<10%	50	<64mm	1	Not a Reef
	OWF_VID_76_00042	Additional42	04/04/2022	22:24:42	400003.36	5935287.77	0	0	0	Flat	0	Not a Reef
	OWF_VID_76_00043	Additional43	04/04/2022	22:24:52	400003.97	5935288.54	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_76_00044	Additional44	04/04/2022	22:25:02	400004.81	5935290.38	2	<10%	30	<64mm	1	Not a Reef
	OWF_VID_76_00045	Additional45	04/04/2022	22:25:12	400004.91	5935292.09	1	<10%	20	<64mm	1	Not a Reef
	OWF_VID_76_00046	Additional46	04/04/2022	22:25:22	400005.47	5935294.02	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_76_00047	Additional47	04/04/2022	22:25:32	400005.78	5935295.42	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_79_A_1	1	08/04/2022	09:09:47	No Nav	No Nav	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_2	2	08/04/2022	09:09:59	No Nav	No Nav	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_3	3	08/04/2022	09:10:12	No Nav	No Nav	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_79_A_4	4	08/04/2022	09:11:25	No Nav	No Nav	4	<10%	50	<64mm	1	Not a Reef
	OWF_VID_79_A_5	5	08/04/2022	09:12:49	No Nav	No Nav	3	<10%	64	64mm-5m	1	Not a Reef
	OWF_VID_79_A_6	6	08/04/2022	09:13:31	No Nav	No Nav	2	<10%	50	<64mm	1	Not a Reef
	OWF_VID_79_A_7	7	08/04/2022	09:13:54	401359.45	5936262.04	2	<10%	30	<64mm	1	Not a Reef
OWF_VID_79_A	OWF_VID_79_A_8	8	08/04/2022	09:14:26	401357.89	5936266.91	3	<10%	20	<64mm	1	Not a Reef
	OWF_VID_79_A_9	9	08/04/2022	09:14:40	401357.4	5936269.37	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_10	10	08/04/2022	09:14:48	401357.01	5936270.15	3	<10%	30	<64mm	1	Not a Reef
	OWF_VID_79_A_11	11	08/04/2022	09:14:57	401356.62	5936271.04	3	<10%	30	<64mm	1	Not a Reef
	OWF_VID_79_A_12	12	08/04/2022	09:15:13	401355.41	5936272.70	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_13	13	08/04/2022	09:15:28	401354.36	5936275.02	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_14	14	08/04/2022	09:15:45	401353.71	5936277.01	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_15	15	08/04/2022	09:15:54	401353.42	5936277.78	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_79_A_16	16	08/04/2022	09:16:09	401352.70	5936279.86	1	<10%	20	<64mm	1	Not a Reef

Document No. UK4855H-824-RR-01 Page 287 of 292

Transect Name	Picture	Picture No.*	Date	Time	Easting (m)	Northing (m)	Composition (% Cover)	% Cover Category	Elevation (Average Boulder And Cobble Height In Mm)	Elevation Category	Reef Structure	Reefiness Value
	OWF_VID_79_A_17	17	08/04/2022	09:16:14	401352.38	5936280.38	1	<10%	30	<64mm	1	Not a Reef
	OWF_VID_79_A_18	18	08/04/2022	09:16:23	401351.79	5936281.38	7	<10%	64	64mm-5m	1	Not a Reef
	OWF_VID_79_A_19	19	08/04/2022	09:16:41	401350.64	5936284.60	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_20	20	08/04/2022	09:16:52	401350.1	5936285.96	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_21	21	08/04/2022	09:17:14	401349.11	5936288.69	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_22	22	08/04/2022	09:17:34	401347.82	5936292.33	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_23	23	08/04/2022	09:17:45	401347.15	5936294.42	1	<10%	20	<64mm	1	Not a Reef
	OWF_VID_79_A_24	24	08/04/2022	09:17:53	401347	5936295.18	1	<10%	20	<64mm	1	Not a Reef
	OWF_VID_79_A_25	25	08/04/2022	09:18:06	401346.55	5936297.05	3	<10%	50	<64mm	1	Not a Reef
	OWF_VID_79_A_26	26	08/04/2022	09:18:14	401345.94	5936298.06	3	<10%	30	<64mm	1	Not a Reef
	OWF_VID_79_A_27	27	08/04/2022	09:18:22	401345.32	5936299.34	9	<10%	50	<64mm	1	Not a Reef
	OWF_VID_79_A_28	28	08/04/2022	09:18:30	401344.5	5936301.03	4	<10%	40	<64mm	1	Not a Reef
	OWF_VID_79_A_29	29	08/04/2022	09:18:39	401343.99	5936301.9	9	<10%	50	<64mm	1	Not a Reef
	OWF_VID_79_A_30	30	08/04/2022	09:18:57	401342.63	5936305.21	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_31	31	08/04/2022	09:19:15	401341.8	5936306.34	0	0	0	Flat	0	Not a Reef
	OWF_VID_79_A_32	32	08/04/2022	09:19:26	401341.05	5936308.34	13	10-40%	50	<64mm	2	Low Reef
	OWF_VID_79_A_33	33	08/04/2022	09:19:36	401340.79	5936309.36	9	<10%	50	<64mm	1	Not a Reef
	OWF_VID_79_A_34	34	08/04/2022	09:19:45	401340.51	5936310.43	1	<10%	10	<64mm	1	Not a Reef
	OWF_VID_79_A_35	35	08/04/2022	09:19:57	401339.90	5936312.40	5	<10%	30	<64mm	1	Not a Reef
	OWF_VID_79_A_36	36	08/04/2022	09:20:09	No Nav	No Nav	7	<10%	20	<64mm	1	Not a Reef
	OWF_VID_79_A_37	37	08/04/2022	09:20:18	No Nav	No Nav	1	<10%	40	<64mm	1	Not a Reef

^{*}Additional screenshots were captured from the HD video approximately every 10 seconds if the underwater stills captured in the field underrepresented the spatial variability in cobbles and boulders

Document No. UK4855H-824-RR-01 Page 288 of 292

APPENDIX O - SABELLARIA REEF ASSESSMENT

Transect Name	Picture	Picture no.*	Date	Time	Easting	Northing	Composition (% cover)	Elevation (Average tube height in cm)	Reefiness value
	OWF_VID_76_00001	Additional1	04/04/2022	22:17:51	399987.77	5935227.6	0	0	Not a Reef
	OWF_VID_76_00002	Additional2	04/04/2022	22:18:02	399987.76	5935228.6	0	0	Not a Reef
	OWF_VID_76_00003	Additional3	04/04/2022	22:18:12	399988.51	5935230.3	45	7	Medium Reef
	OWF_VID_76_00004	Additional4	04/04/2022	22:18:22	399989.1	5935232.1	47	7	Medium Reef
	OWF_VID_76_00005	Additional5	04/04/2022	22:18:32	399989.42	5935233.4	3	1	Not a Reef
	OWF_VID_76_00006	Additional6	04/04/2022	22:18:42	399990.04	5935234.9	35	4	Low Reef
	OWF_VID_76_00007	Additional7	04/04/2022	22:18:52	399990.4	5935235.7	2	1	Not a Reef
	OWF_VID_76_00008	Additional8	04/04/2022	22:19:02	399991.07	5935237.1	36	7	Medium Reef
	OWF_VID_76_00009	Additional9	04/04/2022	22:19:12	399991.26	5935238.4	7	5	Not a Reef
	OWF_VID_76_00010	Additional10	04/04/2022	22:19:22	399991.91	5935239.5	1	1	Not a Reef
	OWF_VID_76_00011	Additional11	04/04/2022	22:19:32	399992.5	5935240.7	11	5	Low Reef
OWF_VID_76	OWF_VID_76_00012	Additional12	04/04/2022	22:19:42	399993.15	5935241.7	2	1	Not a Reef
	OWF_VID_76_00013	Additional13	04/04/2022	22:19:52	399993.59	5935243.5	7	4	Not a Reef
	OWF_VID_76_00014	Additional14	04/04/2022	22:20:02	399994.04	5935245.4	3	4	Not a Reef
	OWF_VID_76_00015	Additional15	04/04/2022	22:20:12	399994.56	5935247.6	0	0	Not a Reef
	OWF_VID_76_00016	Additional16	04/04/2022	22:20:22	399995.18	5935249.5	17	4	Low Reef
	OWF_VID_76_00017	Additional17	04/04/2022	22:20:32	399995.38	5935251.3	2	1	Not a Reef
	OWF_VID_76_00018	Additional18	04/04/2022	22:20:42	399995.53	5935253.1	15	4	Low Reef
	OWF_VID_76_00019	Additional19	04/04/2022	22:20:52	399995.79	5935254.5	3	2	Not a Reef
	OWF_VID_76_00020	Additional20	04/04/2022	22:21:02	399996.09	5935256.3	1	1	Not a Reef
	OWF_VID_76_00021	Additional21	04/04/2022	22:21:12	399996.12	5935257	2	3	Not a Reef
	OWF_VID_76_00022	Additional22	04/04/2022	22:21:22	399996.33	5935258.4	12	7	Low Reef
	OWF_VID_76_00023	Additional23	04/04/2022	22:21:32	399996.53	5935260.2	25	7	Medium Reef

Transect Name	Picture	Picture no.*	Date	Time	Easting	Northing	Composition (% cover)	Elevation (Average tube height in cm)	Reefiness value
	OWF_VID_76_00024	Additional24	04/04/2022	22:21:42	399996.17	5935262.2	25	10	Medium Reef
	OWF_VID_76_00025	Additional25	04/04/2022	22:21:52	399996.31	5935263.9	20	7	Medium Reef
	OWF_VID_76_00026	Additional26	04/04/2022	22:22:02	399996.67	5935265.8	0	0	Not a Reef
	OWF_VID_76_00027	Additional27	04/04/2022	22:22:12	399997.05	5935267	3	2	Not a Reef
	OWF_VID_76_00028	Additional28	04/04/2022	22:22:22	399997.27	5935267.6	3	5	Not a Reef
	OWF_VID_76_00029	Additional29	04/04/2022	22:22:32	399997.85	5935268.6	6	3	Not a Reef
	OWF_VID_76_00030	Additional30	04/04/2022	22:22:42	399998.7	5935270.2	3	1	Not a Reef
	OWF_VID_76_00031	Additional31	04/04/2022	22:22:52	399999.56	5935271.8	19	5	Low Reef
	OWF_VID_76_00032	Additional32	04/04/2022	22:23:02	399999.61	5935273.2	23	5	Medium Reef
	OWF_VID_76_00033	Additional33	04/04/2022	22:23:12	400000.18	5935274.9	2	1	Not a Reef
	OWF_VID_76_00034	Additional34	04/04/2022	22:23:22	400000.55	5935276.6	3	1	Not a Reef
	OWF_VID_76_00035	Additional35	04/04/2022	22:23:32	400000.58	5935278.1	4	1	Not a Reef
	OWF_VID_76_00036	Additional36	04/04/2022	22:23:42	400000.74	5935279.6	0	0	Not a Reef
OWF_VID_76	OWF_VID_76_00037	Additional37	04/04/2022	22:23:52	400001.07	5935280.6	0	0	Not a Reef
	OWF_VID_76_00038	Additional38	04/04/2022	22:24:02	400001.6	5935281.9	0	0	Not a Reef
	OWF_VID_76_00039	Additional39	04/04/2022	22:24:12	400002.02	5935283.2	1	1	Not a Reef
	OWF_VID_76_00040	Additional40	04/04/2022	22:24:22	400002.72	5935284.9	0	0	Not a Reef
	OWF_VID_76_00041	Additional41	04/04/2022	22:24:32	400002.9	5935286.5	0	0	Not a Reef
	OWF_VID_76_00042	Additional42	04/04/2022	22:24:42	400003.36	5935287.8	0	0	Not a Reef
	OWF_VID_76_00043	Additional43	04/04/2022	22:24:52	400003.97	5935288.5	0	0	Not a Reef
	OWF_VID_76_00044	Additional44	04/04/2022	22:25:02	400004.81	5935290.4	0	0	Not a Reef
	OWF_VID_76_00045	Additional45	04/04/2022	22:25:12	400004.91	5935292.1	0	0	Not a Reef
	OWF_VID_76_00046	Additional46	04/04/2022	22:25:22	400005.47	5935294	0	0	Not a Reef
	OWF_VID_76_00047	Additional47	04/04/2022	22:25:32	400005.78	5935295.4	0	0	Not a Reef

^{*}Additional screenshots were captured from the HD video approximately every 10 seconds if the underwater stills captured in the field underrepresented the spatial variability in Sabellaria spinulosa

APPENDIX P – SAMPLE AND SEABED PHOTOGRAPHS

UK4855H-824-RR-01

APPENDIX Q - SERVICE WARRANTY

This report, with its associated works and services, has been designed solely to meet the requirements of the contract agreed with you, our client. If used in other circumstances, some or all the results may not be valid, and we can accept no liability for such use. Such circumstances include different or changed objectives, use by third parties, or changes to, for example, site conditions or legislation occurring after completion of the work. In case of doubt, please consult Benthic Solutions Limited. Please note that all charts, where applicable should not be used for navigational purposes.